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Relativistic nuclear structure efFects in quasielastic neutrino scattering
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Charged-current cross sections are calculated for quasielastic neutrino and antineutrino scat-
tering using a relativistic meson-nucleon model. We examine how nuclear-structure effects, such
as relativistic random-phase-approximation (RPA) corrections and momentum-dependent nucleon
self-energies, in6uence the extraction of the axial form factor of the nucleon. RPA corrections are
important only at low-momentum transfers. In contrast, the momentum dependence of the rela-
tivistic self-energies changes appreciably the value of the axial-mass parameter M& extracted from
dipole 6ts to the axial form factor. Using Brookhaven's experimental neutrino spectrum we estimate
the sensitivity of M~ to various relativistic nuclear-structure effects.

PACS number(s): 14.20.Dh, 13.15.+g, 21.60.3z

I. INTRODUCTION

The strange-quark content of the nucleon has received
considerable attention as a result of the measurement
of the spin-dependent structure function of the proton
by the European Muon Collaboration (EMC) [1]. Some
analyses of the experiment suggest that a large portion of
the spin of the proton is carried by strange quarks. One
can attempt to resolve this "spin problem" by study-
ing the strange-quark contribution to the vector (both
electric and magnetic) and axial-vector form factors of
the nucleon. Most likely, it will take a large number of
measurements to determine all of these form factors sepa-
rately. Moreover, there are important complications from
radiative corrections [2], which hinder the extraction of
strange-quark matrix elements &om parity-violating elec-
tron scattering. Therefore, one anticipates a program of
several electron experiments [3] which, combined with
neutrino scattering data [4], will ofFer the most accurate
strange-quark information.

Neutral-current neutrino scattering is sensitive to the
strange-quark matrix elements of the nucleon —espe-
cially to the isoscalar component [5]. Complications
arise, however, from the fact that most neutrino ex-
periments measure a combination of elastic scattering
from free protons plus quasielastic scattering from nu-
cleons bound in nuclei. In the present work we examine
how nuclear-structure corrections afI'ect the extraction of
strange-quark information.

The isoscalar part of the axial-vector form factor of
the nucleon is characterized by the parameter g& the
value of the isoscalar strange form factor at zero four-
momentum transfer. Unfortunately, the extraction of g&
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from the Brookhaven National Laboratory (BNL) experi-
ment is complicated by low statistics [4]. Moreover, there
is a strong correlation between the extracted value of g&
and the axial mass M~ obtained from dipole fits to the
axial-vector form factor [6,7]. Indeed, the world-average
value of M~ (1.032+0.036 GeV) that the BNL group has
used is significantly different from the one [1.09 + 0.03
(stat) +0.02 (syst) GeV] extracted later from a charged-
current experiment [8]. Thus, this large difFerence in M~
is sufficient to change the value of g& extracted from
the BNL experiment and the conclusion of a nonzero
strange-quark content from our previous neutral-current
study [7]. Therefore determining the precise value of M~
is important for strangeness studies.

At relatively high-momentum transfer, the response of
the nuclear target seems to be adequately described in a
relativistic Fermi gas (RFG) model. Indeed, at a qualita-
tive level, a RFG calculation of quasielastic (e, e ) longi-
tudinal and transverse responses agrees well with finite-
nucleus results. However, is the RFG model accurate
enough to determine the precise value of M~? Currently,
the BNL experiment claims an M~ value with an error
of less than five percent. Is there any uncertainty compa-
rable to this small error induced from nuclear-structure
efI'ects? It is the aim of this work to go beyond the RFG
response and examine the sensitivity of quasielastic neu-
trino scattering, particularly M~, to a variety of nuclear-
structure corrections.

One such correction arises from long-range RPA. cor-
relations. In a recent paper, Singh and Oset used a non-
relativistic RPA formalism to study the nuclear response
in quasielastic neutrino scattering [9]. They found RPA
corrections to be large only at low-momentum transfers.
Since most neutrino experiments [10] are carried out at
medium- to high-momentum transfers, they concluded
that the value of M~ extracted from these experiments
is reliable.

In a relativistic description of the nuclear target, addi-
tional nuclear-structure corrections must be considered.
According to quantum hadrodynamics (QHD) [ll], the

0556-2813/95/51(5)/2739{11)/$06. 00 51 2739 1995 The American Physical Society



2740 HUNGCHONG KIM, J. PIEKAREWICZ, AND C. J. HOROWITZ

saturation of nuclear matter arises from a cancellation
of strong scalar (o') and vector (u) mean fields. The
strong scalar field decreases the nucleon mass while the
vector field shifts the four-momentum of the nucleon in
the medium. These relativistic efFects were not addressed
in the nonrelativistic calculation and may provide inter-
esting corrections to the RFG response.

