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Variations of hadron masses and matter properties in dense nuclear matter
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Using a self-consistent quark model for nuclear matter we investigate variations of the masses of
the nonstrange vector mesons, the hyperons, and the nucleon in dense nuclear matter (up to four
times the normal nuclear density). We find that the changes in the hadron masses can be described
in terms of the value of the scalar mean field in matter. The model is then used to calculate the
density dependence of the quark condensate in-medium, which turns out to be well approximated
by a linear function of the nuclear density. Some relations among the hadron properties and the
in-medium quark condensate are discussed.

PACS nuxnber(s): 21.65.+f, 12.40.Yx, 24.85.+p, 12.39.—x

I. INTRODUCTION

One of the most interesting future directions in nu-
clear physics may be to study how nuclear matter prop-
erties change as the environment changes. Forthcom-
ing ultrarelativistic heavy-ion experiments are expected
to give significant information on the strong interaction
(i.e. , QCD ) in matter, through the detection of changes
in hadronic properties [1—3]. In particular, the variations
in hadron masses in the nuclear medium have attracted
wide interest because such changes could be a signal of
the formation of hot hadronic and/or quark-gluon mat-
ter in the energetic nucleus-nucleus collisions. Several
authors have recently studied the vector-meson (w, p, P)
masses using the vector dominance model [4], QCD sum
rules [5], and the Walecka model [quantum hadrodynam-
ics (QHD)] [6—8], and have reported that the mass de-
creases in the nuclear medium. There is also a proposal
to look for such mass shifts at CEBAF [9].

In the approach based on QCD sum rules, the reduc-
tion of the mass is mainly due to the four-quark con-
densates and one of the twist-2 condensates, (qp„D„q)
However, it has been suggested that there may be consid-
erable, intrinsic uncertainty in the standard assumptions
underlying the QCD sum-rule analyses [10]. On the other
hand, in hadronic models like QHD [11], the main rea-
son for the reduction in masses is the polarization of the
Dirac sea [6—8], where the antinucleons in matter play a
crucial role. However, from the point of view of the quark
model, the strong excitation of nucleon-antinucleon pairs
in medium is difIicult to understand. It is clear that these
two mechanisms are quite different.

Several years ago Guichon [12] proposed an entirely
difFerent model for nuclear matter, based on a mean-field
description in which quarks (in nucleon bags) interact
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self-consistently with cr and u mesons. The model has
been refined by Fleck et al. [13] and the present authors.
It provides a natural explanation of nuclear saturation
and the right magnitude of the nuclear compressibil-
ity. We have used this model to investigate the nuclear
structure functions [14], the properties of both nuclear
and neutron matter [15],and the Okamoto-Nolen-SchiB'er
anomaly and isospin symmetry breaking in matter [16].
We argued that the response of the internal structure
of the nucleon to its environment is vital to the under-
standing of, not only physics with momentum transfers
of several GeV (e.g. , deep-inelastic scattering), but also
physics at scale of a few MeV (e.g. , a violation of charge
symmetry in nuclear medium). In Ref. [15] the relation-
ship between the Guichon model [alias the quark-meson
coupling (QMC) model in our papers] and QHD has also
been clarified. Even though this model is extremely sim-

ple, the insights gained from it may help to reveal the
essential physics [17].

Here we use the Guichon model to investigate varia-
tions of various hadronic properties, as well as the density
dependence of the quark condensate in nuclear matter,
as functions of the nuclear density. In doing so we need
to recognize that the model clearly breaks down at some
high density because the assumption of nonoverlapping
bags must break down. In addition, the scalar field is
at best an effective representation of the intermediate
range two-pion exchange force, which is necessarily re-
lated to the implementation of chiral symmetry [18, 19].
This too might be expected to break down at some high
density. We show graphs as a function of density up to
4 times po (normal nuclear density) but it must always
be remembered that the validity of the calculations may
break down before we reach 4pp. This is not an unusual
practice in many-body physics where the Maxwell con-
struction may be used (for example) to describe a phase
transiton in a region between two treatments, neither of
which may be valid in the transition region.

