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Simulation of the exclusion principle in the neutron- Q interaction through a
repulsive term and application to a three-body calculation of the O(d, p)1~0 reaction
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A two-term s-wave separable potential which generates only the 2s&y2 single-particle state in 0
and reproduces the low energy phase shift is constructed. The two-term potential, together with
a d-wave separable potential which reproduces the 1dsiq single-particle state in "0, is used in a
three-body Faddeev calculation of the O(d, p) 0 reaction.

PACS number(s): 21.45.+v, 11.80.Jy, 25.45.Hi, 27.20.+n

Despite the success of the distorted-wave Born approx-
imation (DWBA) as a tool to analyze deuteron strip-
ping, a more complete description which takes into ac-
count the three-body dynamics became the subject of
many theoretical works. Most of these assume that
the neutron and the proton belonging to the incident
deuteron interact with the target nucleus through stan-
dard optical potentials. In order to solve the three-body
Schrodinger equation, one expands the wave function in
a basis which consists of the eigenstates of the neutron-
proton relative motion. The resulting coupled equations
for the center-of-mass motion are treated through the
adiabatic approximation [1] or solved more accurately us-
ing the CDCC (continuum-discretized coupled-channels)
method [2]. An alternative expansion was recently con-
sidered by Laid et al. [3]. In these approaches the strip-
ping amplitude cannot be obtained from the asymptotic
model wave function and one has to use the integral form
of the transition amplitude, which requires the three-
body wave function only in the vicinity of the target
nucleus.

The simultaneous inclusion of the rearrangement chan-
nels in the CDCC calculation is diKcult. An approximate
calculation [4] finds that the coupling to the proton chan-
nel has a substantial effect at low energies.

A natural approach to deuteron reactions in the three-
body model is provided by the Faddeev formalism which
allows a simultaneous treatment of both the elastic, the
stripping, and the breakup channels. For local potentials,
the Faddeev equations are diFicult to solve numerically
and most of the appl'cations have been done using nonlo-
cal separable potentials. This does not represent a great
drawback as low-energy scattering amplitudes generated
by short-range potentials may also be obtained by a su-
perposition of separable potentials. So far, only the d+ 0,

system has been successfully treated in the Faddeev ap-
proach [5—7].

Faddeev calculations have been attempted also to de-
scribe the stripping reaction sO(d, p) 0 [8,9]. One as-
sumes a three-body model consisting of an inert core of

0 plus two nucleons (the neutron and the proton in the
incident deuteron). In the process, the neutron cannot
be captured in the single-particle states already occupied

in the target nucleus. This constraint has been approxi-
mated [9,10] by using for the neutron- 0 interaction, a
separable potential which generates only the 1d5y2 and
the 2szy2 single-particle states, which are allowed by the
exclusion principle. The 8-wave interaction which gen-
erates the 28qy2 state without producing the forbidden
18&y2 state may be taken of the form

where Q and m are the momentum and the mass of the
neutron and A.. . is the magnitude of the interaction.
For the form factor, we may choose

(2)

Taking

dq q2 sl/2 (q)
0 q2+ ~2 (3)

we get a bound state with energy s.. . = —o., /(2m)
and wave function

(&I& i )02@

where N.. . is the normalization factor. This function is
identical to the eigenfunction describing the 28&g2 state
of the harmonic oscillator. The value of the parameter

(0.3974 fm ) is fixed by using the experimental
value s.. . = —3.275 Mev. The value of P.. . (2.176 fm)
is chosen to give the correct mean-square radius (4.07 fm)
of the 2si~2 neutron orbit in 0 [ll]. The parameter
A.. . is fixed by Eq. (3) and its value turns out to be
17.280 fm . We mention here that, for simplicity in the
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FIG. 1. Phase shift and total cross section predicted by the
one-term s-wave separable potential [Eq. (1)]. The values
of the parameters are o,,&

——0.3974 fm, P, ,&,
——2.176

fm, and A, ,&,
——17.280 fm . The dashed line represents the

nonresonant component of the measured phase shift.

FIG. 2. Same as Fig. 1 for the two-term separable potential
[Eq. (5)] with A.. . = 3 fm.

The form factor g.. . (Q) is chosen as

three-body kinematics, the mass of the core'is assumed
to be infinite.

