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The center of mass (CM) of a few-body quantum system with a central field is discussed. If the
particles are in the designative eigenstates, the CM coordinates of the system can be well defined.
In the CM bag model as well as in other models with central fields, the CM-freedom separation
rule and efFective nucleon electro magnetic currents can be presented without any undetermined
parameter.
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It is well known that the static properties of hadrons
can be explained by the nonrelativistic constituent
quark models [1], in which a baryon consists of three
confined valence, constituent, quarks. The pattern
of the hadron spectrum Gts well in the symmetry
group SU(3)s, I3SU(2),~;„, together with the O(3)-
nonrelativistic oscillator spatial wave functions. In this
case, the center-of-mass (CM) motion can be well sep-
arated from the internal relative motion. However, the
motion of the light quarks, e.g. , up and down quarks
in the nucleon, is highly relativistic because the kinetic
energy of a quark is almost the same as its constituent
mass. Hadron models, which can account for relativistic
motion of the quarks, lost the advantage of the nonrela-
tivistic quark model due to the intrinsic nonseparability
of the center-of-mass motion for a relativistic three-body
system. For the MIT bag model [2], the CM is at rest
and the bag is static, hence the CM degree of freedom
has been completely disregarded. This does not mat-
ter for describing the mass spectroscopy of the hadrons,
but does matter for the hadron decay and scattering pro-
cesses where the recoil effect, hence the CM motion, can-
not be neglected. One of the consequences of neglecting
the CM degree of freedom is that the translational in-
variance and four-momentum conservation are lost [3].

To recover the four-momentum conservation, Barnhill
III has made a proposal [4] that the wave function of a
three-quark system has a collective plane-wave factor:

fects coming from the spin-dependent quark-quark inter-
actions, the magnetic moments of baryons, elastic form
factors, and deep inelastic structure functions of the nu-
cleon are calculated [11]. We note that there is another
approach in the literature to avoid the disadvantage of
the original MIT bag model, e.g. , see Ref. [12]. In this
approach, the Peirels-Yoccoz projection [13] is used to
obtain an eigenstate of zero momentum.

In Ref. [8], we gave a brief discussion of how we in-
troduce the plane-wave function for the GM degrees of
freedom. The CM freedom separation rule is (see Eq.
(20b) in Ref. [8]):

(2)

where A is an undetermined factor of dimension [A] = I
(length) .

In this paper, we will discuss in more detail about our
basic assumptions on the four-potential V„, the restric-
tions on the states of particles, the deGnition, and the
revised separation rule of the CM coordinates y~ for a
nonrelativistic or relativistic N-particle quantum system.
The parameter A does not appear in our revised sepa-
ration rule, nor in the revised effective electromagnetic
current of the nucleon. It appears only when we use the
free-quark approximation for outgoing quarks in deep in-
elastic collisions. Our method can be applied to other
hadron or nuclear models with central Gelds.

where y" = (T, y) is the center-of-mass (CM) coordinate
and P" is the total four-momentum of the system. In [5]
we have modified and generalized this assumption and
developed a formalism for the calculation of hadron struc-
ture functions and electromagnetic form factors [6,7]. We
also provided a field-theory basis of this idea and pro-
posed the so-called CM bag model [8]. Some Feynman
rules and their applications, which includes a possible
explanation of the nuclear EMC eB'ect, were presented
[9,10]. Recently, considering the symmetry-breaking ef-

I. THE FOUR-POTENTIAL AND THE
POUR- MOMENTA

Our main assumption is that there are % particles
moving in an effective four-potential: V" = Vi'(x ),
which is reduced to a static central field in a CM-rest
reference frame (CMRF), i.e. , where the total three-
momentum of the particle system vanishes. The center of
the field is always located at the CM position y. There-
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fore, in a CMRF, we can write

V" = V"(r ) = [V(r ), 0], (S)
(4)

Here we put t = T, because r are proper lengths and
the events z and y always have to be simultaneously
measured in the CMRF. This implies that, whatever the
definition of the CM four-vector y" = (T, y) is, T =
T(ti, ..., t~) has to contain the following special solution:

in the CMRF .