This paper is organized as follows. In Sec. II, the QMC
model is introduced and applied to calculate the modifi—
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cation of the properties of the nucleon in nuclear matter.
The masses of the vector mesons (w, p) and the hyper-
ons (A, E, :-) in matter are studied in Sec. III. We find
that the change in the hadron masses can be described
in terms of scalar mean-field values in medium. Some
relationships among the hadron masses are given. Next,
in Sec. IV, we use this model to study the density de-
pendence of the quark condensate, which may be linked
to a diverse range of nuclear phenomena. The density
dependence of the quark condensate can be well fitted
by a linear function of the nuclear density. Then, some
connections among the hadron properties and the quark
condensate in medium are discussed. Section V contains
our conclusions.

for ("), where the bag energy is

n 0 —zNq q q N 4
b — + —-Vr

with 8 the bag constant and zN a phenomenological pa-
rameter accounting for a multitude of corrections, includ-
ing zero-point motion. Here nq is the number of quarks
in the nucleon. To correct for spurious c.m. motion in
the bag [20] the mass of the nucleon at rest is taken to
be

(8)

II. MATTER PROPERTIES IN DENSE MEDIUM

A. The quark-meson coupling model

fub
eq = Oq+ B(V + —V~) for

~ ~

quark,
kd)

JV = 2R j (x )[0 (0 —1) + Bm*/2]/x,

P = (0 —B *)/(0 + Rm*),

(4)

(5)

with Aq = x2 + (Bm*)2 and yq the quark spinor. The
effective quark mass, m*, is defined by

(6)

for both u and d quarks. The linear boundary condi-
tion, jo(xq) = Pqji(xq), at the bag surface determines
the eigenvalue, xq.

Using the SU(6) spin-flavor wave function for the nu-
cleon, the nucleon energy is given by Eb + 3V + 2Vp

The QMC model treats nuclear matter as a collection
of (nucleon) MIT bags, self-consistently bound by the ex-
change of scalar (0 ) and vector (cu, p) mesons. We assume
that nuclear matter with K g Z is uniformly distributed,
and that the mesons can be treated in mean-field approx-
imation (MFA). Let the mean-field values for the cr, u
(the time component) and p {the time component in the
third direction of isospin) fields be 0, w, and b, respec-
tively. The quarks in a static spherical bag interact with
those mean fields. The Dirac equation for a quark Beld,
gq, in a bag is then given by

[i~.8 —(m, —V.) —~'(V. + ,'r, V,)]q, =—0,

where V = gqo. , V = gq~, and Vp ——gqb, with the
quark-meson coupling constants, gq, gq, and gq. The
bare quark mass is denoted by mq and 7- is the third
Pauli matrix. The normalized, ground state for a quark
is then given by

gq(r, t) = JV~ exp[ —ieqt/B]
~

.
jo(x,r/R) l X,

i i qo rj i xqr R ) g4~ '

(2)

TABLE I. B ~ and ziv for some bag radii (mp ——5 MeV).

Rp(fm)
B'~ (MeV)

0.6
187.7
2.038

0.8
157.2
1.640

1.0
136.1
1.169

The effective nucleon mass, MN, in nuclear matter is
given by minimizing Eq. (8) with respect to R.

To see the sensitivity of our results to the bag radius of
the free nucleon, Bo, we choose the current quark mass,
mq = mo(= m„= mg) = 5 MeV, and vary the parame-
ters, B and zN, to fit the nucleon mass at 939 MeV with
Ro (= 0.6, 0.8, 1.0 fm). The values of Bi~4 and ziv are
listed in Table I.

For infinite nuclear matter we take the Fermi momenta
for protons and neutrons to be k~,. (j = p or n) This.
is defined by pz

——k& /(Rr ), where pz. is the density of
protons or neutrons, and the total baryon density, p~, is
then given by pz + p

Since we want to calculate the variations in the masses
of the u and p mesons, we suppose that both mesons
are also described by the MIT bag model in the scalar
mean field. To Bt the free masses, m = 783 MeV
and mp = 770 MeV, we introduce new z parameters for
the two mesons, z and zp. We then find that z (p)
0.7840(0.8061), 0.4812(0.5160), 0.1198(0.1680) for Rp =
0.6, 0.8, 1.0 fm, respectively. Unfortunately, in this model
it is hard to deal with the density dependence of the o
meson in medium because it couples strongly to the pseu-
doscalar (7r) channel, which requires a direct treatment
of chiral symmetry in medium [18, 19]. That is beyond
the scope of this study. Although one might expect the
0-meson mass in medium to be less than the free one (see,
e.g. , Ref. [6]), we shall keep the free value, 550 MeV, even
lIl IIledlum.

