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An exactly solvable model is used to investigate the assumptions behind color transparency.

PACS number(s): 24.85.+p, 24.10.Eq

I. INTRODUCTION

Color transparency (CT) is the anomalously high
transparency of the nucleus to nucleons in quasielas-
tic high-momentum transfer nuclear processes, measured
with resolution good enough to ensure that no "extra"
pions are produced. This means that the absorptive nu-
clear optical potential representing initial and final state
interactions plays no role in such reactions. Color trans-
parency is under active investigation with experiments
performed at BNL [1], SLAC [2], and ongoing work at
BNL [3] and experiments proposed at CEBAF. Further
references can be found in the review Ref. [4].

The existence of color transparency depends upon
three assumptions [5,6]:

(i) A small wave packet is formed in a high-momentum
transfer reaction. This wave packet is sometimes dubbed
a pointlike configuration (PLC).

(ii) The interactions between a small color neutral wave
packet and the nucleus are suppressed.

(iii) The wave packet escapes the nucleus before ex-
panding. The expansion time w is typically stated as
7 7'pP/M where Tp is a time in the rest frame (ex-
pected to be about 1 fm) needed for a small system to
expand and P/M is a time dilation factor. For large
enough momentum, P, v is large.

Each of these assumptions can be questioned. Indeed,
the question of whether or not a small wave packet is
formed depends crucially on the properties of the ground
state wave function, hence on poorly understood features
of nonperturbative quantum chromodynarnics QCD [7,8].
The reduction of the final state interaction is often ex-
plained as due to the cancellation of gluon emission am-
plitudes that occurs when a color singlet system consists
of closely separated quarks and gluons. The legality of
adding amplitudes (before squaring) requires a coherent
reaction, so that the cancellation is limited to a select
class of reactions. An additional issue is the value of the
factor M in the time dilation; why could. n't it be as large
as P? Another way to phrase this question is that the
expansion of the PLC can be slow only if highly excited
intermediate states are not important [9,10].

The purpose of this paper is to use a simple model with
realistic features to investigate the meaning and limita-
tions of each of the three basic assumptions. The model
is defined and described in Sec. II. Each "nucleon" is
the ground state of an electrically neutral systems of two

quarks interacting via the Coulomb potential. The wave
functions for this potential cannot be computed using
perturbation theory, but can be computed exactly. In
this sense the above force provides an example of a non-
perturbative, yet solvable interaction. The two quarks
have difFerent masses, with the ratio of the heavier to
the lighter being 2. The nucleus is a collection of such
nucleons. This model is relevant to color transparency
physics because of the analogy between the electric neu-
trality of quantum electrodynamics QED and the color
neutrality of QCD. Within this model, it is straightfor-
ward to construct (Sec. III) the wavepacket formed in
a high-momentum transfer reaction. We take the hard
interaction as simply adding momentum to the heavy
quark. This wave packet evolves as it moves through
the surrounding nucleus. This evolution is governed by
the internal Coulomb force between the heavy and light
quarks and also the final state Coulomb interaction with
the surrounding nucleons. This interaction is computed,
and the dependence on the transverse separation between
the heavy and light quarks is presented in Sec. IV. The
process we consider in this paper is meant to be analo-
gous to the (e, e'p) scattering, one of the candidate re-
actions for the observation of CT. In the (e, e'p) reac-
tion hard and soft interactions are of difFerent nature-
the first one is electromagnetic; the second one is strong.
The smallness of the soft interaction is a consequence of
the color neutrality of the proton, which also has electric
charge. In our model the soft interaction is of electro-
magnetic nature, and our nucleon is electrically neutral.
The high-momentum transfer interaction has a distinct
charge associated with it (only one of the quarks has
this charge). The numerical results of the calculations
are given in Sec. V. We find that a transparency phe-
nomenon is obtained. for the model under consideration.
A small size object is initially formed in a high momen-
tum transfer process, and the expansion rate of this ob-
ject is inversely proportional to the momentum transfer
Q. The origin of this slow expansion rate is investigated
in Sec. VI. A brief summary is presented in Sec. VII.