If it is a nonrelativistic N-body system, this of course
must be true. Moreover, when we say there is a central
field centered at the CM position, we mean that the CM
position is fixed, i.e. , y = (y). Since y is a four-vector,
we have the second requirement on CM:

also consistent with Eq. (5).
One might want to define g = m /P m, where m

is the rest mass of the ath particle. Such a definition
has two disadvantages here. First, it does not work for
massless particles, like the quarks in the MIT bag model.
Second, in the case of a central field with its center lo-
cated at the CM of the system, it is impossible to solve
for the wave functions exactly. In next two sections, we
will see that it is more natural to define rI = e /P e

where ~ is the energy eigenvalue of the ath particle.
In a CMRF, P" and P ~ y, the most important scalar

to describe the motion of the CM due to Eq. (1), are
reduced to

yP (yP) —Ir P

To be consistent with our assumption on V", we have
to put some restrictions on the states of particles. For
example, to make the effective interaction field static in a
CMRF, we should only consider the stationary states or
energy eigenstates. Moreover, because the effective field
is isotropic, it is reasonable to restrict to states with zero
expectation value of x —y, i.e. , to eigenstates of parity.
We call such states designative states.

In quantum mechanics, when we use the coordinate
representation (or, the Schrodinger picture), the four-
momentum becomes an operator, p„=iB„,and we have
the commutators: [x",pb„] = —ih" b b. In a given state
@(x), we have the expectation values of the momentum:

P y= ) (u ~T=MT.

( p vp 0)
A= vp p 0

0 0 Ii)
p —vp 0)

—vp p 0
0 0 I~)

y=
v'I —v'

Here M should be taken as the rest mass of the sys-
tem. Now let CMVF be a new frame, moving in the
—

x~~ direction at a velocity, v = (—v, 0~) with respect to
the CMRF, then we have the Lorentz transformation for
z = Ax, with

In the CMVF, we find P~ -+ P~ = (pM, pMv), and

The eigenvalue of total four-momentum P of the system
is denoted by

P y=P y=pMT —pMv y.

P" =
i ) e, ) p i

= (E,P) . II. THE CM FOUR-VECTOR OF A CLASSICAL
STEADY FEW-BODY SYSTEM

P and y" must be mutually canonically conjugate, or

y", P = —ib"„.

In the Schrodinger picture, P = P p = P iB&, we
have the third requirement on the definition of CM time
T, i.e. , for any function F(T),

Before we go to the quantum system, let us consider
a classical relativistic system first. According to our re-
strictions on the motion of particles, the closest classical
cases are so-called steady or rigid-body solutions [14],
when particles moving periodically around the center of
mass in fixed orbits with fixed speed and energy in a
CMRF

Bz F(T) = ) ojg. F(T(&i, . . . , &~)) . ~. = const, x (7 + S) = x (r) .

Now let F(T) = T, then Eq. (9) shows that T must be
linearint, withy =T=g rIt where+ rI =1.
Now that y" is a four-vector, we have

Similar to the expectation values of momentum in quan-
tum mechanics, here we consider, instead of the instan-
taneous momentum, the time-averaged four-momentum
of each particle,

y" = ) q x", S
pP S

p" (v. ) d7. .

where g have to be Lorentz scalars. Equation (10) is Note that p~ is also a four-vector by definition, and in a
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CMRF it is reduced to

C =(~- o).
We see that the rest energy iv = ~p2 has to be consid-
ered as a Lorentz-invariant constant. The time-averaged
total momentum of the system in a CMRF is the same
as the instantaneous total momentum:

have assumed that y = 0 in the CMRF. We consider
only designative states, or bounded energy eigenstate
with definite parity. They can be written as g (x ) =
exp( —iw t )q (( ) and normalized as

d'z g„*(z )g„(z ) = 1 .

P" = u), O = M, O =P" . (18)
The expectation values of momentum and coordinates
are

Note, as a four-vector equation, P~ = P" is true in any
CMVF, and M is also a Lorentz invariant constant. This
enables us to define the CM four-vector by

(PP) —p P d x g„*(z )i „g„(z ) = (~,0)
Xa

p

(diaz

1
y = = —) (d~z = ) 'g~z

a a
(1S)

). II ()

By our definition, y" is a Lorentz four-vector. We see that
p = 0 is crucial to our definition. It is easy to verify that
this is consistent with Eqs. (5) and (10), and the Poisson
brackets between y" and P are satisfied. Besides, in
a CMRF, y = y = Y, because we have chosen steady
periodic solutions. Also, T = T because T and t 's are
linear in ~. Therefore, the requirement of Eq. (6) is valid.

