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Quark exchange model for charmonium dissociation in hot hadronic matter
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A diagrammatic approach to quark exchange processes in meson-meson scattering is applied to
the case of inelastic reactions of the type (QQ) + (qq) —+ (Qq) + (qQ), where Q and q refer to heavy
and light quarks, respectively. This string-Hip process is discussed as a microscopic mechanism
for charmonium dissociation (absorption) in hadronic matter. The cross section for the reaction
J/@+ 7r ~ D+ D is calculated using a potential model, which is fitted to the meson mass spectrum.
The temperature dependence of the relaxation time for the J/Q distribution in a homogeneous
thermal pion gas is obtained. The use of charmonium for the diagnostics of the state of hot hadronic
matter produced in ultrarelativistic nucleus-nucleus collisions is discussed.

PACS number(s): 12.39.Pn, 13.75.Lb, 14.40.Lb, 24.85.+p

I. INTRODUCTION

The interaction of a J/ib meson with strongly interact-
ing matter is to date still a controversial subject. While
the production of J/@ can be understood within pertur-
bative QCD due to the large mass of the charm quark, its
further interaction with surrounding matter is essentially
soft in nature and as such not treatable perturbatively.
Knowledge of hadronic interactions, as well as their mod-
ifications at finite temperature and density, is, however,
necessary for a proper understanding of ultrarelativistic
nucleus-nucleus collisions, especially in view of a possible
transition from hadronic to quark matter [1]. The sup-
pression of J/Q was initially proposed as a signal for a
quark-gluon plasma [2]. Such a suppression was observed

by NA38 [3]. However, the data can be described by a
variety of models on a phenomenological basis, both in a
plasma [4] and in a conventional hadronic scenario [5,6].
Thus, the question of the significance of the J/ib signal
remains as yet undecided.

Plasma formation is not expected to occur in hadron-
nucleus (hA) collisions. However, data taken in hA colli-
sions already show a considerable reduction of J/@ pro-
duction at low x~ [the region where J/t/i is also mea-
sured in nucleus-nucleus (AB) collisions] as compared to
proton-proton (pp) collisions [7,8]. The suppression pat-
tern in both hA and AB collisions is found to be consis-
tently described by a phenomenological absorption cross
section of cr@&, = 5—7 mb [9].

On the other hand, it was recently argued that, due to
the smallness of the heavy-quark-antiquark system (q Q),
a gluon needs to be sufBciently hard in order to resolve
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this pair, Q2 ) 1/m&~ [10]. Only deconfined matter at
temperatures beyond the phase transition temperature
T, contains sufficiently many hard gluons to cause a J/Q
suppression of the observed magnitude. Matter in the
form of hadrons does not provide enough hard gluons,
and consequently a value of o b, = 5—7 mb has beenQN

regarded as unrealistic. This obvious contradiction is
one example of the need of an understanding of hadron-
hadron interactions on a more fundamental level.

With the present work, we aim to provide a step to-
wards filling this gap. The approach we use is the descrip-
tion of hadrons as bound states of quarks. It allows one
to consistently account for substructure e8'ects. A full
treatment of the hadron-hadron interaction is to date not
possible due to the nonperturbative character of QCD in
this region. A microscopic calculation of the J/g breakup
process by impact ionization has been performed within
perturbative QCD in Ref. [11] for a dense partonic envi-
ronment and in Ref. [10] for a hadronic medium. How-

ever, in these approaches nonperturbative correlations in
the final state (charmed hadrons) have been neglected;
i.e. , only the breakup of a J/v/r into free charm quarks was
considered. As lattice gauge simulations of QCD suggest
[12—14], hadronic correlations persist even for tempera-
tures well above the deconfinement transition. There-
fore, effective approaches to J/@ dissociation in the non-
perturbative domain of strongly correlated quark matter
consider this process as a quark exchange (string-flip)
process [15]. The role of quark exchange processes in
hadron-hadron interactions has been investigated in sev-
eral approaches [16—20]. Recently, a systematic analy-
sis of quark exchange contributions to the meson-meson
interaction has been given in Refs. [21,22] within a dia-
grammatic technique. These approaches use a nonrel-
ativistic quark potential model to describe mesons as
bound states. They have been applied to the elastic scat-
tering of light mesons. When translating the diagrams
into the language of Green functions [22), a generaliza-
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tion to Gnite temperatures and densities as well as to a
relativistic effective meson theory is possible.

In the present work, we extend this diagrammatic tech-
nique to the calculation of the cross section for the inelas-
tic reaction (Q Q) + (qq) -+ (Q q) + (q Q), where Q and q
stand for heavy and light quarks, respectively. We con-
sider the process of charmonium dissociation by inelastic
collisions with light mesons. In particular, we calculate
the cross section of the reaction J/@+a,' D*+D as a
function of the relative kinetic energy of the mesons and
address its application to the analysis of the kinetics of
charmonium dissociation in heavy ion collisions.

Section II gives the general formalism for inelastic
meson-meson scattering. In Sec. III, the special case
of charmonium dissociation is treated within this formal-
ism, and cross sections for the main processes are cal-
culated. These are then used in Sec. IV to study the
absorption in a pion gas. In Sec. V we discuss the situ-
ation encountered in the experiment.

Op i=A, ... ,D
/2E;Op,

where Op is the normalization volume of the states
which is set in the following to unity, and E,

gm2 + p2. The calculation of Mf, is performed in the
center-of-mass frame of the mesons A and B. The result-
ing differential cross section do/dt is expressed in terms
of Mandelstam variables, that is, in Lorentz-invariant
form. The total cross section for scattering into chan-
nel f is obtained by integrating over t,

with the meson-meson interaction Hamiltonian IIA~ ~D
and a product ansatz for the incoming (outgoing) two-
meson states formed by the rnesons A, B (C, D). Four-
momentum conservation is implemented in this matrix
element. The normalization factor JV is needed in order
to get the correct form of Mfi from the nonrelativistic
transition matrix element. With our convention, it reads

II. QUARK EXCHANGE CONTRIBUTION TO
MESON-MESON SCATTERING

'+ d af, (s, t)
(4)

In this section, we present the formalism for the cal-
culation of the cross section of quark exchange processes
between mesons. We mainly follow the notation of Ref.
[21]. We consider the two-meson scattering process A(aa)
+ B(bb) -+ C(ab) + D(ba), where the interchange of the
quark content (in brackets) corresponds to a flavor re-
arrangement. This process dominates the cross section
behavior at low relative energies of the mesons, while at
higher energies the additional production of light qq pairs
sets in which is not contained in the present approach.