II. THE MODEL

We consider a nonrelativistic, electrically neutral sys-
tem of two quarks interacting with the Coulomb poten-
tial. The strength of the the electromagnetic interaction
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The rest mass M~ includes the binding energy e~ as well
as the quark masses

M~ ——4.5 + e~o. . (2)

The energy eigenvalues are

s„= -1/2n

for the discrete part of the spectrum and

zg = k /2 (4)

for the continuous part of the spectrum.

III. EXPANDING %AVE PACKET

A wave packet, possibly a pointlike configuration, is
created when a photon of momentum Q is absorbed by
the heavy quark of the nucleon in the ground state Il).
Thus we write

IPLC) =—e" "Il),
where spin is ignored, 3r is the position operator for
the heavy quark relative to the center of mass. Thus
Eq. (5) defines our model of the hard high-momentum
transfer reaction. The transferred momentum is defined
as q = Qz, which specifies the direction of the z axis.

The use of completeness allows us to express this wave
packet in terms of the elastic E(Q2) and inelastic fx(Q )
form factors

IPL&) = +(Q')I»+). I

d&
I
&x(Q')IX)

)
(6)

(
+(Q') = f ~' @i( ) r ~ -" ~@ (")

is given by the fine structure constant o.; o. determines
the ratio of the binding energy of the system to the mass
of its constituents. In Nature o. = 1/137, but within the
present model o. can be varied and need not be small.
Thus the interaction we use is intended to represent the
strong color force.

The form of the bound state and continuum wave func-
tions are well known, and are not presented here. It is
worthwhile to discuss the system of units that we use.
Coulomb units with h = 1, e = 1, and the mass of the
light quark m~ = 1.5 (to set the reduced mass m„g to 1)
are the natural choice for this problem. With this choice
the size of the system in the ground state, the Bohr ra-
dius r~, is the unit of length, and twice the ground state
energy is the unit of energy. Note that in the Coulomb
units it is the speed of light c = 1/n that sets the energy
scale. In this paper 1/n will be used instead of c. A
relativistic dispersion relation is used for the energy E~
of the state IX) with momentum Px

&x = Mx/&'+ Px/&'.

~

~fx(Q ) = d ri/)i(r) exp iq r —i/)x(r),
3 )

(z) = (1I~G(z) IPLc)

to first order in y where G(Z) is the Green's propagator
of a PLC a distance Z (along the q direction) through
the medium. Color transparency occurs if this term is
small compared to the Born amplitude E(Q ). Note that
we use lower case letters (b, z) to denote transverse and
longitudinal quark-antiquark separations and upper case
letters (B,Z) to denote the displacement of the center
of the wave packet from the center of the nucleus. An
evaluation of the matrix element of Eq. (9) requires an
integration over d~r, but not over the coordinates (B,Z).
(The B dependence of Mi is suppressed for simplicity. )

In the standard Glauber treatment of final state in-
teractions [ll] an optical potential approximation is of-
ten used. The potential is proportional to the forward
scattering amplitude, hence to the total nucleon-nucleon
cross section o. This cross section determines the rate
of the exponential decay of the scattering nucleon wave
function. In the present case the b dependence of IPLC)
varies with Z, because the Green's function G includes
the eKects of the heavy quark light quark Hamiltonian.
Thus the PLC forward scattering amplitude varies with
Z. In particular, if the initial state of Eq. (6) corresponds
to one of very small transverse size, the PLC expands as
Z increases. We shall assume that the eikonal approx-
imation is valid. In that case, each of the states from
the complete set of states defined above in (6), acquires
a phase expiP~Z as it propagates a distance Z.