Figure 1 shows the phase shift and the cross section
corresponding to the one-term potential defined by Eqs.
(1)—(3). The phase shift exhibits clearly an anomalous
behavior, namely, it does not d.ecrease monotonically
with the energy, as it happens for the nonresonant com-
ponent of the phase shift obtained from experiment [12].
In fact, the phase shift bends back toward the value zero
and this oscillation generates a slight hump in the cross
section.

The one-term potential given by Eq. (1) is not satisfac-
tory also because it generates scattering wave functions
which are not orthogonal to the forbidden 1szy2 state and
thus the exclusion principle is not completely satisfied.

The purpose of this work is to construct an im-
proved s-wave neutron- 0 potential and then to ap-
ply it in a model three-body Faddeev calculation of the

0(d, p) 0 reaction. Since the Pauli principle is prop-
erly taken into account by the new potential, we consider
the model a refinement of those used in other three-body
Faddeev calculations of the same reaction [9,10]. As in
[9], we also use a separable potential which acts in the
d5y2 wave producing the Id5y2 bound state.

In the case of the neutron-alpha interaction, many
authors [5] use a repulsive separable potential in the s
wave in order to simulate the efFect of the Pauli principle
which forbids the occurrence of a 1szy2 bound state in
the neutron-alpha system. This suggests that we add to
the original potential [Eq. (1)] a repulsive term, so that

(Q)
l~/2)P3&&2 Q

(6)

the parameter P.. . being the same as in Eq. (2). As a
consequence of the orthogonality relation

~q q3
—/3/3//3'. „,3/' 3 S3 q3)

—/3/3)/3!„, 3/'
2 S1/2

= 0, (7)
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the bound state corresponding to the original potential
remains unchanged. However, the scattering states are
afFected by the new term. It can be shown that, for A.. .
very large, the corresponding scattering wave functions 4'

become orthogonal to g, , , Since g.. . was chosen iden-
tical to a 1siy2 harmonic-oscillator wave function appro-
priate to describe the forbidden 1sjy2 state, we may say
that the exclusion principle is satisfied in the limit of large
values of A, , , Figure 2 refers to a value A„, = 3 fm. Al-
though the hump in the cross section is more pronounced
than in Fig. 1, we notice that the anomaly has moved to
a higher energy and, for energies below the anomaly, the
phase shift is improved, becoming closer to experiment.
In fact, performing calculations with increasing values of
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FIG. 3. Same as Fig. 2 with A.. . = 50 fm.
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A„„we can remove the anomaly to energies well above
the energy region relevant to processes involving a low-
energy neutron. At the same time, in the low-energy re-
gion, the phase shift improves and the magnitude of the
overlap integral (g.. .l@) decreases. For A.. . = 50 fm,
the calculated phase shift is shown in Fig. 3 and is in good
agreement with experiment (dashed line in Fig. 1). The
anomaly is pushed to a region around 50 MeV and. , for
scattering energies below 10 MeV, l(g.. .l@)l decreases
about 2 orders of magnitude when compared to its values
for A„, = 0. By increasing A.. . even more, we observe
that the phase shift changes only very slightly in the en-
ergy region between 0 and 10 MeV. This means that at
low energies the effect of the repulsion almost saturates
when A.. . = 50 fm. For this reason, we shall consider
the two-term potential with A„, = 50 fm as an appropri-
ate effective potential to describe the low-energy s-wave
neutron- 0 interaction. One should also use repulsive
interactions in the p3g2 and pz/2 partial waves to project
out the 1p3y2 and 1pqy2 single-particle states which are
occupied in the core. However, the repulsion in these
partial waves is expected to be less effective than in the
s wave because of the centrifugal barrier. In fact, the
low-energy p3y2 and pq/2 phase shifts are small once the
compound elastic resonances are removed [12]. For this
reason, the p-wave interactions are neglected. Alterna-
tive ways of introducing projection operators to eliminate
Pauli forbidden components are given in Refs. [7,13—15].

For the d5y2 interaction, we use the potential

30 I

16

~~ 20
E

Cl

10

eV

0 I I I I I

0 30 60 90 'I 20 150 180
e (deg}

FIG. 4. Angular distribution for the stripping to the
ground state (1dsg2 sp level) of O. The solid (dot-dashed)
line corresponds to using two terms (one term) in the s-wave
nucleon-core interaction. The experimental values (repre-
sented by dots) are from [18].

clear part of the proton-core interaction, we use the same
potential as for the neutron, that is, our model treats the
neutron and the proton in a symmetrical way (symmetric
model).