The difFerential cross section for the process i —+ f is
given by

d ot, (s) t) 1 1

d t 64vrs P'(s)

where P(s) is the relative three-momentum of incoming
particles in their center-of-mass frame. For the relation
between P and s, t, see Appendix A. The indices i and
f stand for the initial and Final two-meson states. The
central problem is the calculation of the relativistic in-
variant matrix element Mf, (s, t). For this, efFective the-
ories have to be used in the low-energy domain, where
perturbative QCD is not applicable. One speciFic prop-
erty of hadron-hadron scattering is the color neutrality of
asymptotic states, such that a single one-gluon exchange
between hadrons is forbidden. The quark exchange pro-
cess, however, is possible and the matrix element reads,
in the Born approximation [21,22],

(2)

where t+ (t ) is the maximal (minimal) possible mo-
mentum transfer. The t integration can be transformed
into an integration over z = cos 6(P, P'), where 8(P, P')
is the angle between the relative momenta P and P' of
incoming and outgoing mesons, respectively. For non-
identical particles the following relation holds:

afi(s)
1 P'(s)

32~s P(s) «l~~'(P(s) P'(s) z)i' (6)

A. Quark exchange Hamiltonian

(a, a, b, blH», cD lc, c, d ")

) (a, a, b, biH, , lc, c, d, d) . (6)
i =a, a
j =b, b

For illustration we give the erst of these four terms:

It has been shown in Refs. [21,22] that in the quark
potential model the Hamiltonian of the quark exchange
process in meson-meson scattering can be represented as
an eB'ective two-quark interaction followed by a quark
interchange between the mesons. The result of the dia-
grammatic analysis of all topological inequivalent contri-
butions to the quark exchange matrix element is shown
in Fig. 1. According to Eq. (2) the matrix element of
the quark exchange Hamiltonian in the four-quark basis
reads

(a, a, b, blH -ic, c, d, d) = ) (a biH la' b ) (a bla b'& (a', a', b b Ic, c, d, d),
la, a

bl b I
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gluon exchange, which can be split into a Coulomb-like
potential (Hc "

) and relativistic corrections arising from
spin-spin (H s), spin-orbital (H ), a tensor (HT), and
a spin-independent interaction (H ); see [23] for a re-
view. All these perturbative contributions contain SU(3)
A matrices in color space. Since in the present work
only S-wave mesons are considered, only the Coulomb
potential H " and the spin-spin term H are present.
The third contribution to the interaction stems from the
higher-order terms, which are here taken to be summed
up to one effective nonperturbative term in the form
of an appropriate potential H"~. It occurs only in the
quark-antiquark channel, where the mesonic bound state
is formed as a nonperturbative correlation. The interac-
tion Hamiltonian for the qq interaction thus reads

(i,gH'I", &') = (t, @He."'I",~') + (t, 1IH" Ii', ~')
+(~ ~IH""I&' ~') (s)

b ) / b x I

b )
' /

FIG. 1. Contributions to the quark exchange matrix ele-
ment My, in the Born approximation: M b, M q(cap-ture)
and M t„M-z (transfer). Each interaction line represents
the sum of Coulomb and spin-spin interaction. In the cap-
ture diagrams, additionally a nonperturbative contribution is
present.

For the qq and qq channels, which form no bound states,
the interaction consists only of the first two terms, while
the nonperturbative part of the interaction is absent.

Since the nonperturbative part of the interaction is
understood to be a summation of all higher-order contri-
butions, it is independent of color, flavor, and spin. We
describe it effectively by a Gaussian ansatz, which reads,
in momentum space,

where a, . . . , d' denote three-momentum, spin, flavor,
and color quantum numbers of the quark or antiquark
(a = {p,s, f, c )). The last bracket selects those con-
tributions in the sum over all quark quantum numbers,
which match to the final-state two-meson wave function.
The other terms in Eq. (6) are obtained in an analogous
manner, where the interaction acts between the particles
z and g.

In the quark potential model, the two-quark interac-
tion within a meson, as well as between quarks of difFer-
ent mesons, is given by the interaction Hamiltonian H
of Fermi-Breit type. It consists erst of the kinetic term,
and second of the lowest-order contribution from one-

I

(a, blH la, 6 ) = —Vo(S~~)s& e 2 (P Po)'g&+ ~ &)

with parameters Vo and x for the depth and range of
the potential, respectively. The Kronecker symbol with
superscript S, E, or t is understood to act in spin, flavor,
and color space, i.e. , 8 ', ' = 8,....8y, y, S... .., . In the
limit x —+ oo and Vo = 8K', this ansatz represents a
quadratic confinement with string tension x.

The spin-spin and Coulomb interaction terms are taken
in the standard form [23] as

A~ A& (p) (p) f 4wn~ Swu~
( ~l I ~) 2 2, ' j,i' P*+P P;+P l~( q2+ 3 ss2~I

pz pi' j 2
(10)

where m, and m~ are the constituent quark masses. For
antiquarks, A; has to be replaced by —A, . The spin-
spin interaction can be rewritten in terms of H"I', Eq.
(9), since the identity operator in momentum space can
be understood as a limit of the Gaussian potential for
x -+ 0 and Vo -+ (S~x)

B. Meson wave functions

We decompose the mesonic wave functions into orbital
(C'), spin (gs), and flavor and color (g~~) parts,

@re ) = IC'x „) lxs) Ix~ze)

(a& a @ ) = C p~ (pa& pa)Xs' (sa& sa)X~c (fa& fa& ca& ca) ~

(11)

Instead of finding the exact eigenfunction of the two-
particle Schrodinger equation we use trial Gaussian wave
functions and find the best approximation by using the
Ritz variational principle. The orbital part of a IS state
wave function is given by

4r& (p, p-) = (16vrA/t) exp t
—2AAp/t]8x „(~ +~ ),

(»)
where A stands for the quantum numbers and P~
p +p- for the total momentum of meson A. The relative
momentum of the quark and antiquark in the meson is
p~ = g~p~ —(1 —g/t)p~, where g~ = m-/(m + m-).
The constant A~ is related to the mean-squared meson
radius via (r~) = 6A/t.
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We calculate the matrix element in the center-of-mass
frame of mesons A and B, where PA + PB ——Pc +
PD ——0 because of total momentum conservation. Let
us introduce the notation

) ~Coul + ~SS + ~up
i =a, a
j =b, b

(14)

P =PA = —PB,
P'= Pc = -PD.

The generalization of the wave functions to excited states
is straightforward. If one would also consider P waves,
the spin-orbit and tensor terms of the interaction Hamil-
tonian had to be taken into account additionally. The
parameters of potential and wave functions are fitted to
the masses of the vr, p, J/g, g', D, and D* mesons; see
Appendix B.

where M,"P = 0 for (ij) = (ab) and (ab).
We make use of the product ansatz for the wave func-

tions, Eq. (11), and calculate the contributions from the
terms of Eq. (14) to the matrix element MI;. Each of
these factorizes into an orbital (Ic), spin (Is), and flavor-

color (IFc) part.
For the terms in the matrix element M,-j where K F

(Coul, SS,np), w'e obtain

~,, (P, P', .) = E(P, P')I~~„(P, P', .) If, @,,
with

C. Transition matrix element

According to the diagrammatic analysis of the contri-
butions to the matrix element (2), there are four con-
tributions to be evaluated; see Fig. 1. The first two di-
agrams correspond to the so-called capture diagrams of
Ref. [21], since the interacting quarks are captured in
one meson in the final state. The others represent the
transfer diagrams. The additional diagrams that arise,
if identical quarks are present in the considered process,
have the same amplitude and thus can be accounted for
by a factor of 2.