It is useful to define an effective cross section, O,ir(Z),
with

~.~(Z) =—~i/&(Q'). (10)

where @x(r) are the Coulomb eigenfunctions (subscript
1 for the ground state). The summation (integration) is
over the complete set of the Coulomb eigenstates, X:—nl
for the discrete states and X—:kl for the continuum
states.

If there were no final state interaction (FSI) of the
hadronic wave packet with the nucleus, the amplitude
of detecting the nucleon in the ground state would be
equal to the form factor E(Q ). Color transparency is
concerned with situations in which experimental kine-
matics constrain the final state interactions to be soft, of
low-momentum transfer. We shall model these soft inter-
actions by treating the nuclear medium here as a set of
neutral nucleons, (Sec. IV). Then the soft interactions are
approximately proportional to the product of the wave-
packet-nucleon forward scattering amplitude, with the
density of nucleons. In the impulse approximation, the
interaction is expressed in terms of a matrix element of
an operator y(b). The main feature of this operator is its
dependence on b, the transverse separation of the quarks
(b . z = 0). In particular, y(b = 0) = 0. We shall discuss
a specific model for y in Sec. IV below.

With this notation, the scattering amplitude Mi is
given by
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The term efI'ective cross section replaces the more appro-
priate terminology imaginary part of the forward scat-
tering amplitude to correspond with notations of previ-
ous papers. The real part of the forward scattering ampli-
tude plays little role in color transparency physics. The
quantity o,ff(Z) depends on the overlap of y(b) with the
quark-antiquark wave function, and is therefore a mea-
sure of how the size of the wave packet varies with Z [10].
Some standard manipulations then lead to the result:

a ff(Z) = o+ ) ) " " expi(P„—P)Z
)=0,2 n=2

P)Z spoil the cancellation of difFerent terms in the sum
(ll). As a result a,ff grows as Z increases from 0. This
indicates that an expanding PLC generally experiences
final state interactions. If the PLC leaves the nucleus
without significant expansion then the final state inter-
actions are suppressed. How fast a particular term goes
out of phase and upsets the caricellation depends on its
momentum Px

Px = P2 —AM2/n2,

+)
L=0,2

dk expi(Py —P)Zxk~fki(Q')
2

n —1 2n +1(
AM„o. = 4.5 —o,

n2 ( 4n2 )
for the discrete spectrum and

This result is similar to the one of Jennings and Miller
[12]. In that work the matrix elements yx. and the in-
elastic form factors f~ were taken from available data,
and the color transparency condition a ff(Z = 0) = 0 was
imposed. In the present work we use a specific model to
evaluate those terms and can determine whether or not
the color transparency condition is satisfied.

To proceed, we further specify our notation. The first
term of Eq. (11) is the total cross section for the nucleon
ground state to interact with a target nucleon. This is

a = (11~11)

The matrix elements yx are

xx = (ili~).
The orbital angular momentum of the states A are lim-
ited to even values by the requirements of parity con-
servation. We restrict the sum to values of l = 0, 2 to
anticipate a specific form: y(b) oc b

The momentum Px of the excited state lX) is given
by the energy conservation relation imposed by the wave
equation:

Px + M/xn= P + M, /n, P = Q. (14)

2"(')= Q,./. +i
This is significant; it says that the efI'ective size b

1/Q for large Q2. This is a property of the ground state
Coulomb wave function [7,8]. PLC formation is allowed
in this model.

For nonzero values of Z the phase factors exp i(Px—

An important quantity is o,ff(Z = 0), which measures
the size of the initially formed PLC. This must be small
fol o ff (Z) to be small. Note that if ff(aZ = 0) is to
be small, cancellations in Eq. (11) have to render a,ff(0)
fall off rapidly with Q for Q )) 1. We shall work with a
simple form of the soft interaction y(b) = ob/(lib ll);.
see the next section. This forra allows the evaluation of
o ff (Z = 0) with the result

aM„'/n' = (k'+ i) [4.5+ n'/4(1 ' —i)]

