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Simple formula for conditional fission barriers of rotating nuclei
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A simple formula for conditional fission barriers of rotating nuclei is proposed based on an
extension of Swiatecki’s dimensionless expressions for conditional barrier energies. The calculated
barrier heights are compared with the measured values. The utility of the present formula in the
analysis of experimental results in a typical heavy ion fusion reaction is discussed.
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All macroscopic models of fusion reactions in medium
energy heavy ion collisions suggest a long dynamical path
between the capture of the projectile by the target and
the full equilibration of the fused composite system lead-
ing to the formation of a “compound nucleus.” Possible
signatures of this phase of the fusion reaction process
have also been identified in several experiments such as
anomalous fission fragment angular distributions and gi-
ant dipole resonance -y-ray measurements [1,2]. Based on
a dynamical model of nuclear shape evolutions describing
fusion, Swiatecki [3] has shown that the details of the dy-
namics preceding the compound nucleus formation sen-
sitively depend on the conditional fission barriers. While
Swiatecki gave simple analytical expressions for the di-
mensionless energies of the conditional fission barriers,
these could only be used at a qualitative level and not in
a quantitative analysis of experimental data because of
the relative simplicity of the model and the consequent
systematic overprediction of all barrier heights. In par-
ticular, finite range effects are known to be important in
the calculation of fission barrier heights but are not in-
cluded in Swiatecki’s model. We propose here a simple
extension of Swiatecki’s expressions for the conditional
barrier heights, to include the effects of the finite range
of the nuclear force and angular momentum. The calcu-
lated conditional barrier heights are compared with the
measured values, wherever possible. The utility of the
present formula in the analysis of experimental data on
heavy ion fusion reactions is also discussed.

Swiatecki’s model of fusion is based on a dynamical
evolution of the system in a three-dimensional space of
nuclear shapes. The three shape degrees of freedom are
(1) distance variable p = z—%%-, (2) window-opening
variable o = ﬁ%){ and (3) asymmetry variable A

= %—;—%1. The quantities R; and R, are the radii of the
two nucfei, r is the seperation between the nuclei and 6
is the window-opening angle (see Fig. 1). Swiatecki has
also shown that the potential energy of a configuration

taken with respect to the energy of tangent spheres and

written in units of 87r§27 is well approximated as
PE — PE

nz__~_2__t.‘1=uo'—v2+1/3—ma, (1)
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where the variables v and o are defined in terms of the
three shape degrees of freedom; v = y/a and o = {’T"A—lg
and z is the effective fissility parameter; R[=R; Ry/(R; +
R,)] is the reduced radius of the system and - is the sur-
face energy coeflicient. The effective fissility parameter
z is dependent on the mass asymmetry:

_ (1-D)?
R Y 2
where o = %, D = A% and v = 19.008(1 —
2.841%) /47ro? with I = (N — Z)/A and the radius pa-
rameter ¢ = 1.2. The quantities N, Z, A, and R refer
to the neutron, charge, and mass numbers and radius
of the combined system. The conditional saddle-point
(7,@) can be located by differentiating » with respect to
v and o. The saddle-point energy thus calculated is

n(7,7) = —z* + 5. (2)

The barrier heights are to be calculated with respect to
the energy of a sphere, which is £ — 1 in the above units:

ﬂbar——-l—m—:c2+a:3. (3)

Swiatecki’s expression for barrier height implies an im-
portant scaling law— “The dimensionless conditional
saddle-point properties (such as the relative degree of
window opening and energy deviation from tangent

spheres expressed in units of SW—szy) are functions of the

Asymmetry variable A :%1‘_‘22

1+ Ry

r
Distance variable pP= RTR
1 2
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FIG. 1. The nuclear configuration defining the three shape
variables p, a, and A.
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effective fissility parameter = alone otherwise indepen-
dent of asymmetry.”