In a CMRF, we have P y= M T. = P u t, as given by
Eq. (12). In a CMVF, P.y as a scalar is given by Eq. (14).
But we can also obtain it by using the inverse Lorentz
transformation t = (A i)ox", taking into account that

are Lorentz-invariants and that by definition

(x") = x" = (t, 0) .

Now we can define the CM four-vector as in Eq. (19).
Here again, the definition of T is consistent with Eqs. (5)
and (9), which are, of course, true in nonrelativistic the-
ories. We also have y" = (y~) = Y" as in Eq. (6).
Moreover, &om our definition of y", one can easily find
that y" and P are canonically conjugate and for any
function E(y), we have

0) ~ P[y(» ziv)1 "= P(y)
a

In a stable central field, we can find states Q- (z) of
definite energy and angular momentum L, L„and S,
with corresponding quantum numbers n = (n, I, m, m, ).
In these states, we have the required expectation values
of momentum and coordinates to use our CM definition.
The product of N single particle wave functions leads to

Because e = pu for each a in a CMVF, our definition
(19) is equivalent to (x)=e q=. (&-)

Pe x"
(20)

MT—
which rejects the fact that y" is a four-vector and we
have used this notation in Ref. [8].

III. THE CM FOUR-VECTOR OF A
NONRELATIVISTIC QUANTUM SYSTEM

Now let us turn to nonrelativistic quantum systems.
We will see that; many features of the CM degrees of &ee-
dom can be revealed in such cases, and they may have im-
portant applications in atomic and nuclear physics. We
will still use our four-vector notation, though Lorentz co-
variance is not a requirement.

Under our assumption on the four-potential, in a
CMRF each particle has the following Schrodinger equa-
tion:

icI, q(z. ) = H(z. )@(z.)
=[m + p +V(r )]@(z ),2ma

where we have temporally used the notation t, which has
to satisfy Eq. (5) in the nonrelativistic limit. We also

The spatial part of the plane wave function exp(iP y)
disappears because P = 0. Now let us check if dY*/dT
represents the motion of the CM in a CMVR, where x' =
(' + v'T and there is no change in H(x') = H(('). We
find

d Y* d(z' ) . Bz*=) q. „=)~. +'[H, *.]
a a

) 'g~v = V

So the system does have a total three-momentum P' =
MdY'/dT = Mv* and a total energy E = M+ Mv2/2 as
expected. To recover exp( —iP Y) in a CMVF, we first
apply Lorentz transformation to M T = P . Y and then
take the nonrelativistic limit v && 1, to obtain the wave
function in a CMVR (this could be called a semirelati, vis
tic treatment):

1
O71/((i ) ~ ")(N Y) = s/2 e q~ ((1, ~ ~ ~ (N) ) (22)

d Yd (4„*-~4„-~ = b„-,„- h (P —P'),
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g = ) (d~x = ) cd~(x ) = Y (24)

These are very strong restrictions, implied by our as-
sumption: the center of mass is the center of the poten-
tial. We see that the designative system states are not
simply the product of any individual particle states. For
example:

[c-0-(») + c~@s(»)]4-,(») " &- (x~)

is a solution of the N-particle Schrodinger equation, but
not an energy eigenstate of the system if io g tu&. Thus,
in choosing our designative states, we have already re-
duced the degrees of freedom.

Now we want to expand any @(xi, . . . , xiv)
(xi, . . . , x~~@) of the system by using our orthogonal
function set (22), while keeping (@

~
@) = 1. Since

P=Mv and

(PiP') = b (P —P') = h (v —v')/M

we introduce

where P = E = pM = M+Mv /2+ . , P* = pMv* =
Mv'+ . , as we expected, and d ( = d (i . .d (iv .

How can we consider Y' as independent variables? It is
important to note that, because y~ = Y~ in the CMRF,
we have the following three functional restrictions on the
states:

(@-p IH'I@-p) .