In a charged-current reaction, the mean-field ground
state can be characterized in terms of an effective nu-
cleon mass that is reduced, relative to its free-space value,
by the presence of the strong scalar field. In turn, the
RPA response can be modeled from a (w + p+ g') resid-
ual isovector interaction. In a mean-field approximation,
the efFective nucleon mass is obtained from solving self-
consistently the equations of motion at a given baryon
density [11].In the case of polarized electron scattering,
the parity-violating asymmetry was found to be sensitive
to the in-medium value of the nucleon mass [12]. This
is an interesting result that should be incorporated in
neutrino-scattering studies.

This paper is organized as follows. Section II presents
the formalism for the cross section of inclusive neutrino
scattering in a relativistic impulse approximation and in
RPA. Results for the charged current cross section are
presented in Sec. III, while Sec. IV is a summary.

II. FOR.MALISM

In a charged-current process, neutrinos (and antineu-
trinos) interact with nuclei via the exchange of charged
weak-vector bosons (W+) with the resulting production
of charged leptons (electrons or muons) in the final state.
In an inclusive process, where only the final leptons are
detected, the most general expression for the cross section
can be given in terms of a time-ordered product of current
operators. From this general expression several approx-
imations can be made depending on how one treats the
ground state of the nucleus and its response to the ex-
ternal probe. In Sec. II A, we derive a general formalism
for the inclusive process and discuss various approxima-
tions for the response in a mean-field approximation to
the ground state. In Sec. IIB we discuss the form of the
nuclear current adopted in the calculation while Sec. II C
contains a detailed description of the relativistic random
phase approximation. Finally, in Sec. II D we discuss how
the mean-Beld ground state is modified by the introduc-
tion of phenomenological momentum-dependent correc-
tions to the nucleon self-energies.

A. General formalism

The scattering process we consider is shown in Fig. 1.
An incoming neutrino with momentum k scatters ofF the
nucleus via the exchange of weak-vector bosons produc-
ing a charged lepton with momentum k' in the final state.
The initial and final states of the nucleus are denoted by
iv), (p;)) and lpga(py)), respectively. In Born approxima-
tion the inclusive cross section becomes proportional to

FIG. 1. Feynman diagram for charged-current neutrino
scattering. The neutrino with momentum k scatters ofF a nu-
cleus in a state lg, (p, )) and produces a muon or an electron
with momentum k'.

the contraction of a leptonic and a hadronic tensor:

do. oc L„W"
where the corresponding leptonic (L~„)and hadronic
(W" ) tensors are given by

L„=8[k' k„—k k'g„„+k' k„~i,e "~ k' k~], (2)
~""= ) .(2~)' ~"(P*+ g pf) —(@*IJ"(o) lof)

f
&(&xlJ (o) I&').

ill""(q) = d4xe*' (Q;lT(J"(x) J"(0))lg, ) . (4)

The hadronic tensor, and therefore the cross section, can
be directly related to the polarization tensor. In partic-
ular, it is easy to show that the cross section takes the
following form

do. oc Im(L„II" ) .

This expression is convenient for the evaluation of the in-
clusive response of a many-body system like the nucleus.
In particular, various approximations can be made de-
pending on how one calculates the ground state of the nu-
cleus and its linear response to the external probe [14,15].

For the many-body current operator J„weassume a
simple one-body form:

J~(&) = @(&)I'~&(&)

where @(2:)is a nucleon-field operator and I'& is the weak-
interaction vertex to be discussed below [see Eq. (13)].
Meson-exchange currents represent corrections to this
one-body form and will be ignored throughout this pa-

Here J" is the weak charge-changing current operator of
the nucleus, q = k —k' is the momentum transfer to the
nucleus, and the plus (minus) sign in L~ corresponds
to antineutrino (neutrino) scattering. Note that our con-
vention for the antisymmetric tensor is e = 1.

Now we introduce the current-current correlation func-
tion, or polarization tensor, as a time-ordered product of
nuclear currents [13]
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per. In a mean-Geld approximation to the nuclear ground
state the time-ordered product of currents can be evalu-
ated readily using Wick's theorem, i.e. ,

4

Tr[G(p + q) I'" G(p) I' ],

a simple change of variables. [This will not happen once
momentum-dependent corrections are incorporated into
the mean fields (see Sec. II D).] Formally the mean-field
response is identical to that of a relativistic Fermi gas
of nucleons with an effective mass M*. We refer to this
calculation as "impulse with M*."

where G(p) is the nucleon propagator that will be evalu-
ated in various approximations.

The simplest approximation that we employ treats the
nuclear ground state as a relativistic free Fermi gas. Here
the nuclear response consists of the excitation of particle-
hole pairs subject to the constraints imposed by energy-
momentum conservation and the Pauli principle. The
nucleon propagator difFers from the well-known Feyn-
man propagator only because of a finite-density correc-
tion arising from the filled Fermi sea [11],

G (p) = (/+ M) „,M, , + E ~(po —Ep)
P

xo(k~ —Ipl)

Note that we have introduced the Fermi momentum k~
and the free (on-shell) energy E& ——gp + M . We call
this approximation "impulse with M" in order to distin-
guish it from the self-consistent impulse approximation
with an efFective mass M* that we now address.

