R. L. Gill,¹ C. Barton,^{1,2} R. F. Casten,^{1,3} and N. V. Zamfir^{1,2,4}

¹Department of Physics, Brookhaven National Laboratory, Upton, New York 11973

³Institut für Kernphysik, Universität Köln, Köln, Germany

⁴Institute of Atomic Physics, Bucharest Magurele, Romania

(Received 5 January 1995)

Reported measurements of the intensity ratio of the 674.04 and 1379.40 keV γ rays from the 1460 keV 0⁺ level in ¹⁶⁶Er differ by a factor of 10. This difference is resolved by a new measurement which produces a ratio of 0.024 ± 0.003 , in agreement with the majority of measurements. This ratio is important in assessing the two-phonon or β -vibrational nature of the lowest excited $K = 0^+$ band, at 1460 keV, and confirms that its properties differ from those found in the majority of deformed rare earth nuclei.

PACS number(s): 23.20.Lv, 23.40.-s, 27.70.+q

The nature of the lowest excited $K = 0^+$ excitations in deformed nuclei has long been of importance in understanding the elementary collective modes of such nuclei. For many years the lowest $K = 0^+$ band has been interpreted as a β vibration. However, recent papers [1,2] have discussed the facts that, in the rare earth region, the properties of the lowest $K = 0^+$ band are correlated with those of the γ band [1] and that the predominant E2 decay matrix elements of the $K = 0^+$ bands are to the γ band, not to the ground band [2]. These observations led to the suggestion [2] that these $K = 0^+$ excitations are phonon excitations built on the γ band.

The ratio $R_{g\gamma} \equiv B(E2:0_{K=0}^+ \to 2_g^+)/B(E2:0_{K=0}^+ \to 2_{\gamma}^+)$ is known experimentally in only a few deformed nuclei because the $\Delta I = -2$, $0_{K=0}^+ \to 2_{\gamma}^+$ transition is seldom seen due to its low relative energy. Nevertheless, the decay branching ratio of other $K = 0^+$ band transitions can be used to give effective $R_{g\gamma}$ values by multiplying by appropriate ratio of rotational Clebsch-Gordan coefficients. In this way, it is found that, with two exceptions, $R_{g\gamma}$ is in the range 0.0001 to 0.018. The average value is 0.005 and the median is 0.0031. Clearly the K = 0 band, in a predominant majority of cases, decays by a large preference to the γ band.

This conclusion focuses attention on the two nuclei that appear to deviate from this pattern, ¹⁶⁴Er, where $R_{g\gamma} = 0.52 \pm 0.26$ and ¹⁶⁶Er, where the latest Nuclear Data Sheets [3] evaluation leads to $R_{g\gamma} = 1.35 \pm 0.17$. This latter value differs by a couple orders of magnitude from that of most nearby nuclei and suggests that the structure of the lowest K = 0 excitation in ¹⁶⁶Er is rather different than in other deformed rare earth nuclei.

There is, however, a considerable, and somewhat bizarre, divergence of quoted experimental values for the interband ratio $I_{g\gamma}: I(0_{K=0}^+ \rightarrow 2_{\gamma}^+)/I(0_{K=0}^+ \rightarrow 2_g^+)$ for ¹⁶⁶Er in the literature. Note that the definition of $I_{g\gamma}$ is inverted relative to $R_{g\gamma}$: large values of one are associated with small values of the other. A number of measurements exist and give values falling in two categories, ~ 0.2 and ~ 0.02 , that differ by an order of magnitude.

Reference [3] adopts the value 0.0208, giving $R_{g\gamma} = 1.35$ as quoted above. One of the more recent measurements [4], however, gives $I_{g\gamma} = 0.16$, and hence an $R_{g\gamma}$ value of $R_{g\gamma} = 0.15$.

The history of quoted values of $I_{g\gamma}$ for ¹⁶⁶Er does not provide much comfort, nor a resolution of this dichotomy of values. An earlier paper by Allab, Azgui, and Ardisson [5] also reports a high ratio $I_{g\gamma} = 0.18$ in a table, but shows a ratio of 0.017 in a figure of the proposed level scheme. To further complicate the situation, Allab, Azgui, and Ardisson claim agreement with the value of 0.22 measured by Reich and Cline [6]. However, the value quoted by Reich and Cline themselves in Ref. [6] was 0.022. Other researchers give results consistent with the lower value: Chand *et al.* [7] report 0.023, and Burson, Goudsmit, and Konijn [8] report 0.032.

FIG. 1. A portion of the γ -ray spectrum obtained from the β^- decay of ¹⁶⁶Ho to levels in ¹⁶⁶Er.