For example, let us look at a simple example: a polar-
ized (in x direction) p ray traveling in k direction, with
electric field E = EoBe(e '" )='Eo(e '"' + e'"' )/2,
is interacting with the N„protons in a nucleus of N nu-
cleons at initial state g„,. (x;) = exp( —i~;t, )q„i((,) in an
isotropic harmonic oscillator potential V(r) (not neces-
sarily being relativistic solutions) . The perturbation then
is

NP

H' = ) —e(x, —y) E Be(e *"'**)

Np

= ) —eEo (;.Be(e '" &e'" &'),

where we have used x; = y; + (, and t; = T. The S-
matrix element is

(@-p IH'I@-p) = ) .
i=1

—i(P—P') Y
d4Y d'(

(2z-) s

xq„* ((;)H'(xi)q„, ((,) q„* q„, ,

iwi

is ~g„t), the S-matrix element is (Q„I~H'~g„). This can
be readily extended to our confined N-body system:

(25)

(26)(Y.) (M)3/2y (Y) ( ) i pY—
(2~)'~'

which leads to

Np

—(27r)eEob (P+ A: —P') ) d (,e'"~'q„* ((;)(, q„,. ((;)

with P" = (M, Mv) in nonrelativistic limit. Thus we
have the following semirelativistic CM freedom -separa
lion rule:

(27)

= ) d Papgp(Y)b q ((i, . .-. , -(iv) (28)

[there is another term with a factor 84(P —k —P'), which
is always zero]. From this equation we can easily find the
recoil of the nucleus and the allowed change of states.
For, example, let P = (M, O), then e ~

—e,. = A:—
k /(2M), which is not that when the recoil is neglected.
One can also see that there is no elastic scattering, when
n,' = ni and P' = P = M, as is well known in the
Compton effect.:—) d Papb„e„p((i, . .-. , Y-), (29)

where we have used the facts that d v = d P/Ms and
a = M / aJ . This separation rule has several advan-
tages: it has no undetermined parameter A, as in Eq. (2);
it has the right normalization: J dsYd (@*ill = 1, if

f dsP~~ap~ = 1; and it has right dimension [~iII~ ]
L to Gt the requirement from the field theory later.
We should keep in mind the dimensional relation:

IV. THE CM FOUR-VECTOR OF A
RELATIVISTIC QUANTUM SYSTEM

Now we are ready to discuss the CM four-vector of a
relativistic systein with N spin-1/2 fermions, confined in
a central field. We want to use the expectation values of
p" and x~, thus ~g(x) ~

should be still interpreted as the
probability distribution or particle density in the space.
This is true if we only concentrate on particles (quarks
or nucleons) and avoid the particle-antiparticle creation
or annihilation. We use the Schrodinger picture where
the states of particle are spinor functions of coordinates
x, satisfying the following Dirac equations:

In single-particle problems, when the perturbation
Hamiltonian is H (x), initial state is ~g ), and final state p" (iB „—G„(x ))@(x ) = m @(x ) . (32)
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In a CMRF, the four-potential is reduced to a time-
independent central Beld, the designative states can be
chosen as g„(x ) with definite energy E„=~, satis-
fying

I

d'x'q t (x') q„', (x') = q„" (x)q„(x)p

d zqt(x)q„(x) = 8„„. (41)

i 8 pg„. (x ) = (u @„.(x ),
4-. (z-) =e ' ' q-. ((-) .

The wave functions can be normalized as

(33)
(34)

Also we have the invariant normalization for q „(x):

d'xqt„(z)q„ „(z) = 8„„ (42)

d'x gt (x )@„(x) = b„.„
%Then n = n', it is the conserved total "charge. " Now
we have the expectation values of p" and x~ in the des-
ignative states:

To check, we let x' = Az and note that dsx' = dsx/p,
as the measure of a proper volume in moving frame, and
@tg = @p @, which is the zeroth component of a four-
vector. Hence,

d x Qt iB"Q„=(p") = (e, O),
d x'q„'t(x')q„', (x') = "* tq.'(*)q- (*)~ = ~-,-

z" = d x gt iz"g„= (x") = (t 0) .