One can improve the free Fermi-gas description by tak-
ing into account, at least at the mean-field level, the
interaction between the nucleons in the nucleus. In a
mean-field-theory approximation (MFT) to the Walecka
model the propagation of a nucleon through the medium
is modified by the presence of constant scalar and vector
mean-Gelds. These potentials induce a shift in the mass
and in the energy of a particle in the medium and give
rise to a self-consistent nucleon propagator [11]:

G (p) = (yP+ M*)

B. Impulse approximation

We start this section by writing the inclusive cross sec-
tion, per neutron, for the charge-changing process as

d 0

dOA, dE„
G& cos 0, Ik'I

32vr3 pE

r (q) = Z, (Q')& + E,(Q') ""2M —G (Q')&" y'

++,(Q')q"~', (Q' —= ~' —qo) .

The form factors Fi, E2, G~ and E„aregiven in Ap-
pendix A. The pseudoscalar form factor Fz is constructed
from PCAC, and its contribution is suppressed by the
small lepton mass.

Since I'" has been expressed in terms of vector, ten-
sor, axial-vector, and pseudoscalar vertices, the inclu-
sive cross section requires the evaluation of a large set
of nuclear-response functions. These are conveniently
separated in the following way (note that the subscripts
indicate the vertices involved):

Here p = k&/3vr is the neutron (or proton) density of the
system, 8, the Cabbibo angle (cos 8, = 0.95), G~ is the
Fermi constant, k' the three-momentum of the outgoing
lepton, and E„the energy of the incoming neutrino (or
antineutrino) .

In the impulse approximation the interaction between
the incoming neutrino and a target nucleon is assumed to
be the same as in free space. Hence, we employ a charge-
changing current operator with single-nucleon form fac-
tors parameterized from on-shell data. That is (suppress-
ing isospin labels),

+E„~(po—E,*)0(k~ —lp I)
P

(9)

where the efFective mass and energy are shifted from their
free-space value by the scalar (5) and timelike component
(V ) of the mean fields,

d4II„„"= —, ",T [G(p+ q) &.G(p) &.],
ia" qTr G(p+ q)

(14)

M* = M+ S, E' = gp'+M*',
p*"=(p —V p). (10)

V

x G(p)

These changes in the nucleon propagator induce a corre-
sponding change in the polarization tensor, which is now
written

d4p
Tr[G*(p+ q) I'" G*(p) I'"] .

Note, in computing the response we integrate over the
four-momentum of the nucleons, and the contribution
&om the constant vector potential can be eliminated by

d4 —io-"~
II„"," = i Tr G(p + q) —p" G(p)

d4pII„""= — Tr[G(p + q) p" G(p) p"p']

pvnO
G6 g~ VJ.~g

d4pII""= i Tr[G(p+ q) p"p G—(p) p p ](2') 4

(16)
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d p, T [G(p+ q) ~"~' G(» ) (—q )~']

q"q IIap ) (19)

q2 (E +Z„)+qpm„L..=- -16 (33)

pp

d4

, T [G(p+q) q"~'G(p) (—q )~']

= q"q II„„. (20)

Finally, we note that the plus (minus) sign in Eq. (23)
should be used for neutrino (antineutrino) scattering.

C. Relativistic random phase approximation

2
L oo x~ q oo+vv: +vv vv =

2 vv
qII:—2II„=2II„„.

(21)

(22)

Here we have assumed a coordinate system with the
x = 1 axis along the direction of the three-momentum
transfer q. Using Lorentz covariance one can isolate the
additional responses that arise from the other compo-
nents of the current and obtain the following invariant
amplitude

L„II" = LI,BI, + LTBT + L B~~+ L~B~+ L„BI
(23)

The nuclear-structure information is fully contained in
the various response functions which have been defined
in terms of the above polarization tensors:

The various components of the polarization tensor can
be computed in the Fermi-gas limit or in the mean-field
approximation by using either G (p) [Eq. (8)] or G*(p)
[Eq. (9)], respectively. The imaginary parts of all these
polarizations have been calculated analytically following
the Ref. [16] and are given in Appendix B.

The polarizations II~, II&~, and II ~ are only sensi-
tive to the Lorentz-vector part of the weak current and,
thus, satisfy current conservation, q„III' = II~"q„=0.
The conservation of the vector current plus Lorentz co-
variance imply that only two components of each of these
polarizations are independent. These have been chosen
to be the longitudinal and transverse components which
are defined, for example in the the case of II„",as