Corresponding to the terms of the interaction Hamil-
tonian, Eq. (8), the transition matrix element can be
written as the superposition

Io, (P, P', z)
ICoul I&pS ij S ij

SSIs i,
Coul SS

IFC,ij — FC,'j
InP
FC,ij

(@AC,B HK C C @,D )

(
A 8 C DK

XS S;Sj ySXS

(
A B ~i ~j C D

~FC~FC 2 2 ~FC~FC

(
A B C D

XFCXFC XFCXFC)'

(15)

(16)

(»)

The spin factors Is are given in Table I. Because of
the 1/(m mi, ) dependence, the spin-spin interaction H
dominates the matrix element for light mesons. The cal-
culation of the orbital, spin, and flavor-color factors is
outlined in Appendix C.

For potentials of a Gaussian form, the general result
for the terms M, - for 1S mesons is

M, . (P, P', z) = JV(P, P') Is,,IFc,,&;, exp — ~;,P' + 0,, P' + ~;, P'Pz (20)

TABLE I. Spin factors Is "'(= ISP) of the transition matrix elements for different spin states of
the initial (A, B) and final (C, D) mesons. For the Ig factors one has to multiply each line by the
factors in the respective column Is b or Is-b.

Sc SD
SCD

00
0

01
1

10
1

1 1
2

1 1
1

1 1
0

SA SB
SAB

00
0

01
1

1 0
1

1 1
2

1 1
0

ISS
S,ab

3
4

SSIS,ab
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The constants o.;, . . . , p, - and C, are fixed by the pa-
rameters of the potential (Vo, x) and the wave function
(A;) and are explained in Eqs. (C9)—(C14). It can be
shown that the diagram M-b is obtained from ~ b by
interchanging mesons C and D and replacing z by —z in
(C5). Thus, one can express the matrix element M f& in
terms of ~ -„by exchanging g~ ++ 1 —gD and A~ ++ AD
and inserting the corresponding spin and fI.avor-color fac-
tors I+ and I &. The same relations are valid between
M & and JH —. P' is fixed by P due to energy conser-ab
vation. For a Coulomb potential, the last term of Eq.
(20) is replaced by a difFerent function of the momenta.
However, as can be seen from this analytical form, for
the perturbative part of the interaction which carries a
color index the color factors arising from the difFerent
diagrams result in destructive interference. As a con-
sequence, the perturbative potential interaction remains
small for heavy mesons, as is expected from the small
dipole moment which enters in the Coulomb interaction
term.

In Ref. [21], the potential interaction II "' has been
disregarded in the calculation of the vr+m+ scattering
phase shifts; see also the following subsection. For our
present application to the charmonium dissociation pro-
cess, the contribution of H"P plays the dominant role in
the transition matrix element (14) and it will be exam-
ined in more detail in Sec. III.

D. Elastic m+m+ scattering

(P, z) = /4i"
8 —2

9m,' q3)

+exp AP (1+z)—

exp 4A/3P—

y exp AP'[1 —«) ), —

while the Coulomb interaction can be neglected.
It has been shown in [15,21] that the low-energy scat-

tering phase shifts of vr+vr+ scattering can be well de-
scribed by this matrix element. So far, in this context
only the spin-spin interaction term has been considered.
However, we And that the results are not qualitatively
changed by the inclusion of the nonperturbative part of
the interaction as we presented it here.

The minimal relativistic approach to quark exchange
processes in hadron-hadron scattering has also proved
successful in the description of Kvr and KN scattering
[24]. We expect that in processes where quark creation
and annihilation is negligible the presented approach will

In this section, we give the instructive limiting case of
four equal quark masses m = . = m& ——m~. That is,
we consider the scattering of identical spinless 1S mesons
with masses m, described by A~ -—— . ——AD ——A. In this
case the absolute values of the incoming and. outgoing
relative momenta P and P' are equal. We multiply by
a factor of 2 in order to take into account the diagrams
which arise in addition to those containing distinguish-
able particles. In this case, the matrix elements get a
transparent form. The spin-spin term reads

be applicable. This is strongly supported by a recent ex-
tensive experimental analysis of White et at. [25]. They
compare reactions which proceed via quark exchange,
such as K+p ~ pK*+, with similar ones which proceed,
for instance, via qq annihilation, such as K p —+ pK
Throughout a variety of such reactions, they find that
the cross section is always dominated by those processes
which can proceed via a quark exchange reaction.

III. CHARMONIUM DISSOCIATION

In this section, we apply the presented formalism to the
specific case of the breakup of J/g when scattering on
hadrons. We calculate the absorption cross section from
the quark exchange process, which is a function of the
relative kinetic energy of the two scattering mesons, and.
discuss the implications for realistic physical situations.
To demonstrate the importance of correlations in initial
and G.nal states, we also discuss the breakup reaction of
J/@ into free quarks. The result corresponds to previous
perturbative calculations [10].

Charmonium absorption processes in hadronic matter
have been considered in several papers, e.g. , [9,26,27].
Basic processes for charmonium dissociation in hadronic
matter are

(a) J/Q + vr ~ D(1S) + D(1S), Am ) 0.643 GeV,
(b) J/g+ p -+ D(iS) + D(iS), Zm & 0 i3—Ge.v,
(c) J/Q + ~ ~ A, + D(1S), Am ) 0.258 GeV.

(22)

Generically, we denote D+, D, or D as D, and cor-
respondingly D for the antiparticles. D(1S) represents
either D or D*. Note that the reaction J/g+7r ~ D+D,
without excited final states, is forbidden by angular mo-
mentum conservation. The reaction thresholds for the
possible processes are given by the mass differences Lm.
All these reactions are examples of inelastic quark ex-
change processes among hadrons. In the following, we
work out our formalism considering process (a) which
describes charmonium absorption in a pion gas. Other
processes including higher meson states such as y, and g'
can also be considered; see the discussion in the conclu-
sions. Process (c) describes J/g absorption on nucleons
and can be treated on a similar basis.

A. J/Q absorption by pion impact

We apply the approach given in Sec. II to calculate
the energy-dependent cross section of the process (a) by
specifying the initial rnesonic states A = J/Q (Q Q), B =
a (qq) and the final states C = D(lS) (q Q), D
D(1S) (Qq), where Q is the heavy charm quark and q
the light u or d quark.