again, these are four-vectors by deBnition. The expec-
tation value of total four-momentum is (M, O). These
relations enable us to use Eq. (19) as the definition of
y" and obtain the product of designative states of the
%-particle system:

d'x qt„(x)q„ „(x) —= d'x q„'~(x)q„', (x)

d'xpqt(A 'x)q„(A 'x)

d'x' pqt (x)q„(x) = 6„,„
The normalization of g p(xi, . . . , xiv) is similar as in
Eq. (23):

q-. ((-)
d Yd (@„"pg„p = 8„,„8 (P —P'). (43)

—iMT=e q-. ((-)

—iMT
(g g )

Now we want to expand any function iII(xi, . . . , ziv)
which represents a moving confined system. Using
P = pMv, we define lv) = (pM) ~ lP), or Pp(Y)
(pM) ~ P„(Y). Thus we have

Transformed to a CMVF, MT becomes P Y through
I orentz transformation, as we did before, and the prod-
uct of wave functions takes the form (with a normaliza-
tion coefficient)

(PlP') = ~'(P —P') = b'(v —v')/(~M)'

and we obtain the revised CM freedom sepa-ration rule:

1 —iPYp(xi ~ ~ ~ ziv)—
27' 32 ~(A-)q-. ((.') (»)

iII(xi, . . . , xiv) = d'v a„) P„(Y)b„q„„((i,. . . (~)

(44)

= Wp(Y) q-.-((-) d P ap ) Pp(Y)b„q„„((i,. . . (~),

—:4'p(Y)q (6 . (iv) (4O)
where we have used a„= ap(pM) ~ and

(45)

where (' = A i( = (p(ll, (&), E„= +M2+ P2, and
S(A) is the Lorentz transformation matrix for a Dirac
spinor [15]. We clearly see how we obtain the plane wave
function e ', which describes the motion of the CM
of the isolated system. This equation also gives us the
Lorentz transformation rule for the q(()'s. Again, there
are no internal time variables t in our formula, which
follows from our restriction on energy eigenstates. The
normalization of q (x) is Lorentz invariant,

d v = d P det(Ov'/OP') = d P/(pM)

Note that the expansion in (44) is to find all system
states with v = 0 and then boost each of them with all
possible v, with P = (pM, pMv) and P2 = M2. Thus
the expansion is the same either in CMRF or in CMVR.
It has the same advantages as we have mentioned in the
nonrelativistic study.
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V. THE p-N EFFECTIVE INTERACTION
LAGRANGIAN

In Refs. [5—9] using the old separation rule of Eq. (2),
we have introduced and used an effective p-N interaction
Lagrangian:

I/(I+Q /4M ) left uncanceled. This is the factor which
appears in front of the electric form factor G@(Q ) in Eq.
(lla) in Ref. [7]. The current (49) can be easily extended
to more general currents. For example, we can replace
the U(1) generator e by A of the flavor SU(3) generator
to obtain the SU(3) current J (Y).

L' "(Y) = 4(Y)A" (Y)
do() @ (xi, z2, xs) (epop„) iA" (xi)

lm2, 3

xCI(x„x„x,) .

Now we use our revised one, Eq. (45), and we find that
we do not need to introduce the parameter A to make
the action S = f d Y L~ ~(Y) dimensionless. The ef-
fective Lagrangian now can be written without any un-
determined parameter, namely:

L~ (Y) = J„(Y)A"(Y)

) f ~ (@ (T1 &2 T3)(+70 Yl )1+ (+1)
1 +2 i 3

x~I(x„x2,x&) . (47

When Eq. (47) is applied to calculation of nucleon EM
form factors [7], with

A" (z ) = A" (q)e +~~) = A" (q)e e i~'
= A"(Y)e'~ ~'

and the normalization (P'~P) = b (O' —O), the efFective
p-K vertex is derived as

VI. THE DEEP INELASTIC p-N COLLISION
AND FREE-QUARK APPROXIMATION

To find. nucleon structure functions, we have to begin
with the following tensor:

TV„= — d Yd P' e'~ P, S J„Y P', S'
Sl

x (P', S'i J (0) i
P, S)

d Ye'~" PS J„Y,J 0 PS

where (P, S~P', S') = (2x) 2ES (P —P')bs s . When
using free-quark approximation for the "intermediate"
states above, i.e., assuming that after the scattering all
quarks go freely, we will use free-quark anticommutators
like {@(x,), @(x,)j [5,10]. So we can not use our J~(Y)
as defined in Eq. (49), where both incoming and out-
going quarks are in designative states according to the
revised expansion rule of 4. We should do the following
replacement in Eq. (49):

) f d (8 @ (Zl T2, Z3)(E /0 Yp)1@(T1 +2 TB)
lm2 3

where

x (P'i J„(0)iP), 1~2f3
d (e*~ ~& ill(xi, x2, xs) (epop„),

x@(xi)g(x2)@(xs) .

(e'lz„(o)ls') = ) f a'&" v„',„,(6, (2 63)
1 +2g3

Therefore, according to Eq. (30), we must introduce a
parameter A with dimension L, and the efFective current
in the free-quark approximation becomes

x(eWoV~)iq ((i, 6 6) . (4S) 4(Y) = ) d (e' ' @ (xi, x2, xs) (epop~) i

This vertex is exactly the right-hand side of Eq. (4) or
Eq. (6) in Ref. [7], which leads to proton form factors
in quite good agreement with the data. Hence, we can
write our revised effective current as

J~(Y) = ):
1 +2p3

xC (x„x„x,),

d (e' ' @ (zi, x2, xs) (epop„) i

(49)

which has no undetermined parameter. We note that
unlike the ordinary current expression, where only one
volume element d x times the zeroth component of a
vector, which together make a Lorentz scalar, we now
have a product of three volume integrals of a zeroth com-
ponent of a four-vector of one struck quark, multiplied
by an invariant (in Breit frame) from other two specta-
tor quarks. Hence we have an extra factor I/(chO)2 =

1-+2,3

x
A, q, &(»)&(»)&(») . (50)

In the bag model, the only reasonable choice for A is

A; = C;(Q )B.
Here R is the bag radius (a Lorentz invariant constant!),
and C; is possibly Q dependent [5], because of the factor
exp(iq () in J and it may also be flavor dependent [11].
We have compared our result in the nonrelativistic limit
with Jaffi's result in Ref. [3], we find that A = B [6]. In
Ref. [11],A's for a proton are fixed through the rms radius
of the neutron and proton, with the results A„= B and
Ag ——0.85R.

In Ref. [10],some Feynman rules for the CM-bag model
are given. We see that parameter A does not appear in
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the p-N vertex anyway. Only in the last two graphs,
where we have used free-quarks for outgoing states,
is not canceled out. So our Feynman rules remain un-
changed. In the same paper, we also mentioned that the
bag radius R might be Q dependent to explain the EMC
effect.

For other models, we can introduce similar currents.
When we use &ee-particle approximation for outgoing
particles, we need to introduce A as in Eq. (50), with
A proportional to the length scale given by the model.
For example, if the potential is an isotropic harmonic
oscillator potential V(r) = kr /2 = mO r /2, then in
our semirelativistic approach, we have only one length
scale (through three constants m, 0, h = I), namely

(52)

VII. SUMMARY AND DISCUSSION

We find that if we assume a central field, and restrict
to designative states, our CM four-vector is well defined.
We have revised our CM-freedom separation rule and the
effective p-N current, neither of them now have undeter-
mined parameters. The length scale A comes in only
when we use the free-particle approximation for deep in-
elastic scat terings.

Our method can be applied to the CM bag model
and any other model with central field. A very inter-
esting case will be an isotropic harmonic oscillator po-
tential. This can be used for a (non)relativistic nu-
clear shell model or an alternative hadron model with
quarks(antiquarks) of nonzero rest mass [so the SU(3) fla-
vor asymmetry can be easily introduced]. We will discuss
the nucleon structure functions given by such a hadron
model in our future work.

For a relativistic oscillator [16,17], the way to get a length
scale is not unique ( note, e.g. , that [cA] = [gh/(mA)] =
L ), but if we look at the parameter Aivsy used to define
the dimensionless coordinate r' = Ar in Ref. [17],we find
Eq. (52) is still true.
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