The u field is now determined by baryon number con-
servation as u = g p~/m', where g = 3gq and m* is
the effective u-meson mass, and the p mean Beld by the
difference in proton and neutron densities, p3 ——p„—p„.
On the other hand, the scalar mean field is given by a
self-consistency condition (SCC) [ll, 15]. Since the p field
value is 5 = gyps/(2m*z), where g~ = gq, the total energy
per nucleon, E~~t, can be written
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g'/4m
1.326
1.016
0.871

g /4vr

18.79
20.63
21.09

K
223
205
196

M~
838
850
855

gp/4m
4.923
5.014
5.045

-0.07
-0.09
-0.12

TABLE II. The coupling constants and calculated properties of equilibrium matter at the sat-
uration density (mp ——5 MeV). The efFective nucleon mass M"' and the nuclear compressibility K
are quoted in MeV.

Rp(fm)
0.6 -0.03
0.8 -0.02
1.0 -0.01

2

p~(2vr)'
2 P)

kF.
dk M*2 + k2

2 2 2m 2 g g

reduced, and enhanced. The strength of the scalar mean-
field V in medium is shown in Fig. 1. At small density it
is well approximated by a linear function of the density
(see also Eq. (4O) in Ref. [15]):

2
C7 =

(2~)sm'

kF. (mr„&
)R

2

where m* is the effective p-meson mass in medium. Then,
the SCC for the 0. field is given by

V —(14O MeV) (14)

The dependence of the e8'ective nucleon mass on the
nuclear density is shown in Fig. 2. It decreases as the
density goes up, and it behaves like constant at large
density. We find that the efFective nucleon mass at small
density is approximately given by

Using Eqs. (7) and (8) we find

where g = 3g& and CN is the quark-scalar density in
the nucleon:

(z.".,) (
z" a " z"N bag bag

(12)

with

= 1 —0.14!
(Po) '

which is identical to the model independent result derived
using QCD sum rules [21].

In Fig. 3 the density dependence of the axial-vector
coupling constant of the nucleon is illustrated. It de-
creases as the density increases. On the other hand, the
magnetic moment of the proton in symmetric nuclear
matter increases with density as shown in Fig. 4. The
calculation of these quantities is standard [22] (c.m. and
recoil corrections are not included [23]). It is rather easy
to understand why g& and p, N tend to decrease and in-
crease, respectively, with density: in the bag model these

Oq/2+ Bm" (O~ —1)
Oq(Oq —1) + Bm*/2 (13)

QQ I I I I
I

I I I I
[

I I I I

[
I I I I

i
I I I I

[
I I I I

i

I I I I
i

I I I2

The value of the quark-scalar density is about 0.4 at p~ ——

0, and it decreases monotonically to about 0.2 at the
normal nuclear density, po ——0.17 fm . The dependence
of the scalar density on the bag radius is not strong (see
Ref. [15]).

B. Coupling constants and nuclear matter properties
CD

100

We determine the coupling constants, g and g, so as
to fit the binding energy (—16 MeV) at the saturation
density, po, for symmetric nuclear matter. Furthermore,
the p-meson coupling constant is used to reproduce the
bulk symmetry energy, 33.2 MeV. The values of the cou-
pling constants are listed in Table II. In the last two
columns, the relative changes (with respect to the values
at zero density) of the bag radius and the lowest eigen-
value are shown. The present model gives a good value
for the nuclear compressibility —around 200 MeV. If we
take a heavier current-quark mass, the effective nucleon
mass and the nuclear compressibility are, respectively,

0 0.5 1 1.5 2 2.5 3 3.5 4

v, /v,
FIG. 1. Scalar mean-6eld values. The dotted, solid, and

dashed curves are, respectively, for Bo ——0.6, 0.8, and 1.0 fm.
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FIG. 2. EKective nucleon mass in symmetric nuclear mat-
ter. The curves are labeled as in Fig. l.

FIG. 4. The ratio of the magnetic moment of the proton
in medium to that in free space. The curves are labeled as in
Fig. l.

quantities involve integrals over the upper and lower com-
ponents of the quark wave function. Because the attrac-
tive scalar potential electively decreases the quark mass
it makes the solution more relativistic, i.e., the lower com-
ponent of the wave function is enhanced. This fact leads,
respectively, to the decrease and increase of g& and p~ in
medium. Given the simplicity of this argument we find
the conclusion that the magnetic moments of the other
hadrons should increase quite compelling.