In the present section we improve the simple particle-
hole description of the response by incorporating many-
body RPA correlations. Many-body correlations can
be included by considering the residual interaction be-
tween the particle and the hole. For the present charge-
changing reaction only isovector correlations are impor-
tant. Yet, there might still be important efFects associ-
ated with the isoscalar mean fields (e.g. , M*). Indeed,
in a recent calculation we have shown that the reduction
of the eB'ective nucleon mass in the medium results in a
quenching of the effective N¹r coupling which, in turn,
is responsible for suppressing the predicted enhancement
of the spin-longitudinal to spin-transverse ratio, in accor-
dance with experiment [17]. For the residual isovector
interaction we employ a simple relativistic generalization
of the conventional m + p + g' interaction [9,18]. The
phenomenological Landau-Migdal parameter g' has been
included to simulate the efFect of repulsive short-range
correlations. The RPA correction, AII&pA, to the polar-
ization tensor, II" in Eq. (12), is shown diagrammati-
cally in Fig. 2(a). The RPA corrections are calculated
from the dressed propagator, D~~~. This includes an
infinite sum of the lowest-order (uncorrelated) polariza-
tion as illustrated in Fig. 2(b). Note, for the mean-field
ground state, the nucleon propagators in the lowest-order
polarization already include the isoscalar dressing due to
the mean fields [see Eq. (9)).

Rl, = (E + G ) II„„+2EiE2 II„,+ E II„, (24)

RT = —[(Ei + G~) II„„+2Ei E2 II„,+ E2 II„],(25)
2

BI ——2G~ F„II „+F„II„p,
B~ ——G~II~,

(R =iE+E
i

G iqill„ (28)M)

(26)

(27)

These response functions are multiplied by appropriate
kinematical factors that could, in principle, be used to
separate the individual responses

q2 4m'q ( q m'l——Lpp — 4E —qp + i, (29)
q

Din.,

+ 0 0 ~

-LT —=

2L„=4m„(m„—q ) = ——m„L~,P (32)

8(q —m„'), (3O)
2 24m o——Lpp — (4E q —q +m ) —L~ (31)q2 q2 P (b)

FIG. 2. A diagrammatic representation of the RPA correc-
tion AIIrt~~. The RPA propagator Dnr ~ is shown in (b).
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The Lagrangian density describing the isovector com-
ponent of the NN interaction is given by

way:

q2 —m2 + Se q2 —m2 + Se

@psst"7.g . 8„7r.
m7r

pNNp ~ ( ifp
2M ) (35)

while the p-meson propagator is given by

—g~~ + q~q~/m,

q —m2+ ieP

Note that the "gauge" piece q~q /m will not contribute
to the RPA response because in the mean-field approxi-
mation the vector-isovector current is conserved. For the
NNvr vertex we have adopted a pseudovector form with
f2/4u = 0.075. The pion, rho, and free nucleon masses
have been Axed at their experimental values.

The most uncertain parameter in our calculation is the
phenomenological Landau-Migdal parameter g'. Tradi-
tionally, g is introduced to regularize the large spin-spin
component of the isovector interaction. In a relativistic
formalism we can incorporate short-range correlation ef-
fects by modifying the pion "propagator" in the following

The p meson has a vector (g~) as well as a tensor (f~)
coupling to the nucleon. The parameters of the model
are obtained directly from the Bonn potential Gt to NN
properties and are given by g /4vr = 1.64 and f~/g~ =
6.1 [19] (note that our value for g2/4' is four times larger
than the one quoted by the Bonn group simply because of
our selection of v'/2, rather than v', as the isospin vertex).
With this form for the interaction Lagrangian the NNp
vertex becomes (combined with isospin matrices)

mar
(38)

With the above Feynman rules in hand we can now
construct the medium-modified rho- and pion-mediated
interactions. Note that the inclusion of g, which contains
transverse as well as longitudinal components, is respon-
sible for p-vr mixing. In order to account properly for
this mixing, Dyson's equation for the propagator must
be expanded from a 4 x 4 to an 8 x 8 matrix equation:

DRPA —00 + D0+0DRPA ) (39)

where we have defined the &ee (diagonal) propagator ma-
trix

,

t'R O )
(0 V) (4o)

in terms of the p- [Eq. (36)] and g'-modified pion propa-
gator [Eq. (37)]. We have also introduced the mixed p-vr

polarization matrix

with individual components given by

Without g' the contribution of the pion to the RPA re-
sponse would be suppressed by current conservation and
the small leptonic mass. Therefore, it is through the
Landau-Migdal parameter g' that the pion mainly con-
tributes to the RPA response (note that the term propor-
tional to g' has, both, longitudinal as well as transverse
components). With this choice for the pion propagator
the "elementary" NN~ vertex becomes

, T
l q,~" + '

M lG(p)l q, ~ — '
M IG(p+q)

d'p (
„

iso-" q l f . if'~ ~qpl
(42)

igpf , T
l

~" + 'M l&(p)~'& G(p+q)
d4p (

„

ifpo"q.
2~ 4

q 2Mg~

i2f
m, 2

d4p
, T h'~"&(p)~'~ G(p+q)] . (44)

The RPA correction to the polarization now takes the following form [see Fig. 2(a)]:

(45)

where II~ and D~ characterize the in-medium mixing due to particle-hole excitations
boson with a p or vr meson, respectively, and are given by

of a charged weak-vector

4 I/ CX

(47)
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An RPA calculation of the inclusive response uses the
same expression for the cross section as in Eq. (12) with
the replacement:

M* = M+ S(p),

Ep ——E* + V(p) = pz + M*2 + V(p) . (4S)

II&" ~ II",„=rr~ + aII",„.(48)
The basic forxnalism, however, remains unchanged except
for the inclusion of a more realistic nucleon propagator
given by

In an impulse (or uncorrelated) description of the re-
sponse the cross section is only sensitive to the imaginary
part of the lowest-order polarizations. Since the nuclear
response is being probed in the spacelike (q ( 0) region,
NN pairs cannot be excited in these lowest-order de-
scriptions. They can, however, be virtually excited and,
thus, will become an essential ingredient of the RPA re-
sponse. Traditionally, NN excitations have been divided
into two contributions, one being vacuum polarization
and the other consisting of the Pauli blocking of NN
excitations due to the filled Fermi sea [14]. The latter
contribution is finite and has been shown to be essen-
tial for the conservation of the electromagnetic current.
This contribution has been included in our calculations.
The former, however, is divergent and must be renormal-
ized. Since we are using a nonrenormalizable theory with
derivative couplings, the renormalization of these diver-
gent contributions becomes ambiguous at best. Thus, in
order to avoid including ad hoc parameters (e.g. , cutofFs)
we have decided to simply ignore the effect &om vacuum
polarization. Note that the (finite) real parts of the var-
ious polarizations have been calculated analytically and
most of them have been published already [20]. Here we
calculate them numerically so we can extend the formal-
ism to include momentum-dependent self-energies.

D. Momentum-dependent vector and scalar
self-energy

In a mean-field approximation to the Walecka model
the vector (V) and scalar (S) self-energies are replaced by
their classical expectation values. In this approximation
the nucleon self-energy is real and energy independent.
However, as the momentum of the nucleon becomes large
there is an important coupling of the nucleon to nuclear
excitations. Indeed, at intermediate energies it is known
that the reactive content of the reaction is dominated
by quasifree nucleon knockout. Thus, at large enough
momentum the nucleon self-energy will become complex
and energy dependent. In order to calculate the nuclear
response for a broad. range of momentum transfers, we
incorporate momentum-dependent self-energies into the
nucleon propagator. Since a microscopic calculation of
the energy dependence of the nucleon self-energy in the
Walecka model awaits, we have used the phenomenolog-
ical optical potentials of Ref. [21]. A detailed discussion
of this momentum-dependent correction can be found in
Ref. [22].

In a calculation with momentum-dependent self-
energies, the efFective mass and energy of nucleons in
the medium are no longer constant. In particular, the
nucleon propagator must now be described in terms of
Dirac spinors with masses and energies given by

G(p) = (/*+M*)

(50)

where p'~ = [po —V(p), p]. Note that the vector potential
can no longer be eliminated from the integrals defining
the polarization by a simple change of variables.

III. RESULTS

gk'+ M*' (51)

Choosing the couplings to reproduce the bulk proper-
ties of nuclear matter at saturation [g, (M /m, ) = 267.1]
leads to a value of the effective nucleon mass of M* =
638 MeV at an assumed average density corresponding
to k~ ——225 MeV.

In Fig. 3 we show the double differential cross sec-
tion d~cr/dpi, idE„[seeEq. (12)] for a neutrino energy
of E„=1 GeV. Figure 3(a) is for a momentum transfer
of ~q~ = 0.5 GeV while Fig. 3(b) is for ~q~ = 1.2 GeV.
At ]q~ = 0.5 GeV the peak positions from the M' and
M* calculations are shifted by less than 50 MeV relative
to the Fermi-gas peak. This value represents an average
binding-energy shift and has been observed experimen-
tally in quasielastic electron scattering. Thus, a simple
mean-field. calculation is expected to give a reasonable de-
scription of the nuclear response. The situation changes
considerably, however, at ~q~

= 1.2 GeV [Fig. 3(b)]. Here,
the M* calculation predicts a shift in the peak position

In this section we present results for the inclusive cross
section using a variety of approximations. We consider
impulse-approximation calculations using, both, a rela-
tivistic Fermi gas of nucleons of mass M and a self-
consistent ground state with an effective nucleon mass
of M*. We also present two calculations including RPA
correlations either with mass M or M*. The mass M
RPA calculations can be directly compared to similar
nonrelativistic calculations. Finally, results will be shown
using momentum-dependent self-energies obtained from
the phenomenological fit to the nucleon optical potential
of Ref. [21]. We refer to this last calculation as impulse
with M . The impulse with M calculation is commonly
used to extract &om experiment the mass parameter M~
present in the dipole fit to the axial form factor G~. Our
main goal is to estimate the sensitivity of this parameter
to various relativistic nuclear-structure efFects.