In order to work out the details in a transparent way,
we use Gaussian wave functions and a Gaussian shape for
the interaction potential which binds the quark-antiquark
pairs into mesons. With the parameters of Appendix 8,
we obtain a satisfying description of the relevant meson
spectrum; see Table II. The choice of the Gaussian class
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of functions has the advantage that the calculation of the
cross sections can be performed analytically, which makes
the results more transparent. Equation (20) is now used
to calculate the cross section for the charmonium dissoci-
ation reaction J/Q+ 7r ~ D(1S)+D(l S). Because of the
large charm mass, the spin-spin interaction is negligible.
Also the terms from the Coulomb part cancel each other

I

almost entirely (see below). Therefore, we neglect in the
following the perturbative contribution and consider the
nonperturbative int;ez;action only.

For each final-state channel, the matrix elements have
to be computed. The integral over z in Eq. (5) for the
nonperturbative contribution can be performed analyti-
cally with the result

sinh 2p" P'P-
d, [~"P(P,P', z) ~' = ~1"' I"' ['4JV'(P, P')(C",')' exp —2~"',P' —2P",'P" -1 (23)

These terms arise from the two capture diagrams. They
have the same spin and Bavor-color factor and dier
only in the sign of z; thus JH &(z) = M-b( —z) and
consequently C

b
——C-&. From 0 " we have no con-

tribution to the transfer diagrams. We have defined

7 )

the parameters of the potential model (B4), we obtain the
values n"~=1.06 GeV, P"-=1.01 GeV, p"-"=0.048
GeV . Inserting this result in (5), with P(s) and P (s)
from Eq. (A5), we obtain the cross section rrf; for a spe-
cific final state f from the nonperturbative interaction.
For the total J/g breakup cross section due to pion im-
pact, we sum the possible final state combinations of low-
lying D mesons to get

~-b. (s) = ) ~f*(s)
f=1

(24)

where s is the center-of-mass energy of the J/@ and 7r.

The resulting J/@ absorption cross section, which is a
function of the relative kinetic energy of J/@ and vr in
the c.m. system (c.m. s.), E;,P' = s —(my + m ), is
the central result of this section. We show it as a function
of E,,&

' in Fig. 2. Here, the parameter values &om Eq.
(B4) are used and all low-threshold processes according
to Table III are included except the lowest DD channel
which is forbidden by angular momentum conservation.

The behavior of the cross section is characterized by a

TABLE II. Meson mass spectrum according to the formula Eq. (B3) with the fitted model
parameters (B4) in comparison with the spin-averaged experimental masses. In the last column,
the root-mean-squared radii of the mesonic states are given.

Quarks 2S+1 L Meson m [GeV] m, „p, [GeV] m [GeV]

1Sp
1S1

0.136
0.771 0.612 0.612 0.75

1Sp 2.980
3.097 3.068 3.07 0.39

1Pp
1P1
1P2

pep

+c1
+c2

3.415
3.511
3.556

3.525 3.54 0.50

2S1 it '(2S) 3.686 3.64 3.59 0.59

'1SO
1S1

1.868
2.009 1.974 1.97 0.63

QC, vQ
1P1
1P2

DO
D*p

2.424
2.459

2.43 2.50 0.81
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8-

6-
2

4-

I/)1(+it~ D(1S)+D(1S)

D,D+D,D*

D', D
*

sum

The fit parameters for different possible Anal states op,
a, and si are given in Table III.

As we mentioned in the beginning, we do not consider
the inelastic production of additional light qq pairs, which
sets in at a threshold of ~so + m~ + m~. Therefore,
the exponential decrease in Eq. (25) is not considered to
be realistic in view of the additional final-state channels
opened beyond this energy.

2- B. Phenomenology of hadron-hadron cross sections

0 s

0.25 0. 5 0. 75 1 1.25 1.5 1.75

E ' '=
)I s - (m „+m„)(GeV)

FIG. 2. Cross section for different channels of inelastic re-
arrangement reactions of J/i)') and 7r into D mesons.

threshold at s() ——(mD + mD. ) and a strong enhance-
ment near this threshold, as well as an exponential falloff
towards higher energies. We obtain a peak value of about
7 mb at E,,&

' ——0.8GeV.
As we mentioned before, the perturbative contribu-

tion from M " remains small since the terms (M~s" +"
) and (M &" +M -" ) almost entirely cancel each

other due to the color factors. This is expected as the
color dipole moment of the pair is small. To allow a quan-
titative statement, we calculated the contribution from
H and H " only with the same parameters. The
resulting cross section is (r&"„(s) 0.3 mb at ~s 4.2
GeV. This result corresponds to other perturbative calcu-
lations [10] and confirms that the dominant contribution
to the transition matrix element arises from H"I', where
no cancellation between qq and qq terms occurs. The
difference between the perturbative and the nonpertur-
bative contribution we find is of the order of a factor of
20. This is consistent with the before mentioned data
of White et al. [25], which also find a factor of this or-
der between reactions with and without quark exchange
reactions.

The absorption cross section for a specific channel can
be approximately described by the fit formula

sp 2
ts"'(s) -=oe (1 ——' exp —o(V s —~s, ) p(s —so).s

(25)

The large value of the absorption cross section we ob-
tained within our calculation is at erst sight a rather
unexpected result. However, what was calculated is the
cross section of a preformed, full-size J/i/r on a z. This
is in most situations not realistic. In real life, the QQ
pair expands from a small object at the creation vertex
to its full size [28,29]. The initial size can be estimated
to be (r )&q I/(2m') 0.06 fm, as supported by
charmonium hadroproduction and photoproduction ex-
periments. A quantum mechanical treatment of the ex-
panding QQ state which simultaneously interacts with
hadrons gives a time scale of this expansion of 7;
0.85 fm in the QQ rest frame [30].

In the present hA experiments, the kinematics is such
that asymptotic J/i/)'s are observed only at high mo-
menta in the Anal state. Then, ~~ has to be multiplied
by a rather large p factor. In other words, the J/@ is
only formed far outside the nucleus. This has two conse-
quences. First, the QQ interacts inside the nucleus still
as a correlated, but considerably small state. We investi-
gate this situation by describing the initial QQ state with
a wave function narrower than the one of the J/iP, which
is done by changing the wave function parameter A
accordingly. What we find is a decrease of the breakup
cross section with decreasing QQ size. More precisely,

o b, oc (r') (26)

This confirms the phenomenological Povh-Hiifner rela-
tion [31] of hadron-hadron cross sections. Therefore, in
realistic experimental situations, the cross section of 7 mb
is lowered according to the kinematical circumstances.
Second, possible differences in the final-state interaction
of J/@ and i/i', as expected already from their difFerence

TABLE III. The spin factors for difFerent final channels f = (C, D) in the quark exchange process
J/P+m —+ C+D They follow di.rectly from Table I. oo, si, and a are parameters for the fit formula
Eq. (25).