In spite of the simplicity and elegance of the Swiate-
cki model, it could not be used for direct analysis of the
experimental results because of the well-known overesti-
mation of the fission barrier heights by the simple liquid
drop model. For example, Fig. 2 shows the calculated fis-
sion barrier heights using the present formula compared
with Swiatecki’s expression and with the predictions of
the finite range liquid drop model of Sierk [4]. The dis-
crepencies are obvious and arise due to a neglect of the
finite range of the nuclear force in the Swiatecki model.
It is known that, for nearly spherical nuclei, finite range
effects can easily be taken into account by a simple read-
justment of the surface tension. On the other hand, for
highly necked-in shapes, finite range effects exhibit them-
selves as the interaction energy between the two halves
[5]. For the overlapping spheres, Blocki et al. have given
analytical expressions for the interaction energy. How-
ever, the conditional saddle shapes deviate from two over-
lapping spheres, with the addition of a neck. No simple
analytical finite range correction could be found for the
conditional saddle-point shapes. Based on numerical es-
timates we propose an expression for interaction energy
of the form

Vit = —7.36nyR(1 — z)*2. (4)

The resulting expression for the dimensionless fission bar-
rier height is
m,a,=1—m———m2+m3—-0'—_92(1—x)1'2. (5)
R
For z = 0, the saddle-point configuration is one of touch-
ing spheres. The finite range correction is the proximity
energy itself [5]. For z = 1, the saddle-point shape is
spherical and therefore the finite range correction gets
absorbed in the surface tension constant itself. Equation
(4) reflects these two extreme cases. Figure 2 also shows
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FIG. 2. Fission barrier vs mass of the CN for 8 stable nu-
clei. Swiateckti’s calculation is shown with dashes, Sierk’s
calculation with dots, and the present formula with a solid
line.
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the calculated barrier heights with the inclusion of the
finite range correction. Now we use Swiatecki’s scaling
law for conditional fission barrier heights. Experimental
measurements of conditional barrier heights are available
for 7®Br, 110-111In and 244Cm. Figures 3 and 4 show
the calculated barrier heights for the systems 7°Br and
110Tn as function of fragment charge. Figure 5 shows a
comparison of the experimental yields and the yields cal-
culated [6] using the present formula for barrier heights
for 244Cm. The yield Y for a given complex fragment is
calculated from the expression

Y (Z) x Tzexp(—Bz/Tz), (6)

where Bz is the conditional barrier and Tz is the saddle
temperature. In all cases, the present simple formula
yields a satisfactory agreement with the experimental
data.

One of the distinguishing features of heavy ion reac-
tions is that they involve large angular momenta. It is
known that the centrifugal repulsion in the case of a ro-
tating nucleus contributes to lowering of the fission bar-
rier heights in a manner very similar to Coulomb repul-
sion. One therefore expects a scaling law for rotating
nuclei similar to Swiatecki’s scaling law for asymmetric
fission. We therefore explored a scaling law of the form
T = g + zg for symmetric fission barriers where zp is a
rotational part of the fissility parameter.

To obtain the functional form of zy, the saddle-point
energy 7 is calculated as a function of I? for symmetric
fission of various nuclei using Sierk’s barriers [4]. From
Eq. (4), = versus {2 is found to be almost linear for each
nucleus, though the slopes are different. These slopes
when plotted against the mass number A, give the mass
dependence of xg. Based on the above analysis, we de-
duce

l2

One could now combine the two scaling laws. The effec-
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FIG. 3. Fission barrier vs the charge of the emitted frag-
ment for "°Br. Swiatecki’s calculation is shown with dashes
and the present calculation with a solid line. Experimental
points are taken from Ref. [6].
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FIG. 4. Fission barrier vs the charge of the emitted frag-
ment for ''°In. Swiatecki’s calculation is shown with dashes
and the present calculation with a solid line. Experimental
points are taken from Ref. [7].

tive fissility parameter = for a calculation of the condi-
tional barrier heights of rotating nuclei can now be writ-
ten as

(8)

2 _ n)2
m:(m0+0.44 L )(1 D)

Al.843 1+ 3D

and used in Eq. (5).