The efFective nucleon mass M* (in mean-field theory)
is obtained from a solution to the self-consistency equa-
tion [11],
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FIG. 3. Double differential cross sections
for 1 GeV neutrinos. The solid curve is the
momentum-dependent calculation. (a) is for
~ct~ = 05 GeV while (b) is for )g~ = 12 GeV.
The dashed (dot-dashed) curve is the cross
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calculation.
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es onse ofstate while the dashed line shows the RPA response o

d tate. Since the pion contributesthe mean-field groun s a e.
ment of theonly throug g,hr h ' the softening and enhancement o e

ractiveF 4& &
is exclusively due to an attrac ive,response in Fig. &a& is

and thus unreaiistic, r o-me iai ', h — diated residual interaction.

dO

dQ2

d'~
E k' dE„dO (52)

where the energy cutoK is given by

q —m E~m2 2 2

4E~ q —rn
(53)

h ass of the produced lepton. In Fig. 5(a)

RPA with M* using g = 0.7, and impul
in due to RPA correla-that there is a substantial quenc ing

t at small momentum transfers, i.e. , Q ( 0.3 GeV .tions a sm

portance of RPA correlations diminishes, and no signi—
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to higher excitation energy, and the overall strengt o
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'
d d This is consistent with an ad-

ditional repulsive component to t et e residual interaction

using the standard value of g = . . ne no
a slight quenching and hardening o p df the res onse due to

Ithe large value of g .
Since most of the experiments report the energy-
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is the RPA calculation with M while t e as e c
RPA with M'. (a) is for g'=0, (b) is for g'=0.3, and (c is for
g'=0. 7. In (c) t e anh M d M' impulse calculations are also
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s

' ' ener of 1.2 GeV. The solid curvescattering at an incoming energy o . e
is the impu se wil th M calculation while the dashe curve
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icated with the dot-dashedturn-dependent self-energies is indicated wit t e o-

line.



2746 HUNGCHONG KIM, J. PIEKAREWICZ, AND C. J. HOROWITZ

0.8

1.0

U
2

0.5
A

CV

'a
V

0 ~ ~ ~ ~ I ~ ~ ~ ~ I ~ I ~ ~ I ~ t ~ ~ I ~0.
0.0 0.2 0.4 0.6 0.8

Q (Gev )

0.6

0.4

0.2

0.0
1.0 0.2

~ I ~ ~ ~ I ~ ~ I

0.4 0.6 0.8
Q (~&)

1.0

FIG. 6. do. /dQ averaged over the BNL spectrum. In (a) the two solid cur~es denote the impulse and the RPA (g' = 0.7)
results using the free nucleon mass M. Also shown (two dashed lines) are the corresponding results using an effective nucleon
mass M'. In (b) the cross sections are shown over the available experimental range in Q . The solid and the dashed
curves are the results of impulse calculations with M and M", respectively. The dot-dashed curve is the calculation with
momentum-dependent self-energies.

cant differences are observed between the three models.
At an even larger Q the RPA curve splits from the other
two indicating the breakdown of the mean-field approxi-
mation [see Fig. 3(b)]. This breakdown, however, is not
associated to RPA effects, which are no longer effective
at this momentum transfer, but rather from the mean-
field M* effects. Indeed, an RPA calculation using the
free nucleon mass is within one percent of the impulse
with M calculation at high Q .

We report similar calculations for antineutrinos in
Fig. 5(b). The cross sections are considerably reduced
relative to neutrinos because of the sign change in the
vector-axial interference term [see Eq. (23)]. In addi-
tion, since the cross sections fall to (almost) zero for
Q ) 1 GeV, most of the quasifree strength is located
below the cutoff Q, . Hence, the kineinatical cutofF does
not have a significant efFect on the M* curve at large Q .
At a smaller momentum transfer, Q ( 0.3 GeV, and
just as in the neutrino case, RPA correlations substan-
tially reduce the cross section. At a larger Q, most of
the differences observed between the RPA and the im-
pulse with M calculations are due to the strong scalar
potential. The impulse with M* calculation (dot-dashed
curve) smoothly interpolates these two models.

In the BNL experiment [8], the axial mass MA, which
controls the Q falloff of the axial form factor [see
Eq. (A9)], was extracted from antineutrino data using
a Fermi gas (i.e., impulse with M) formalism. From an
analysis of their data in the range Q2 = 0.2—1 GeV,
the BNL group extracted a value of M~ ——1.09+ 0.03
(stat) +0.02 (syst) GeV. In Fig. 6 we show the cross
section, do/dQ, averaged over the BNL neutrino spec-
trum. In Fig. 6(a) we present four difFerent calculations:
impulse and RPA with M (solid lines), and impulse and
RPA with M* (dashed lines). The two curves using the
free nucleon mass M start to overlap at Q = 0.4 GeV
and, insofar as we can regard them as our nonrelativis-
tic limit, they agree with the nonrelativistic results ob-
tained by Singh and Oset [9]. Similarly, the two M*
curves also coincide for Q2 ) 0.4 GeV2 illustrating the
fact that RPA correlations become unimportant in this

Q region. In Fig. 6(b) we show three impulse curves
in the Q = 0.2—1 GeV range the region sampled in
the BNL experiment. At Q = 0.2 there is a six percent
difference between the impulse with M calculation and
the M' and M* values. This difference becomes larger,
20—30%, at Q = 1.0 GeV . It is, therefore, essential to
estimate the sensitivity of M~ to these nuclear-structure
effects.