(C, D) v
op [mb] s()[GeV ] si [GeV ] a [GeV ']

(D, D)

(D", D)

(» D")

(D, D )

I/4

2.5

2.5

3.4

14eo

15.05

15.05

16.2

17.6

17.6

19.0
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in size, are delayed, and thus become invisible because
the difference in their asymptotic states appears only af-
ter they have left the target nucleus. This is supported
by the experimental observation of an identical depletion
of J/g and vP' in heavy nuclei [8].

C. J/Q breakup without Bnal-state correlations

cesses, which is also the result of the present calculation.
In order to illustrate this important point in the con-

text of our approach, we calculate the cross section for
the breakup reaction of J/@ and vr into four asymptot-
ically &ee quarks within our effective model. Instead of
the Gaussian wave functions (12) we define the final state
as plane waves, in momentum space representation

As mentioned in the Introduction, it was argued
recently within a perturbative approach that a J/g
breakup reaction via gluon exchange requires a relatively
hard gluon in order to resolve the small QQ state [10].
The result we obtain for the cross section, Fig. 2, is
completely difI'erent from the cross section obtained in
such a perturbative approach. However, the quark ex-
change process we considered is also very di8'erent from
a gluon exchange and essentially nonperturbative in na-
ture. We note in this context that the present treatment
can be traced back to older works of Gunion, Brodsky,
and Blankenbecler on composite models of hadrons [16].
They showed that even in certain short-range interactions
constituent exchange dominates over gluon exchange pro-

C
r '(Pc&pc) = ~i",(i.+i-.)~(i.—i.)/2, pc&

~ p~ (p&~ p3) = "-p', (p~+pg) (pd —pz)/2ipL ' (27)

The final four-quark state is de6ned by the momenta p~,
po, and P'. The state ( contains the charm quarks Q, Q
and D the light quarks q, q. In Fig. 3 all spin and color
states are degenerate in the Anal state, and the sum over
spin, fI.avor, and color quantum numbers gives a factor
1/2 for Isle.

As before, the spin-spin interaction is small. At
higher relative momenta of the two mesons, also the non-
perturbative contribution vanishes and we consider the
Coulomb contribution to Mf,. only. For ~f',"we obtain

~f' (P P pc' pLi) = Is Is'F +(s pc pD)& "'(Q) 4'o" (pc + +~) —@'o"(p c—+~)

x C'o (Pri+ 2 )
—4o (Pz —

2 ) (28)

with 4 and C&+ &om Eq. (12), A = (QQ), B = (qq), and Q = P —P . JV(s, p~, p~) is given according to Eq. (A8)
by

A (s, p~, pg)) = —(s —(m@ —m ) }(s —[4(m~+ p~) —4(m + pD)] ) . (29)

»serting this into Eq. (5) we obtain the cross section
at one definite momentum configuration &T&~',"(s,p~, .p&).
The total cross section o "'(s) of the process J/@+ n ~
Q + Q + q + Q is given by integrating over all possible
relative momenta p~ and pD'.

free P& d PD free

( )s ( )s y; ( &Pc&pa) ~ (30)

The integration is restricted by energy conservation to
0 & p2ii & (~s/2 —(m~ + lie) ~ ) —m and 0 & pc &

(~s/2 —m~)2 —m&. Our result of the "perturbative"
breakup cross section as a function of E,,&

' is shown in
Fig. 4. It does not exhibit a peak close to threshold, but
starts smoothly and increases monotonically with energy.
This is analogous to what has been calculated in QCD
perturbation theory [10].

At low relative energies, the cross section of this pro-
cess is small and it does not contribute to the J/vP dis-
integration. The comparison of the two cross sections,
shown in Figs. 2 and 4, demonstrates the importance
of nonperturbative eIII'ects. It has the consequence of a
strong enhancement close to threshold. where the relative
momenta of the outgoing quarks are small and correla-

tions between them are most pronounced.
We emphasize at this point that the quark exchange

reaction into correlated anal-state mesons does not pro-
ceed via intermediate free quark states. Therefore, the
only energy barrier encountered in this process is the re-
action threshold, i.e., the mass difference between initial-
and final-state mesons. It is understood in our approach
as the difference of the respective binding energies, which
is overcome by kinetic energy of the initial mesons. How-

ever, we stress that no intermediate energy barrier is

I'c

b
)b

FEG. 3. Diagram for the disintegration reaction of J/@ and
vr into four free quarks.
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10 baryonic reactions in the strange sector corresponding to
the ones relevant for charmonium. These are

10

+Q+q+q
(a)
(b)

K +p —+ A+X,
K++ p~ A+X,

C)

~( 10
0

10
.8 mb

10
4 8

Es (Gev)

I I

12 14

FIG. 4. Cross section for the reaction J/@ + vr ~ Q
+q + q+ q. This result is comparable to the perturbative
calculation of Kharzeev and Satz [10].

present in this nonperturbative approach. This has to
be seen in contrast to a perturbative calculation, where
such a barrier occurs and where a nonperturbative mech-
anism, such as a tunneling process, has to be invoked
additionally.

D. Inelastic cross sections in the strange sector

We briefly look at the related processes involving
strangeness instead of charm. The meson-meson reac-
tion in this case is P + n -+ K + K, which is, however,
experimentally not accessible. Instead, we look at the

I

and a review of the data is given in [32,33]. The cross sec-
tion for reaction (a) exhibits a strong peak at threshold
and a subsequent decrease with increasing energy, while
the cross section for reaction (b) increases monotonically
from threshold. At energies far above threshold both
cross sections reach the same asymptotic value. The data
qualitatively show exactly the behavior we expect. Pro-
cess (a) is dominated by a simple quark exchange process
as we considered before, for which we calculated a strong
peak at threshold, while reaction (b) requires a hard ss
production process since K+ contains an 8 quark, while
an s is needed for the A. Therefore, reaction (b) does
not show an enhancement at threshold. Although only
being qualitatively, this strongly supports the approach
presented here.

IV. DISSOCIATION KINETICS IN A PION GAS

In this section, we consider the relaxation of the char-
monium fluctuation by string-flip processes in a dense
hadronic medium such as the pion gas produced in a
high-energy nucleus-nucleus collision. To obtain the sup-
pression of the bound QQ states, we fold the energy-
dependent absorption cross section calculated in the pre-
vious section with a thermal pion distribution which is
chosen in a way to describe the pion multiplicity and
shape of the rapidity dependence in the same reactions
where the J/@ is measured as well.