for the continuous spectrum.
Suppose that a limit P ~ oo can be taken, such that

all relevant Px ~ P. In that case, the Z dependence
of o,g disappears, and the PLC does not expand. For
the discrete states P„)) AM /n is true for P as low
as 3/r~ The situatio. n is difFerent for the continu-
ous states, since their energy is not bound from above.
The value of P large enough to ensure a slow rate of the
PLC expansion depends on the structure of the matrix
elements yA, 1 and form factors fi,~. This goes back to the
idea of Ref. [9], that CT can be observed only for mo-
menta transfer greater than the energy of all important
intermediate excited states. We shall use specific calcu-
lations within our model to investigate these issues. The
use of equations like Eq. (11) in eikonal expressions for
PLC wave functions is discussed in Ref. [13].

There is another concern about the contribution of the
higher excited states. The eikonal approximation used to
derive the phase factors expi (Px —P)Z breaks down if
Px —+ 0. Therefore any evidence, that the contribution
into the sum (11) of the states with Px « 1 is important,
invalidates the approach developed above.

We shall also investigate the dependence on o.. The
physical range of o. is from 0 to 3. The value o. = 0 cor-
responds to the nonrelativistic limit in which the speed
of light (1/n) is infinite with

PxEx = ~x+
2mre

The upper limit o; = 3 corresponds to Mj ——0; recall
Eq. (2). A further increase in n would yield a negative
rest mass of ground state nucleon.

IV. THE %AVE PACKET NUCLEON
INTERACTION

We are concerned here with deriving the interaction
y, which has been defined above as the forward scatter-
ing amplitude between two quarks (with a mass ratio of
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two) of transverse separation b and a nucleon target. We
are using a nonrelativistic Coulomb bound state for the
ground state dynamics of the heavy and light quarks, so
we also take the nucleon targets to be the ground state
of the same system.

The expression for the projectile-nuclear forward scat-
tering amplitude is [11]

f(0 = O, b) =— d2B y
—iy(B,b, B b) (20)

where the integration is over the area of the nuclear target
and k is the momentum of the wave packet. The phase
shift function y(B, b, B b) is .given by the integral over dZ
of the sum of the light and heavy quark Coulomb poten-
tials. One usually sees expressions in which the integral
over b times appropriate wave functions is performed.
Here we are dealing with a wave packet that is a coher-
ent sum of physical states, so it is convenient to study f
Straightforward manipulations lead to the result

herence, and the consequent "small interactions at small
separations" is lost if one is computing the cross section
for an inclusive process in which one sums over all final
states of the ejected wave packet.

We first assess Eq. (20) by expanding the exponent
in powers of y. If the usual fine structure constant
is used, the leading term will dominate. There is no
term of 0th order in y(B, b, B . b). The first-order
term f d2B g(B, b, B b) vanishes for all values of b be-
cause the integration over d B sets q~ to 0. However,

J d B y (B,b, B b) does not vanish. Keeping this term
leads to the result

The zeroth-order cylindrical Bessel function has small ar-
gument limit

y(B, b, B b) =
—in4vr d2q~ p(qg)

v (2n) 2
q~~

~ 2 ~ ~

ei 3q~. b e i 3q~ b (21)

lim Jp(x) = 1 —z /4,amo

so that one immediately finds

f(0 = O, b) ib . (26)
where v is the speed of the wave packet and p(q~) is the
Fourier transform of the nucleonic charge density, p(r):

(22)

This term is purely imaginary, so that its influence is to
damp exponentially scattering wave functions.

We next turn to a complete evaluation of Eq. (20).
The integration can be simplified by replacing B by a
shifted value B —sb so that Eq. (21) becomes

In particular

P(qi) =
y + qi"a

1

qg Tg
(23)

y(B, b, B.b) =
—xct47c d qi p(qi) e'q

v (27r) ' q~2

bX ei2qJ b e
—i2qi (27)

p(qi =0) =0, (24)

which is vital in obtaining the result that y(B, b, B . b)
vanishes at b = 0. This is because the integral over d q~
is convergent only because of Eq. (24). Note also that
p(q~)/q&2 is proportional to the Fourier transform of the
Coulomb potential.