For the neutron-proton triplet s-wave interaction, we
use the separable potential

1000— I I I I I

(plV»lp') = —v(p)v(p') ) l1 Ms)(1, Msl (11)
Ms

where p is the relative momentum and ll, Ms) is the
spin-wave function of the triplet state. The form factor
is chosen to be of the Yamaguchi form, v(p) = 1/(p2+n2).
The experimental values a = 5.42 fm and ro ——1.76 fm for

where the form factor is taken to be [9] 0(d, p„) 0
Ed=6. 26 MeV

If the parameter Ap, , is constrained by a relation anal-

ogous to Eq. (3), the binding energy is given by sg, , =
—n /(2m) and the bound-state wave function is ex-

~5/2
actly the 1d5y2 oscillator wave function,

2gp 22@

E
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Np /
being the normalization factor. The experimen-

tal values [11] sg, , = —4.146 MeV and ((r )~, , ) ~

3.44 fm require the following values of the parameters:
Aq, &,

——34.664 frn, od, &,
——0.4472 fm, and Pq, &,

1.839 fm.
Concerning the proton-care interaction, we do not take

into account the Coulomb repulsion since there is no reli-
able way to treat numerically this interaction in the Fad-
deev approach to the three-body problem. For deuteron
energies well above the Coulomb barrier (= 3.5 MeV),
we expect that it is a reasonable first approximation for
the treatment of the (d, p) stripping channels, since the
Coulomb force will not deflect appreciably both the in-
coming deuteron and the outgoing proton. For the nu-
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FIG. 5. Angular distribution for the stripping to the ex-
cited state (2szg2 sp level) of O. The drawing convention is
the same as in Fig. 4.
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the scattering length and the e8'ective range of the triplet
8-wave neutron-proton scattering are reproduced if one
takes o, = 1.406 fm and A = 0.382 fm . With this
choice, we get 2.223 MeV for the binding energy of the
deuteron. Since the model is symmetric and the process
is initiated by the deuteron which has isobaric spin T =
0, the singlet 8-wave interaction will not come into play.

We worked out the Alt, Grassberger, and Sandhas
(AGS) [16] equations for the interactions described pre-
viously. The derivation of the 6nal form of the equations
is contained in Ref. [9], except for modifications due to
the fact that we use a two-term separable potential for
the 8-wave nucleon-core interaction. The coupled integral
equations were solved numerically by the method of con-
tour rotation [17]. Using the Gauss quadrature method
to approximate the integrals by 6nite sums, we end up
with a system of algebraic equations.

The calculation was performed for a deuteron energy
Ep ——6.26 MeV. At this energy, there are available
the (energy averaged) experimental data of Cords et
aL [18]. It was necessary to include 13 partial waves

(J = 0, 1+,1, , 6+, 6 ) in order to reach conver-
gence. We did not consider a higher energy (one really
well above the Coulomb barrier) as this would need the
computation of a much larger number of partial waves.

The results (solid line) are shown in Figs. 4—6. One sees
that a reasonable agreement with experiment is obtained
despite the simplicity of the model. In fact, our stripping
cross sections are close to the ones obtained by Cords et
al. using the DWBA.

In order to see the importance of the repulsive term in
the szy2 potential, we performed a calculation omitting
this term. The results are the curves drawn with a dot-
dashed line in Figs. 4—6. One sees that the repulsive term
has a small effect, but in the case of the (d, pi) and (d, d)
reactions (Figs. 5 and 6) the results are slightly improved
when it is included. The smallness of the e8ect may be
due to the fact that the additional term modifies the
nucleon-core interaction in only one partial wave while
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many partial waves of the nucleon-core subsystem are
involved in the calculation.

For lower deuteron energies (Eg = 2 MeV) we found
that the contribution of the repulsive term of the s-wave
interaction becomes more important. However, this con-
clusion is not definite since, at these energies, it is essen-
tial to take into account the Coulomb force in order to
obtain meaningful results.

FIG. 6. Angular distribution for the elastic scattering of
the deuteron.
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