At small density, we can expand g& and p~ in terms
of p~. If we take the quark to be massless for simplicity,
and ignore the dependence of g& and p~ on the change
of the bag radius in medium, they are expressed as

and

g~ 4xp —12xp + 10xp —3

g~ 2xp(xp —1)'

= 1 —0.09
i

4 pp)

p~ 4xp —16xp2 + 17xp —6

p~ 2xp(xp —1)'(4xp —3)
pgy
i'

=1+o.1i '
4 pp)

(16)

0.98

0 ~ 96

0 ~ 94

0 ~ 92
CD

0.9

I I I I I I I I 1 I I I I I I I I I ! I I I I I I I I I I I I I I I I I I IQ 86~ LJ late

0 0.5 1 1.5 2 2.5 3 3.5 4

I, ~I,

where xp ——2.04, R = 0.8 fm, and Eq. (14) is used. These
formulas can roughly reproduce both the ratios at small
density. Furthermore, we have calculated the charge ra-
dius of the proton in medium, and we find that the change
is within a few percent even at p~ 4po.

Here we must add a caution that the contribution of
meson exchange currents (MEC) to g&, p~, etc. , would
be considerable in medium, and, hence, we should treat
the whole problem including MEC to get the final results
for the changes in these quantites. This is obviously be-
yond the scope of the present work.

Finally, we record that the variations of the above nu-
cleon properties depend only very weakly on the proton
&action, f~, which is defined as p„/p~, because the p
meson does not play a role in determining the nucleon
structure in medium [see Eqs. (6)—(8)]. Further investi-
gations concerning the nucleon properties, the equation
of state for matter, etc. , can be found in Refs. [14—16].

III. HADRON MASSES IN MEDIUM

FIG. 3. The ratio of the axial-vector coupling constant of
the nucleon in medium to that in free space. The curves are
labeled as in Fig. 1.

Now we are in a position to present our main results.
In Fig. 5, the ratio of the effective vector-meson mass,
m„*, to that in free space is shown as a function of the
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0.96 o.ee

0.94 o.e4
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~ M

0 0 ' 5 1 1.5 2 2.5 3 3.5 4

v, ~v,

FIG. 5. The ratio of the vector-meson mass in symmetric
nuclear matter to the free mass. The curves are labeled as in
Fig. 1.

09 I I I I I I t I I I I I I I I I I I I I I I I I I I I I t I I I I I I I I l~
0 0.5 1 1.5 2 2.5 3 3.5 4

V, ~I,
FIG. 6. The ratio of the average mass of A and 2 in

medium to that in free space. The curves are labeled as in
Fig. 1.

density. Since the diR'erence between the effective u- and
p-meson masses at the same density is very small, we
show only one curve for both mesons in the figure. As
the density increases the vector-meson mass decreases
(as several authors have previously noticed [4—6, 8]), and
seems to become flat like the e8'ective nucleon mass. The
mass reduction can be well expressed by a linear form at
small density:

"=i—ooe~
mv (po) (is)

The reduction factor, 0.09, is somewhat smaller than that
predicted by the @CD sum rules [8]. In this model the re-
duction in the mass is basically caused, by the attractive
scalar mean field in medium, and this origin is clearly
different from that in QHD [6, 8], in which the essential
mechanism is the vacuum polarization due to the excita-
tion of nucleon-antinucleon pairs in medium.

It is possible to calculate masses of other hadrons in
this model. In particular, there is considerable interest
in studying the properties of hyperons in medium, e.g. ,

A, E, and:-. For the hyperons themselves we again use
the MIT bag model, including the c.m. corrections [see
Eq. (8)]. We assume that the strange quark does not
couple to the o meson in MFA, and that the addition
of a single hyperon to nuclear matter of density p~ does
not alter the values of the scalar and vector mean fields.
The mass of the strange quark, I,„is determined so as
to reproduce the mass splitting between the nucleon and
the average of A and Z hyperons, M~ „(= ii54 MeV),
in &ee space. We then find m, = 355.5, 358.1, 354.0
MeV for Bp = 0.6, 0.8, 1.0 fm, respectively. Using these
values of the strange-quark mass, we have calculated the
average mass of A and Z, M~, and the mass of:",M-*,
in symmetric nuclear matter.

In Fig. 6, the average mass, MH, in medium is illus-

trated. The density dependence of MH is very similar
to the cases of the vector meson and the nucleon. The
ratio is again well described by a linear function at small
density:

M~""= i —o.os
MH.„(po f

Note that the reduction factor in the mass formula is
almost the same value as in Eq. (i8).