We stress that expression (21) is obtained by sum-
ming coherently the Coulomb interactions of both the
heavy and light quarks with target nucleons. This co-

where the first (second) term the Fourier transform of the
charge density of the light (heavy) quark. The neutrality
condition is

This expression can be obtained for any ratio of quark
masses by using difI'erent shifts of B. An examination of
Eq. (27) shows that y(B, b, B . b) is an odd function of
B b:—cos(P). The real part of f (8 = 0, b) is propor-
tional to the integral of sin[y(B, b, B.b)] over P between 0
and 2' and therefore vanishes. Thus, we have a general
theorem that the forward scattering amplitude for the
scattering of two neutral systems (made of two particles)
that interact via Coulomb forces is purely imaginary.

We now evaluate the imaginary part of f(8 = 0, b)
A closed form expression for the function y(B, b, B b)
can be obtained by performing the integral over d q~ in
Eq. (27). The result is

y(B b B b) = 2n/v(Kp(3+2) —Kp(6@2) + Kp(6+1) —Kp(3+1)
+ 2 [3x2K1 (3x2) 6x2K1 (6x2) + 6xlKl (6xl) 3xlK1 (3xl)])) (28)

where +1
I
B+ 2b I /rii t +2

I
B——,'b

I /PI3 and K ai'e
modified Bessel functions. This expression can be used to
evaluate the imaginary part of f The results are .shown
in Fig. 1.

We see that one finds a b behavior for small values of
b, and in that regime the amplitude is proportional to o.2.
This indicates that perturbation theory is valid at small
b, even though the coupling constant o. can be large.
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FIG. 1. Imaginary part of the forward scattering amplitude

f for three different values of n/v.
F1G. &. PLC expansion for four different moments Q.

Cl=2.

Our purpose in this paper is to focus on the properties
of wave packets of small transverse size. In particular,
Eq. (15) shows that for large enough Q, the effective value
of b 1/Q, which is small. Thus we use a simplified
version of the interaction

n increases; recall Eqs. (16). This is discussed below in
more detail.

To describe quantitatively the expansion let's intro-
duce an expansion distance Z, p de6.ned as follows

y(b) = f(0 = 0) = ob /(b ), (29) o-,s(Z,„p) = o-. (30)

where (b ) represents the ground state expectation value
of the operator 6 .

The calculations of the present section are a Coulomb
version of the calculations of Refs. [16—18] which used two
gluon exchange. Those references also found a 6 behav-
ior for projectiles of small transverse size. The origin is
color neutrality, which we have modeled here as electrical
neutrality. We have made nonperturbative calculations
of all orders in n which we have taken as large as three.

V. CALCULATION

Expression (11) for o,tr(Z) is evaluated numerically.
The matrix elements b& and form factors fx(Q ) are
calculated for 600 discrete states and a [0, 10] range of
the continuous variable k. This is shown to be sufBcient
to reproduce the analytic result, Eq. (15), for momen-
tum transfer Qr~ of up to 20. These calculations are
performed for P = Q which corresponds to the quasielas-
tic kinematics of Ref. [2]. The results for the real part
of o,s(Z) for several values of the momentum transfer
Q and n = 2 are shown in Fig. 2. The nucleon ex-
pands more slowly (is large for a larger value of Z) for
higher values of the momentum transfer. There is an ini-
tial drop, which is analyzed below and due primarily to
the contribution of the states with / = 2. After the initial
drop for a wid. e range of Z the efFective cross section Z,
which is consistent with the "linear expansion" model of
Refs. [14,15] and also the results of [12].

The Z dependence for a given value of Qr~ = 6 and
three values of n = 1/137, 2, 3, is presented in Fig. 3.
The figure shows that the nucleon expansion distance
grows with o.. This is because P~ moves closer to P as
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10 12.5

FIG. 3. PLC expansion for three values of n. Q = 6.