The raw experimental data as a function of the four-
momentum transfer Q2 was fitted with a theoretical
curve to determine M~. Since the experiment suffers
from an uncertainty in the overall normalization, we use
the ratio of the cross section at two different values of
Q to extract MA. In Table I we show the ratio of the
cross section using Q2 = 0.2 GeV and Q2 = 1.0 GeV .
The value of the axial-mass parameter M~ was varied in
the 1.09 —1.30 GeV range, and the ratio of cross sec-
tions reported for various nuclear-structure models. For
M~ ——1.09 GeV, the value extracted from the BNL data,
the impulse with M ratio equals 19.42. This represents
our baseline value for the ratio. In order to reproduce this
value using the impulse with M* calculation the value
of the axial-mass must be changed to M~ ——1.30 GeV
(a 20%%uo increase). Similarly, the value of MA must be
changed to 1.25 GeV in the RPA with M* and to 1.20
GeV in the M* calculation. There is, however, no M~

TABLE I. The ratio of cross section "
2 (Q

= 0.2 GeV )/ s 2 (Q = 1.0 GeV ) for various nuclear struc-
ture effects at a given axial mass M~ in the first column.

„",(Q = 0.2GeV )/„",(Q = 1.0GeV )
MA (GeV) Impulse M Impulse M" RPA M' RPA M M~

1.09 19.42 25.83 23.72 17.21 21.85
1 14 1847 2471 22 59 1632 2083
1 18 1775 2378 2169 1566 2003
1.21 16.91 22.66 20.61 14.89 19.08
1.25 15.95 21.36 19.38 14.02 18.00
1.30 14.9 19.92 18.04 13.07 16.81
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TABLE II. The same as Table I for the ratios
, (Q = 0.5 GeV )/„,(Q = 1.0 GeV ).

M~ (GeV)
1.09
1.14
1.18
1.21
1.25
1.30

, (Q = 0.5 GeV )/
Impulse M Impulse M'

5.47 6.50
5.35 6.38
5.24 6.26
5.10 6.09
4.92 5.88
4.72 5.62

„'~.(Q' =
RPA M*

6.40
6.27
6.14
5.96
5.75
5.49

1.0GeV )
RPA M M~

5.34 5.77
5.21 5.65
5.10 5.54
4.96 5.39
4.78 5.21
4.58 4.99

IV. CONCLUSIONS AND OUTLOOK

We have used a relativistic formalism to study inclu-
sive charged-current neutrino scattering in an impulse ap-
proximation. The nuclear-structure information is con-
tained in a large set of nuclear-response functions that
were evaluated in nuclear matter using a variety of ap-
proximations. The simplest approximation that we con-
sidered was a relativistic free Fermi gas. This approxi-
mation was used by the BNL group to extract the axial
mass parameter M~. We have used the Fermi-gas ap-
proximation, together with the BNL-extracted value of
M~ = 1.09 GeV, to fix the Q2 dependence of the inclu-
sive cross section. We have examined the sensitivity of
this extracted value for M~ to various nuclear-structure
efFects, such as the ones arising from the mean fields
(M*), RPA correlations, and momentum-dependent self-
energies. In essence, we have computed the changes in
M~ that were required to reproduce the baseline free
Fermi-gas cross section once these additional nuclear-
structure effects were taken into consideration. This

value within this range that can reproduce the ratio us-

ing an RPA with M calculation. This is because RPA
effects substantially reduce the cross section at Q = 0.2
(about 10%) which was not expected from nonrelativistic
calculations.

Since we have established that RPA correlations be-
come unimportant for Q ) 0.4 GeV, we can eliminate
the sensitivity to RPA efFects by computing the ratio of
cross sections using Q = 0.5 GeV and Q = 1.0 GeV
(see Table II). In this case, using the impulse with M cal-
culation we obtain a baseline value for the ratio of 5.47 at
M~ ——1.09 GeV. Now the RPA with M does not induce
any change in the value of M~ in agreement with the
nonrelativistic calculation of Singh and Oset [9]. This,
however, is not the case for the other nuclear-structure
calculations. Indeed, even in the impulse with M* cal-
culation, which generates the smallest change, a 10% in-
crease in the value of M~ is required. This 10% uncer-
tainty in the value of M~ could complicate the extrac-
tion of strange-quark matrix elements from experimen-
tal studies of neutral weak form factors [7]. Note that
since the M~ ——1.09 GeV number is already larger than
the world-average value of M~ = (1.032 6 0.036) GeV,
nuclear-structure corrections make the discrepancy even
larger.

analysis is useful because a robust value of M~ is es-
sential for a reliable determination of the strange-quark
content of the nucleon.