The effective =-hyperon mass in medium is shown in
Fig. 7. The ratio again behaves like the case of M~
but an approximate form for M* jM= at low density is

0.99

t~l

O. ee

Ex]

o.e7

0 ~ 96

I I I I I I I 1 I I I I I I I I I I I I I I I I I I I 1 I I t I I I I I I I I0 ClK

0 0.5 1 1.5 2 2 ' 5 3 3 ' 5 4

V, ~I,
FIG. 7. The ratio of the = mass in medium to that in free

space. The curves are labeled as in Fig. 1.
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given by the following relations among the hadron masses:

1 —0.04
i p, )' (20)

where const 3.2 x 10 MeV . Note that this formula
is not too sensitive to the bag radius, and that it can
reproduce the hadron masses reasonably well over the
range of p~ up to about 3po. From Eq. (21) we expect

where the reduction factor is about half of those in
Eqs. (18) and (19).

We summarize the effective masses of the hadrons in
medium in Fig. 8. As one can see from the figure, the
reduction in both the vector-meson mass and the average
mass of A and Z are about twice that in the =-hyperon
mass over a wide range of p~, while the reduction in the
nucleon is about three times that in the =. One can also
see this fact from the reduction factors in Eq. (15) and
Eqs. (18)—(20). It is rather easy to understand why such a
relationship holds among the hadron masses: the nucleon
consists of three nonstrange quarks, which couple to the
scalar mean field in medium, while the vector mesons,
and the A and Z hyperons, involve just two nonstrange
quarks. The = hyperon consists of only one nonstrange
quark and two strange quarks. Since the strange quark
does not feel the scalar mean Geld, its mass is not altered
in medium. The change in the hadron mass is therefore
roughly determined by the number of nonstrange quarks,
no, and the strength of the scalar mean Geld, V . We
can then find an approximate form of the hadron mass
in symmetric nuclear matter:

Mhd, „ 1 —const x noV (MeV),
Mhadron

M~ ) (M-*)
M~) (M
(~„*l (M*& (M,*l (M 5

i m„) qM~) qM~) qM=)
(22)

Furthermore, using Eqs. (16) and (17), g&, p, ~, and m„*

at small density could be linked as

IV. QUAKE CONDENSATES IN MEDIUM

Having shown that the QMC model provides an inter-
esting description of the hadron mass in nuclear matter
we now apply it to study the behavior of the quark con-
densates in medium. The quark condensates are very
important parameters in the @CD sum rules, and it is
believed that they are linked to a wide range of nu-
clear phenomena, including the effective hadron mass in
medium [24, 3].

The difference of the quark condensate in matter,
Q(p~), and that in vacuum, Q(0), is given through the
Hellmann-Feynman theorem [15—17, 25]:

1 Of
&(p~) —&(0) =—

2 |9?7lq

M' dMN . M+
BM~ dm, q

- 8m* dmqj=mesons

) ~ OE dg~

Og~ Elmer
2

(24)

Finally, we record that the proton-fraction dependence
of the effective masses we have studied in this section is
again very weak.

~ 0 ~ 95

where f = p~Etot.
Using the SCC, one finds

2

&~(o) & &- )I (~-~), (25)

0
C 0.9

(26)

r I & i i i I i i » I i & & i I0 85~ %el M

0 0.5 1 1.5 2 2.5 3 3.5 4

I, ~P,

FIG. 8. The ratios of the effective masses of the hadrons
in symmetric nuclear matter to those in free space (Ro ——0.8
fm). The dashed, solid, dotted, and dot-dashed curves are
for =, (A + Z)/2, the vector (m, p) meson, and the nucleon,
respectively.

where e = u or p, and C„ is the quark-scalar density in
the vector meson given by Eq. (12) (using the variables
for the vector meson instead of those for the nculeon).
Then, using the parametrization for the derivative of
the o.-meson mass with respect to the quark mass [25],

~M, where o ~ [= 3m& CN (0)] is the nucleon

cr term [26], and the Gell-Mann —Oakes —Renner relation,
the ratio of the quark condensate in medium to that in
vacuum is written by a rather lengthy formula:
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(
q(O) C~(0)m2y2

+&2P~ + &3P» (28)

(29)

where m is the pion mass (138 MeV), f the pion decay
constant (93 MeV), and the coefficients, Ai —As, are given
by

fractions f„= ( o ), respectively. The value of 0.36
agrees with the model-independent prediction of Cohen
et al. [25] for symmetric nuclear matter. Note that the ra-
tio is not sensitive to the bag radius. If we take a heavier
current quark mass (e.g. , mo = 10 MeV), the reduction
in the ratio becomes smaller (about 1% at p~ = 2pp)
than the present case.