²Clark University, Worcester, Massachusetts 01610

Since the resolution of this inconsistency has direct impact on the interpretation of K = 0 excitations in deformed nuclei as β -vibrational or two-phonon modes, an experiment was undertaken to remeasure the relative intensities of the 674 and 1379 keV γ rays in ¹⁶⁶ Er. The purpose of this Brief Report is to present the result of that measurement, and to comment on its implications.

The states of interest were populated through the β^{-} decay of ¹⁶⁶Ho ($t_{1/2} = 26.80$ h), which was produced by the (n, γ) reaction on a target of natural holmium oxide. The irradiation was done at the High Flux Beam Reactor at Brookhaven National Laboratory, utilizing a low intensity $(7 \times 10^6 n_{\rm th}/{\rm cm}^2 \, {\rm sec})$, external thermal neutron beam at the H1B facility. A thick target (0.75 cm) containing 15 g of Ho_2O_3 was placed in the beam for a period of 2 days. The sample was then removed and counted for a period of 48 h, using a 30% HPGe (hyperpure Ge) detector with ~ 2.0 keV resolution full width at half maximum at 1.33 MeV. Approximately 6.96×10^5 counts were collected for the 674 keV γ ray and 1.71×10^7 counts were collected for the 1379 keV γ ray. The data are shown in Fig. 1, from which it is clear that the 1379 keV line is roughly 2 orders of magnitude stronger than the 674 keV line.

The absolute efficiency of the detector was measured with a National Bureau of Standards calibrated ¹⁵²Eu source. The efficiency was determined to be 0.014 ± 0.001 at 647 keV, and 0.0079 ± 0.0007 at 1379 keV. Since a thick target was used, it was necessary to measure the absorption of the γ rays of interest in the target material. This was accomplished by measuring the attenuation of the 661.6 keV γ ray from ¹³⁷Cs and the 1332.5 keV γ ray from ⁶⁰Co through the holmium target. The absorption

- W.-T. Chou, R. F. Casten, and P. von Brentano, Phys. Rev. C 45, R9 (1992).
- [2] R. F. Casten and P. von Brentano, Phys. Rev. C 50, R1280 (1994).
- [3] E. N. Shurshikov and N. V. Timofeeva, Nucl. Data Sheets 67, 45 (1992).
- [4] V. A. Bondarenko, E. P. Griorév, and P. T. Prokofév, Izv. Akad. Nauk. SSSR, Ser. Fiz. 45, 2141 (1981).
- [5] M. Allab, F. Azgui, and G. Ardisson, Radiochem. Ra-

coefficient was determined to be 0.136 ± 0.002 cm⁻¹ at 662 keV and 0.0606 ± 0.0003 cm⁻¹ at 1332 keV. Using the half thickness of the target, the transmission was determined to be $(94.8 \pm 1.2)\%$ and $(97.4 \pm 0.6)\%$ at 674 and 1379 keV, respectively.

After applying the above corrections to the data collected, an intensity ratio of $I(674)/I(1379) \equiv I_{g\gamma} =$ 0.024 ± 0.003 was determined. This is consistent with the value reported in the most recent evaluation [3] and with the majority of measurements. It disagrees, however, by nearly a factor of 10 with the recent measurement of Ref. [4]. The discrepant values given in the literature would appear to be typographical errors in placing the decimal point.

The large value of $I_{g\gamma}$ for ¹⁶⁶Er established by the present measurement gives an $R_{g\gamma}$ value of $R_{g\gamma} = 1.16 \pm$ 0.15. This value does not indicate an enhanced decay to the γ band and therefore confirms that this 0⁺ state should not be counted as a two-phonon excitation (a phonon excitation of the γ band). This result shows that ¹⁶⁶Er (and ¹⁶⁴Er to a lesser extent) differ qualitatively in the decay of their lowest K = 0 excitations from other deformed rare earth nuclei. Clearly, such anomalous behavior is interesting and argues for new efforts at a microscopic understanding.

The authors would like to thank P. E. Haustein for useful suggestions concerning this experiment. This work was supported in part under Contracts No. DE-AC02-76CH00016 and No. DE-FG02-88ER40417 with the United States Department of Energy, and by the BMFT under Contract No. 060K668.

dioanal. Lett. 30, 253 (1977).

- [6] C. W. Reich and J. E. Cline, Nucl. Phys. A159, 181 (1970).
- [7] B. Chand, J. Goswamy, D. Mehta, N. Singh, and P. N. Trehan, Nucl. Instrum. Methods Phys. Res. Sect. A 284, 393 (1989).
- [8] S. B. Burson, P. F. A. Goudsmit, and J. Konijn, Phys. Rev. 158, 1161 (1967).