The time evolution of the J/@ distribution is described
by the Boltzmann equation [34,35]

—f~(r, p@, t) + 7'fy(r, py, t) = fy(r, py—, t) f (p, r, t)o b, [s(py, p )]j(p@,p„),

where s(p, py) is the center-of-mass energy and

j(py, p-) = [E~(I~)E-(&-) —p~ p-]' —~pm.'
E~(&~)E-(&-)

is the Hux of pions in the rest frame of the J/g (see Appendix A). Because of the small number of QQ pairs, the
inverse process of J/g production in DD scattering is neglected, and the inHuence of the considered reaction on the
pion distribution is negligible. The solution of Eq. (32) for an initial J/g distribution fy(r, py, to) reads

f~(r, p~, t) = f~(r —
vent, p@, to) exp — dt'

d3
2;f-(r —v~(t —t') p- t') -b [ (p~, p-)]j(p~ p-) .

We are interested in the time evolution of the total
number of J/vP's resulting from the absorption by the
breakup process considered in Sec. III. For a qualitative
estimate we consider the survival probability of a J/@ in
a uniform thermal pion gas. In this case the integration
over the space coordinate r can be performed and the

n, (p, , t) = d rf;(r, p;, t). (35)

The Boltzmann equation (32) simplifies to

resulting momentum distribution of meson i is given by
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20

17.5.

where the relaxation time 7 (p~, t) is defined in the rest
frame of the pion gas by

15-

with the pion density

"n (p, t).p7

(37)

(3S)

10-

7.5-

5-

2. 5-

Ip„l= 0

lp 1=2Ge

lp„l =4Ge

The brackets denote the average over the pion distribu-
tion n which may, in general, be time dependent:

0 . . ~. . . . a

0 16 0 18 0 2 0.22 0.24 0.26 0.28 0.3

T (GeV)

1 d p~
(o b, v„i)„(,) — n (p, t)

p t 2' 3

X~ b [s(P@ P )1~(P~ P-).

In order to give quantitative estimate of the relaxation
time for the J/g distribution in a dense pion gas, we con-
sider the specific example of a thermal pion distribution
as given by the Bose distribution

n-(p- t) = 3(exp([&-(p-) —/]/Tk —1) '

where the factor of 3 stands for the pion multiplicity. The
temperature T and chemical potential p may be chosen
as time dependent for modeling the evolution of density
and energy density in nucleus-nucleus collisions. For the
chemical potential of pions we use the value p = 126
MeV with which the experimental heavy ion data can be
well reproduced [36]. The temperature range from 120 to
210 MeV corresponds to pion densities from 0.22 to 0.84
fm

We show our result for the thermal averaged cross sec-
tion (cr b, v„i)T for difFerent temperatures and momenta
of the J/g relative to the pion gas center of mass in
Fig. 5. This quantity gives the mean capability of a pion
to dissolve a J/@ which is moving with momentum p~
through the pion gas. For low momenta of the J/g, it

FIG. 6. Mean lifetime r of a J/g in a pion gas as a function
of the temperature T for diff'erent momenta ~py~ of the J/g
with respect to the pion gas center of mass.

corresponds to a small cross section since the relative en-
ergy exceeds the reaction threshold only in few collisions.
The cross section then rises with increasing momentum
of the J/g. For all values of p~, the absorption cross
section increases with increasing temperature of the pion
gas.

The resulting mean lifetime of a J/g moving through
a pion gas, defined in Eq. (37), is plotted in Fig. 6 as
a function of the pion gas temperature for difFerent J/Q
momenta. The figures shown are calculated for a pion
chemical potential of p = 126 MeV. The cross section
does not depend sensitively on the chemical potential;
from p = 0 to p = 126 MeV the cross section decreases
only by about 20'Pe. Therefore the p dependence of the
lifetime is mainly determined by that of the pion density
P7i-'

Our result for the thermal averaged absorption cross
section corresponds to values which have previously been
used in phenomenological calculations [9,37—39]. From
our microscopic approach we have found that this quan-
tity is dominated by nonperturbative quark-antiquark
correlations.

1 ~ 2.

V. DISCUSSIQN QF RESULTS IN VIEW
QF THE EXPERIMENTS

1 - T=210 MeV
h

"" 0.8;

0.6-
V

0.4-

0.2-

0. 5 1.5 2. 5 3 ' 5

lp l(GeV/c)

FIG. 5. Thermal averaged cross section (a.v„~) for
J/g+vr —+ D(lS)+D(1S) for a j/g moving with momentum
[py ~

through a gas of pions with a chemical potential p, = 126
MeV at diferent temperatures T.

A. J/Q absorption in a pion gas

For a qualitative discussion of this result, we compare
the calculated relaxation time w with the mean lifetime
of a hadronic fireball which is measured, e.g. , by inter-
ferometry in the NA35 experiment and found to be in
the range of 5 fm/c for freeze-out temperatures T & 150
MeV [40]. This means that the relaxation time is of the
same size as the lifetime of the fireball. From our results,
we conclude that J/@ dissociation in a dense pion gas is
capable of producing a rather large absorption. In par-
ticular, it is large enough to describe the J/g suppression
as observed by NA38.

However, so far we have discussed an idealistic situa-
tion which is not met in heavy ion collisions. First, the
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where v —vg = 1 are the relative velocities of the J/vP
with respect to the scatterers, and p, pg the correspond-
ing I.orentz factors. We assume that initial-state modi-
fications and color octet absorption [44] in both pA and
Ap collisions occur at short time scales inside the nu-
clei such that these effects cancel when taking this ratio.
Inserting the values given above and using an energy-
independent cross section of oo(s~) = oo(s~) = 5 mb,
we obtain B = 1.22. Concluding, we expect a strong
suppression of J/tP production in the inverse kinematical
regime as compared to the lead target.

An enhancement of the J/g absorption cross section
near threshold, as we obtained for absorption on pions,
leads to an even stronger suppression in this case. Tak-
ing, for example, oo(sg) = 1.5oo(s ) gives B = 1.38. On
the other hand, perturbative estimates suggest for this
ratio a value of B = 1. Therefore, the experiment carried
out in inverse kinematics is clearly able to discriminate
between the diBerent models, and thus to indicate the
dominant physical processes.

VI. CONCLU SIGNS

The aim of the present work was to establish a formal-
ism in which the absorption of J/g mesons on hadronic
matter is treated. in a microscopic approach. We de-
scribe mesons in a potential model, and consider quark
exchange reactions between two mesons as the model for
inelastic reactions such as open charm formation in a
J/g-hadron collision. For an exploratory calculation,
we have used a Fermi-Breit Hamiltonian and a Gaus-
sian ansatz for the quark-antiquark wave functions. In
this model the energies of bound states are fairly well
reproduced. In addition, the model can still be treated
analytically and. gives transparent resu]ts which we have
discussed in detail.