Taking up the terms of O(p~) in Eq. (24) to see the
behavior at low density, the ratio is given by

2

1 dg
6m*2 dms

1 dg
24m*2 dm

2C (o)g2 ( dV 'I1—
3m*s i dms ) '

2'(o.)g' ('

12m*s ( dms ) (31)

Using Eq. (14), g2 260 and Civ(0) 0.37, Eq. (33)
can reproduce Eq. (32). On the other hand, since the
ratio of the hadron mass in medium to that in free space
is roughly described by Eq. (21), the ratio of the quark
condensates could be linked to the ratio of the hadron
masses at low density:

Q(p&) (0.36) (p~)
(0) &0.34) Epo)

' (32)

where the reduction factors (o's4) are for the proton

I I
[

I I I I
[

I I I I

~ 0.75C)

0.5

0 ~ 25

0 0.5 1 1.5 2 2.5 3 3.5 4

V, (I,
FIG. 9. The ratio of the quark condensate in medium to

that in vacuum (m, o = 5 MeV and RII = 0.8 fm). The solid
and dotted curves are, respectively, for f~ = 0.5 and 0.

We use oN = 45 MeV [26]. The derivatives of the scalar
mean field and the coupling constants with respect to the
quark mass are calculated numerically, e.g. , the coupling
constants are approximately given by quadratic or linear
functions of the quark mass: for Ao ——0.8 fm, g
269.6 —2.150mo + 0.01438mo, g = 11.97 + 0.1616mo,
g = 63.38 —0.076mo.

In Fig. 9 we show the ratio of the quark condensate in
medium to that in vacuum. As one can see, the density
dependence of the quark condensate can be well fitted by
a linear function of the density:

"'""=1 —0.124'
~

1 —~(P~)
~&(0) )

(34)

This relation suggests that the ratio of the efFective
hadron mass to the free one does not always scale

i/3
as ~i~ l [3]. At small density we could expect&(o)
Eqs. (22), (23), and

(m„*l (Q(p~) l
& &(0) )

1/3
rather than the naive scaling.'Q(:)'

(35)

V. CONCLUSION

We have applied the quark-meson coupling (QMC)
model to investigate the density dependence of the prop-
erties of hadrons and the quark condensates in dense nu-
clear matter (up to four times the normal nuclear den-
sity). We have calculated not only the variations in
the nucleon properties in medium but also those in the
masses of the vector (w, p) mesons and the hyperons (A,
Z, :-). As several authors have suggested [4—6, 8], the
hadron mass is reduced due to the change of the scalar
mean field in medium. In the present model the hadron
mass can be related to the number of nonstrange quarks
and the strength of the scalar mean field. The hadron
masses are simply connected to one another, and the re-
lationship among them is given by Eq. (22), which is
eAective over a wide range of the nuclear density. Fur-
thermore, the ratio of the quark condensate in medium to
that in vacuum can be related to the vector-meson mass
and the nucleon properties, e.g. , g& and p~, in medium.

Finally, we would like to give a few caveats concerning
the present calculation. The basic idea of the model is
that the mesons are locally coupled to the quarks. This
is certainly common for pions in models like the chiral
or cloudy bag [27], but may be less justified for heavier
mesons like the vector mesons, which are obviously not
collective states. As we mentioned in the Introduction,
the model also omits the efFect of short-range correla-
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tions among the quarks, which would be associated with
overlap of the bags. At very high density these would
be expected to dominate and the present model must
eventually break down there. Furthermore, the pionic
cloud of the hadron [27] should be considered explicitly
in any truly quantitative study of the hadron properties
in medium. Ultimately one would like to replace the
phenomenological 0 field with a microscopic calculation
of the two-pion-exchange force, within a framework that
respects chiral symmetry. It may be that the change
in sign of the quark condensate, just below 3po, already
indicates the break down of the model. This certainly
merits further investigation.

As we mentioned at the end of Sec. II, the contribu-
tion of meson exchange currents in medium is also im-

portant and should be considered in a consistent man-
ner. Finally, we note that subtleties such as scalar-vector
mixing in medium and the splitting between longitudinal
and transverse masses of the vector mesons [7] have been
ignored in the present mean-Geld study. Although the
former appears to be quite small in QHD the latter will
certainly be important in any attempt to actually mea-
sure the mass shift.
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