Figure 6 shows the calculated conditional barriers for
55Co for various values of angular momentum /. We now
describe a simple use of the proposed formula in the anal-
ysis of a typical heavy ion fusion experiment.

One of the long standing puzzles in heavy ion fusion re-
action studies is the deviations noticed between the mea-
sured particle yields and energy spectra and the predic-
tions of the standard statistical theory of deexcitation
of excited nuclei. While some groups have gone to the
extent of questioning the validity of the statistical the-
ory for nuclei [9], with large excitation energies and spins
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FIG. 5. Yield vs the charge of the emitted fragment for
244Cm. Calculated yields are shown by a solid line. Experi-
mental points are taken from Ref. [8].
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FIG. 6. Fission barrier vs mass asymmetry for various val-
ues of I for the system 5°Co.

others have attempted a simple modification of the trans-
mission coefficients, level densities of the emitted nuclei,
etc. to fit the measured quantities [10]. It is, however,
known that in heavy ion induced fusion reactions, the
formation phase of the compound nucleus (CN) plays an
important role and may leave characteristic signatures
in the fusion observables, particularly, the multiplicity
and energy spectra of the emitted particles [11]. The ef-
fect is expected to be important when the temperature
of the composite system is comparable to the potential
barriers encountered and when the angular momentum
carried is large. For example, the 28Si427Al reaction
studied by Agnihotri et al. [10], is expected to popu-
late the compound nucleus 3°Co at an excitation energy
of 84 MeV and [ values up to 42A. The corresponding
temperature of the CN is about 3.5 MeV. We examine
here the 28Si4-27 Al reaction at 140 MeV in detail to find
out whether the deviations observed by Agnihotri et al.,
might be a consequence of the entrance channel dynam-
ics and not entirely to a modification of the parameters
of the statistical model of the compound nucleus. Fig-
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FIG. 7. Partial cross-section o; vs [ for the system 55Co.
Cross section for CN formation is shown by the shaded region.
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ure 6 shows the conditional barriers as a function of the
mass asymmetry (32 ;21 ) for different values of {. Figure
7 shows the calculated partial cross sections o; for fusion
using the one-dimensional barrier penetration model. As
discussed in [11], it is the conditional barrier which keeps
the system together until it equilibrates in all degrees of
freedom resulting in the formation of the compound nu-
cleus. It is known that the shape relaxation is quite slow
and takes more than about 1072° sec to reach a nearly
spherical CN. We have therefore calculated the probabil-
ity of forming a CN without premature seperation using
the conditional barrier heights and the temperature [12].
The calculated differential cross section for CN forma-
tion is also shown in Fig. 7 as a shaded area. Out of
the total cross section of 1450.5 mb, only about 50% of
the events result in the formation of a fully equilibrated
CN which undergoes statistical decay. The remaining
fraction of the events seperate out before CN formation
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resulting in fissionlike fragments and the collision trajec-
tory always remains elongated. Such events involve emis-
sion of a’s from highly deformed shapes involving lower
emission temperatures and modified transmission coeffi-
cients. Therefore the results of Ref. [10] might suggest
not a deformed CN but the presence of collision events
not leading to compound nucleus formation. Any quan-
titative analysis of the data should therefore involve the
precompound nucleus dynamics and the emission of par-
ticles during this phase of the reaction. The utility of the
proposed pocket formula in such calculations is obvious.

In summary, we propose here a simple formula for con-
ditional fission barriers of rotating nuclei based on the
extension of Swiatecki’s expressions for the conditional
barrier heights to include the effects of finite range of the
nuclear force and angular momentum. The utility of the
present formula in the analysis of experimental data on
heavy ion fusion reactions is also discussed.
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