Our results indicate important corrections to the nu-
clear response due to the mean fields (M*) and to RPA
correlations. Indeed, changes as large as 20% in M~
were observed whenever the whole range of Q values

(0.2 GeV & Q & 1.0 GeV ) used in the BNL experi-
ment were employed for the extraction. This uncertainty,
however, can be substantially reduced. For example, it
is well known that RPA correlations are effective only at
small-momentum transfers (i.e. , Q2 & 0.3 GeV2). In
addition, phenomenological fits to the nucleon optical
potential indicate that, at large nucleon momenta, the
mean fields are considerably smaller in magnitude than
the ones predicted by the mean-field theory. Hence, some
of the nuclear-structure uncertainties can be removed
by employing phenomenological (momentum-dependent)
mean fields and by restricting the range of Q to the re-
gion 0.5 GeV & Q2 & 1.0 GeV . Note that, although
weaker than in the mean-field theory, the momentum-
dependent optical potentials are still large and induce
nontrivial changes in the effective mass and energy of
a particle in the medium. Indeed, even in this best-case
scenario a 10% uncertainty in M~ persists. With this ex-
tra 10% uncertainty, the BNL experiment [4] by itself no
longer provides strong evidence for a nonzero strangeness
content of the nucleon [7].

Garvey and collaborators [24] have proposed to ex-
tract the strange axial-vector form factor from a measure-
ment of the ratio of neutron to proton yields in neutrino-
induced reactions. Taking the ratio will cancel some of
the (isoscalar) nuclear-structure uncertainties. However,
the low-energy quasielastic (v„,p, ) cross section was re-
cently measured to be less than half of that of a free
Fermi gas [25]. This indicates that nuclear-structure ef-
fects might be very large [26] at the low energies sampled
in the LSND experiment. Therefore, it is important to
investigate nuclear-structure efFects, such as RPA corre-
lations, in the neutron to proton ratio.

In the future we will employ the present relativistic
RPA formalism to calculate the inclusive cross section
for atmospheric neutrinos. Atmospheric neutrinos have
been observed over a wide range of energies (from a few
hundred MeV to several GeV) in large water Cerenkov
detectors hence the need for a formalism that can
address neutrino physics over this broad energy range.
Atmospheric neutrinos are particularly interesting be-
cause of the current Bavor anomaly in the v~/v, ratio.
This anomaly might signal neutrino oscillations. How-

ever, first one must rule out all conventional nuclear ef-
fects. Thus, it is important to examine these nuclear-
structure corrections before a definitive statement about
new physics can be made.
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APPENDIX A

G = (1+4.977'), 7 = —q /4M, (A1)

P,'"' = [1+~(1+ A„)]G/(1+ ~),

E2(") = A„G/(1+~),

E,(") = ~A„(1—rl)G/(1+ ~),

S;(") = ~„(1+«)G/(1+ ~).

Here the anomalous moments are

(A2)

(A3)

(A4)

(A5)

and

Ap ——1.793, A = —1.913,

rl = (1+5.6~)

(A6)

(A7)

This parametrization is good for the neutron form factors
provided 7. && 1. The isovector form factors are given by

We adopt the form factor parametrization used in
Ref. [5]. First, the electromagnetic form factors are writ-
ten in terms of simple dipole forms:

Im(III.") =

—/pe E2 —g E3

M*2Eg
lm(II~) =

q[
—2M'E

Im(IIr') = = —Im(IIz'),
S7r]q]M

g
2

Im(II„)=,[2E2+ qoEg],

q2E
Im(II„„)=

s~[q[
'

M'Eg
4z. ]q[

where

g q2Eg
, E3+qpE2+

21t q
gr

2 (q2M*~
Im(IIF) =, E.+q.E, +

I4' qs ( q2

q + q
4 )
2

Im(III') = q Es+ qoq E28' q3M2

f 2 2$+iM*' '+ ' iE

Im(IIT') =
~

M* q16vrqsM2 i 4 j

(B2)

(B4)

(B5)

(B6)

(B7)

(B9)

+1 —+1 +1 ) +2 +2 F2(» ) (~) (J ) (~)

The axial form factor G~ is

1.26

(1 —q'/M2)' '

and the pseudoscalar form factor is given by

2MG~
m

(As)

(A9)

(A1o)

with

(n =1,2, 3),

Ey —— k~2 + M*2,

E = min(EF, E „),
1E „=max M*, EF —qo, —

~

—qo'2

(B1o)

(Bl1)
(B12)

APPENDIX B +lql

Analytic expressions for the imaginary parts of the po-
larizations introduced in Sec. II B are

The vacuum part does not contribute to the impulse re-
sponse for spacelike momenta.
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