The expansion distance Z,„& is shown as a function of
the momentum transfer Q in Fig. 4. We see that Z,„~ is
linear with Q; the value of n determines the slope.

We calculate o,tr(Z) for a reduced range of the con-
tinuous variable k C [0, k „] to investigate further the
importance of the higher excited states. If k is such
that P(k „) = k „vQ then the reduced o,~(Z)
is almost identical to the full one. This result is impor-
tant to support the validity of the eikonal approxima-
tion. The o,p(Z) for k „=1 is shown in Fig. 5. Even
though on the initial stage the expansion picture is difFer-
ent, for most of the range it reproduces the expansion of
the "full" PLC well, and the expansion distance is nearly
the same as for the full PLC.
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VI. DISCUSSION

AMx/o.&x= + + 0 ~ ~

2
(31)

A conclusion can be made that a transparency phe-
nom. enon is obtained for the model under considera-
tion. A small size object is initially formed in a high-
momentum transfer process, and the expansion rate of
this object is inversely proportional to the momentum
transfer Q. While the first result has been known for
this model for some time [7,8], the second result is a new
consequence for this model. This @ED-based model is
therefore in contrast with the works [19] in which the
rate of expansion was assumed to be slow. We shall take
a closer look at what causes such a decrease (favorable for
color transparency) in the expansion rate. As was men-
tioned above, PLC expansion depends on the momenta
of the intermediate states Px. For AMx/o. (( Q (16)
can be expanded as

Thus the values of AMx, recall Eq. (16), that correspond
to the intermediate states X which make important con-
tributions to the sums in Eq. (11), deterinine the ex-
pansion rate. These states have a discrete or continuum
nature. But the energies of the exited discrete states are
bounded from above and their contributions to o.,@(Z);
b

&
and f ~(Q ) decay rapidly and monotonically with

the number n. Thus it is more relevant to examine the
contributions of the continuum states, which in principle
can have very high energies.

The form factors for the continuum fl, t(Q ) display
a peaking behavior, which occurs when the momentum
transfer Q matches the relative momentum denoted by
the quantum number A:. See Fig. 6 which shows also that
the energy of the states produced in a high-momentum
transfer process grows linearly with Q. If these states
had appreciable matrix elements 6&& for the soft interac-
tion, the expansion would be very rapid. However, b&&

decays rapidly with k (Fig. 7). The b&2 and fi,2 matrix
elements exhibit similar behavior. As a result, bI, & fI,i(Q )
have maxima that experience only a slight increase with
Q (Fig. 8). So we see that in this model high excited
states are formed for high-momentum transfer, but the
soft interaction cuts them oK

The k dependence of bI2& fi, ~ determines the expansion
of the PLC. We have seen in Figs. 3 and 5 that there
is an initial drop for small values of Z. We argue that
this drop is caused by the contribution of the states with
I = 2. To see this we expand Eq. (11) for small Z:

Re[0.,6(Z)] = o + ) dk
0 2

Z&.
+(Q')

-Z ) "dk'"'f"'(Q'R. (~, P) .
+(Q')

(32)
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t
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1 I I I
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1 I

Here we omit, for simplicity, the contribution of the dis-
crete states; A:zh„ is defined by PI„„——0. The calcu-
lations show that b&~pfj, p ( 0, whereas b&~2fA,, 2 ) 0. In
the first integral in (32) the states with t = 0 dominate,
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FIG. 5. o,s(Z) for the "full" PLC and a "reduced" PLC.
Full PLC is constructed out of 600 discrete states and [0,10]
range of the continuous spectrum. Reduced PLC is con-
structed out of 600 discrete states and [0,1] range of the con-
tinuous spectrum. o. = 2, Q = 6.
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FIG. 6. Inelastic form factors fA,.O(Q ) for ten values of Q.
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