In this work, we concentrated on the reaction J/g +
vr ~ D + D and calculated the cross section for the
breakup reaction as a function of the relative energy of
the colliding mesons. For comparison, we also considered
the breakup reaction in free quark states. The result of
the latter calculation is similar to what is obtained in
the corresponding calculation in the framework of short-
distance @CD. The comparison of both our results, as
shown in Figs. 2 and 4, demonstrates the importance of
correlations of the quarks in the final state.

When considering correlated quarks, i.e. , mesons, in
the final state, we find an enhanced cross section at the
reaction threshold, that is, for low relative momenta of
the quarks in the final state. In general we are able to
describe a correlated QQ pair before it propagates to
become a fully developed J/g. For both kinds of final
states, we find an increase of the absorption cross sec-
tion proportional to the square of the (time-dependent)
system size of the QQ state

With a view to the application of this result to heavy
ion collisions, we have estimated the suppression of J/g s
in a dense pion gas in thermal equilibrium. Since this is
an idealized situation, the results can only be considered
qualitatively. They suggest that in the temperature re-
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APPKNDIX. A: H.KI ATIVISTIC KINEMATICS

XVe consider the two-particle process A+ B ~ C+ D.
The Mandelstam variables 8, the center-of-mass energy
of A and B, and t are given by

~ = (P~+ Pa)' = (~~+ ~a)' - (P~+ Pa)',
t = (Px —Pc) = (Ex —Ec) —(Px —Pc) .

(Al)
(A2)

The Aux j of particle A considered in the rest frame of
R is

gion accessible to present experiments, nonperturbative
(string-type) correlations in the final state (asymptot-
ically, these are charmed hadrons) as described in the
present approach are crucial for the understanding of the
J/g suppression pattern. The enhanced cross section
that we obtain at the DD threshold is sufhcient to ex-
plain the J/it suppression in the NA38 experiment as
due to absorption by pions and nucleons. This is in con-
trast to previous claims that J/g suppression could only
be related to the quark-gluon plasma formation [10]. We
pointed out that an measurement comparing pA with
Ap, in inverse kinematics, could clearly distinguish be-
tween both physical pictures, the one which predicts ba-
sically no suppression and the other presented here where
a strong suppression is expected.

The formalism that we have presented in this work is
rather powerful. A straightforward extension can sim-

ply accommodate higher states, such as the charmo-
nium states (y„Q'), mesonic resonances (p, w, . . .), and
baryons (N, A). We mentioned that similar results are
expected for charmonium absorption on nucleons. Since
quite a sizable contribution to the J/Q yield stems from

y decays, also the y-m cross section shouM be calculated.
An analysis of the g' absorption cross section would be

of particular interest, since the ratio of g' to J/g yields
in pA and AB collisions is supposed to be free of initial-
state e8'ects. This ratio was measured recently by NA38
[45], and it seems to be a much clearer probe of the state
of matter than the J/Q to continuum signal.

As a further outlook, we mention also the possible ap-
plication of the present approach to the interaction of
J/Q's with deconfined quark matter; see, e.g. , [15]. For
this application the present nonrelativistic calculation of
the matrix element Mt, has to be improved by evalua-
tions within a relativistic potential model [46], where the
eKects of chiral symmetry restoration and quark decon-
finement at finite temperature can be included.
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PA PB
I'el E

S —S+ S —S

2EAEB

with

s~ = (m„+ m~)'.

v„) is the velocity of A in the rest frame of J/Q:

(A3)

H @,(p, p-)) = m~ @0 (p, p-)),
H = m +m-+ p'/2m + p'/2m-+ C, + H', (B1)

where mA is the mass of meson A. and H = H "'+
H + H" is the interaction Hamiltonian given in Eq.
(8). The constant Co does not contribute to the scat-
tering matrix elements, but is necessary for the adjust-
ment of the meson mass scale. Only H gives a spin-
dependent contribution to the meson mass. So we get,
for the mass of the 1S state,

4(mmmm~)

s —mA mB 2 (A4)

P'( )=8— s —(m~ + m~) —4m~~m~),4s

P' (8) = s —(mz i mz) —4mzmz),4s
2P'P = 2P'Pcoso

(s + m2~ —m2~) (s + m~ —mL, )
28

+t —mA —m~,2 2

E~(s)EI3(s) = s —(m& —m&)4s-

E~(s)E~(s) = —s —(mc —m~)4s

(A5)

If four identical mesons with mass m are considered,
these formulas simplify to

P =P' = —(s —4m ),4

2P'P = t —2m 2' (A7)

By inserting Eq. (Al) into (A3) one obtains the form
of Eq. (33) for j, which depends on the three-momenta
of both particles. The following relations between three-
momenta [defined by Eq. (13)j and Maiidelstam variables
are valid in the center-of-mass frame of particles A andJ.

3(m +m-. )m„= m. + m-. + + C'o
16AAm m-

i —3/2

, )I
4n, (A) (
3/~A~

ss—
i

——s~ iAM
&4

(B2)

m„(A) = (4"(A) H —H 0 "(A))

= —m~='(A) + —m~= (A)

3(m. + m-. )=m +m-+Co+
16Am. m-.

4n, (A) /' A )
2~)

(B3a)

and

(4"(A) H —Hss ir "(A)) =0 (B3b)

where SA is the total spin of the meson A. Under the as-
sumption that the orbital component of the meson wave
function is equal for diferent spin states we can eliminate
the spin-dependent term. Averaging over the spin and
isospin states, the spin-spin contribution to the Hamil-
tonian cancels and we get an averaged mass mA for 1S
states imari(A)) which depends on the wave function param-
eter A. For the ground state one has to fulfill approxi-
mately the conditions

The kinematical factor A (P, P ) of Eq. (2) is given in the
center-of-mass frame by

JV(s) = 4y E~E~E~E~
1

2 m2 m2 2 S2 m2 m2 2

(As)

for each of the quark pairings qq, qQ, Qq, and QQ with
appropriate parameters for quark masses m, and wave
function parameters A,z.

We extract a possible set of. parameters in (9) and (12)
from the meson masses of vr, g, D, D*,q„and J/g.
There is some freedom in the choice of parameters, and so
we regard physically reasonable values for quark masses,
o.„and meson radii:

APPENDIX 8: FIT OF THE MESON SPECTRUM

For an exact solution the mesonic wave functions have
to be calculated by solving the Schrodinger equation in
the rest frame (P~ ——0). We use Gaussian wave func-

tions of the form of Eq. (12) as approximating test func-

tions. Then 40 ) depends only on one parameter A,

and is denoted by 4+&). The best fit is found by using

the Ritz variational principle. The Schrodinger equation
reads

mg ——1.67 GeV,

mq ——0.33 GeV,

Agg ——0.64 GeV

A = 2.4 GeV

Ag ——1.7 GeV

x = 1.0GeV

Vp ——0.9 GeV,

C, = 0.24GeV,

ns(QQ) = 0 28,

ns(Qq) = 0.55,

ns(qq) = 1.0.

(B4)
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Table II shows a comparison of the known meson
masses with the calculated masses with model param-
eters (B4). Since some masses are uncertain, the aver-
ages are only approximately. The calculated root-mean-
squared radii of the states are given in the last column.

Coulomb (H "'), spin-spin (H ), and nonperturbative
(H"~) contribution.

We only show the calculation of the diagram ~"- of
Fig. 1. The calculation of other diagrams is analogous.

APPENDIX C: CALCULATION OF TRANSITION
MATRIX ELEMENTS

The Born matrix element M f, has to be calculated
by integrating over all internal quark variables. Here
we demonstrate this for processes with exchange of an-
tiquarks of mesons A and B. If identical quarks are in-
volved, one has to add to each diagram the correspond-
ing ones decorated with a fermion commutation opera-
tor (with negative sign; see [22]). The interaction can
be written as the sum of individual interactions between
the quarks a, a, b, and 6, each of them consisting of

I

1. Orbital factor of the matrix element

First we consider the orbital factor of Eq. (15) for the
nonperturbative contribution,

I"',(P, p') = (C "C H",' e,C, , ). (C1)

In the center-of-mass frame the mesons A, B, C, and D
are moving with three-momenta P, —P, P', and —P'.
From momentum conservation follows p + pb

——p +
p-„p- = p&, and pb ——pg. Using these relations one can
substitute six of the eight quark variables and has to sum
up over the two remaining p and p:

b(p) P ) = ) (@pIpa pa)(@-plpb pb)(pa pb H pc pc)(pa pb~p~ pc)(pc pcl@p') (pd pdI@v')
Pa ~Pa ~

Pg~Pg

) C [pa (1 'nA)P]@ (pa P nBP)H (pa pc)C [pc (1 nc)P ]@ (pa P nDP ).
Pa)Pc

(C2)

The sums over p and p are replaced by integrals according to

In our model we use Gaussian wave functions and a Gaussian shape of the potential. In this case an analytical
expression for the orbital overlap matrix element in the (lS) + (1S) —+ (1S) + (1S) process can be obtained,

IC b(P P z): (CP4 P H
b CP C P )

s/2
64V0

~ ~
(AAABAcAD) d pa d pc( 7r P

x exp ( 2 (AA[Pa (1 nA)p] + AB(Pa P nBP) + +(Pa Pc) ) )
x exp ( —2 (Ac[p, —(1 —nc)P'] + AD(p —P —nDP')') )

(C5)

For the general case we give only the constant o."-,ab'

a
b

= 2 (AAAB(nA + nB —1) + AAAc(1 —nA) + AAAD(nA)

+ABAc /B + ABAD(1 nB) + AcAD) (AA + AB + Ac + AD) (C6)

with 1/A'c = 1/Ac + 1/x. The other constants have similar forms.
In the special case of the quark rearrangernent reaction (22c) in Sec. III we have, as a result of flavor conservation,

m~ =m~ =mc =m& ——mq,
mb ——mb ——m-, = mg ——mg. (C7)

We introduce the notation g = . The outgoing D mesons have the same radii,mg+mq

(cs)
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Then the parameters of the capture diagram In — simplify to
O, ab

ab

pnp
ab

np
~ah

~np
ab

—(A(pg + Aqq) (Ab + Agq) + AgqA'~ ),
((Ag~+ A~ ) Appal + Aq~(I —)I) + AggAq~),

[Aqgg —A~~(l —)I)] (Agq —A~ ),
ab

Agg+Aqq+ A@ +Agq,

PS2~A~, q
~

3/4 np(A~~A-)' ' = &-."b.
A

(C9)

(C10)

(C11)

Although the terms M"p for the transfer diagrams are zero in our model because no qq interaction should occur,
we calculate them in a analogous way in order to use this result for the estimate of I& " and I& when we rewrite
them in terms of Gaussian potentials:

I~P b(P, P', z) = (@PC ~ H"b Cg, C' ~ )
= —C"b exp — o."~P + " P' + p" PP'z (C12)

where, in the considered process,

pDP

2 —Agg(Agq + Aq~ + 2x) + —A~q(Agg + Agq + 2x) + Ag xab ~ 4 qq q 4

rI Agg (A~~ + Ag~ + 2x) + (1 —q) A~~(Agg + A~g + 2x) + A~~Aq~x/A~
ab

l&A~~(A-+ A~. ) + (1 —~)A..(Age + Agg)],A b

A-b = (A~~+ A~. + &)(Am+ A~. + *) —~' /Ag,
g s/2

(C13)

(c14)

(C15)

P' is determined by P from energy conservation. The matrix element can be rewritten in kinematical variables 8 and
t; see Appendix A. The orbital factors for the remaining diagrams I& b and I" — are obtained by replacing z by —z
in (C5) and (C12) because the orbital wave functions of rnesons C and D are identical.

2. Spin factor

The spin wave functions for spin singlets and spin triplets are given by Clebsch-Gordan coeKcients

ys"' ") = ) (s, s', s-, s'- ~S~, Sz) ~s, s', s-, s'-),
S~ )S~

is "' = is' = (XsXs Xs Xs )

) &A( a~ a)XB( b b)~a, a~ d~bd~b-, 1-&c( a a)&D( d d)

(C16)

(C17)

The diferent values of this factor are summarized in Ta-
ble I. The spins of initial mesons and the sum of them
are in the head of the table and of the reaction products
in the first column. The spin factor in the potential in-
teraction term of the transition matrix element between
these states can be read from this table. For the I&
term one has to replace 1 by s, s~. The factors for M b

and M —
b diagrams are not shown in the table. They are

obtained in a similar way; see [21].

3. Flavor-color factor
The color wave function for mesons is

3
A g ~(c)

XC ~ ) a a~

C~ )C(z:i
(cls)

and the Bavor and color give only a combinatoric factor
in the Born matrix element. Prom the color component
we get an overall factor of 1/3 for M"P and M Pb This-.
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accounts for the fact that only a third of all quark pairs,
those of identical color, are able to produce a color singlet
in the quark exchange process. The light quark flavors
u, d are assumed to be degenerate,

&p / A B C DIFc —ygFcyFc yFcyFc)
= ).~~a(a a)~~c(l ~)

a, a, b,
. . .)d)Z

x8' ' '8'
d,

'bbd. '8z '&g&(cc)&wc, (dd). (C19)

the ${» have to be replaced by
8~)")A/2 and one obtains —4/9 (4/9) for M &

and M-g
(M ~ and JM-&). This is what is expected from color
counting. Prom the Kronecker deltas follow that only
the quark line diagrams shown in Fig. 1 give nonzero
contributions to the matrix. elements. All other possi-
ble diagrams are forbidden in our case of four diferent
quarks since they do not have the proper Oavor content
of the Anal states.
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