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Analytical treatment of heavy-ion elastic scattering at intermediate energies
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The elastic scattering of heavy ions at energies where the eikonal approximation is valid is
discussed in detail. The nuclear phase shift and deHection functions for a complex Woods-Saxon
interaction are evaluated in closed form. The resulting functions represent extremely well the nu-

merically generated ones, even in cases involving the scattering of loosely bound nuclei. The elastic
amplitude is evaluated in closed form, and found to be a reasonable approximation to the optical
model one. Applications to the scattering of Li and C are made.

PACS number(s): 25.70.Bc, 24.10.—i

I. INTRODUCTION

Recently, guided by the suggestion of Satchler, McVoy,
and Hussein [1], the scattering of neutron-rich nuclei,
such as Li, on light targets ( C, Si) have been mea-
sured [2,3], and theoretical analyses have been performed
[3—5]. Conflicting conclusions have been reached con-
cerning the degree of possible enhancement of refrac-
tion in the scattering of these "halo" nuclei [3—5]. In
fact recently, Hussein and Satchler [5] have made a de-
tailed analysis of the data of Kolata et al. [2] on the sys-
tems «C+ C and Li+ C which combined an optical-
model calculation with semiclassical arguments, and have
reached the conclusion that contrary to what has been
claimed [4], the Li+~ C system is less refractive than
"C+"C [6].

It was essential in the analysis of Ref. [5] the use of
analytical, albeit approximate expressions for the phys-
ical quantities that enter in the semiclassical theory of
scattering at intermediate energies: the complex eikonal
phase shift and de8ection function, and that determine
the general characteristics of the far-side amplitude that
dominate the scattering at the energies and angles in-
volved. To obtain these expressions, they relied on the
treatment of Knoll and Schaeffer [7] and Pato and Hus-
sein [8] which involves the use of the approximation,

R « 1, where a is the diffuseness and B the radius of
the optical potential.

It is clear that such an approximation is not generally
valid for "halo" nuclei, where the excess neutrons extend
far beyond the nucleus core. It is the purpose of this
paper to develop a semianalytical semiclassical, theory of

heavy-ion scattering valid even when R 1. We apply
the theory to the scattering of Li on C at 660 MeV.

II. ANALYTICAL FORMULAS

We start with the usual expression for the far-side am-
plitude in situations involving a nuclear rainbow (two
stationary phase points)

6, db,
sin 0 d0

8

x exp (i 2b(kb, ) + kb. 0 —4vr ) .

V (b„z) dz

while the corresponding deflection function ON ——
e

1s

1
ON = —— dV (b„z)

db,

The above expression is valid at angles less negative
than the nuclear rainbow angle, 6, is the stationary im-
pact parameter related to the stationary angular moment

through t, + 2
——kb, k is the wave number k =

p is the reduced mass, and E, is the center-of-mass
energy. Finally b (kb, ) is the total phase shift, which is
nuclear dominated at intermediate energies. The nuclear
part of b, bN, is related to the complex optical potential,
in the eikonal limit via
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Knoll and SchaeKer determine from Eq. (3) a complex
value of 6, by requiring

(4)
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k
8 (kb, ) = — -(Vo + iWo) +2aB g (x, y),2E

g(x, y) = (1+xy) ' dv

(1+exp —+x

wherex= ', y= R.
They further set y = 0, to obtain

g(x, 0) = dv

1+ exp (vz + x)
(6)

This function, called g(x) by K-S has the following
limiting form valid for the near amplitude

The solution of (4), when inserted in (2) and (1), deter-
mines completely the amplitude. For the usual Woods-
Saxon form of U, an analytical solution of (4) is not possi-
ble. Knoll and Schaeffer [7] used V = —(Vo+ iWo) f (ti, z)
with f (b, z) = 1+ exp (' ), r = gbz+ zz. They
then write for 8 (kb, ) the following:

1
g(x, 0) —7r & e, x )) 1. (7)

The other limiting form obtained by Pato and Hussein
[8] which is valid near the outer b, in the far amplitude
1S

1
~u(x) =

„—,

oo pd

1 + exp(e —x)
(9)

These functions extensively studied by Dingle have
well-defined properties. The K-S function, g(x, 0) is just

i (—x). Expanding now g(x, y) in y and keeping
first order we can write for the nuclear phase shift

1 -lx
g(x, 0) —sinh

2 2

These limits were employed by several authors in the
semiclassical analysis of the elastic scattering data. It
is important to relax the condition R « 1, in order to
extend the theory for the scattering of exotic nuclei. For
this purpose we would like to mention that g(x, 0) is one
particular function of a set of functions introduced by
Dingle [9], and defined by

sr aB (x 3
bm = —(Vo+ iWo)

2 2
& i(—x)+y

~

—& i(—x)+ —~i(—x)
~2 ' 8 (10)

from the property T' = Wz i we can write an expression for O~

1 srB 3y (x 1H~ = ——(Vo+ iWo)
2 2

&;(-*)+—&;(-*)+y
I
-&;(- )+-&;(- ) I2 2 2 2

(1 — ') ("-.)" 7r
—li+) = ) q„,

7=O

(12)

where the first two terms in the series are

Analytical expressions can be generated by using the
following relations derived by Dingle [9] using stationary-
point methods

p
x + 2 arctan v

(17)

e+ exp(e —x)de
[1+exp(e —x)]

which satisfies the recurrence relation

These relations are valid for p ) 0. For smaller values
of p, i.e. , for T functions of order less than —1 we need
a generalization of them. To do this we introduce the
functions

Qo ——1 and Qz —— s (5Es —3EzE4) = (1 —n) I" + nI~(, ).

with 1,(
&)

, ( 4l
Es ———— 1 —v. 1—

(p)'~ '

(14)

It is easy to derive, using the relation above and the
recurrence relation of the T functions, the relations

p)+ II I!W„&———I,"+ 2I," (20)

The asymptotic approximations of the I functions are
given by

8 ')
E4= —— 1 —4r +3&

~

1—
4 & (p)'y

(i6) (21)

and 7 is the root of the transcendental equation and
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p i' (1 —~) (n —1+ ~)
'

2vrI" x 21'I'
T ~Cl!

(22)

p3
2b(A) —Ao = —+ x(0)p, + A,

3

where from the two stationary points Az and A2 we derive

where Qo and Q2 are given by Eqs. (13) and

(n —1+T) (1 —r)
F2 = +

Ck p

(n —1 + ~)(1 —r) 2~3
F3 = ( n—+ 2 —2~)—

0! p2' (24)

2

3 3

x(0) = —.[2b (Ai) —Ai9 —2b (A2) + %28]
4i

3.0

(28)

(n —1+ 7.) (1 —7)
F4 —— [n' + 6 (n —1 + ~) (~ —1)] 2.5—

~ ~ ~ ~ ~

(a) y =1/1C)

6~4
+

p
(25) 2.0

1.5
The relations (20) together with the above approxima-
tions extend the asymptotic calculation of the Fermi-
Dirac functions, as they are also known, to any negative
order.

In the next section we present numerical results to test
the goodness of our approximate formulas above. To be
specific, we consider recently studied systems C+ C
and Li+ C, where the comparison is made between
the scattering of a halo L with a normal nucleus C.
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III. NUMERICAL RESULTS
1.5— (b) y= 1/3

In this section we calculate the elastic scattering dif-
ferential cross section for the systems C+ C and
iil, i+i2C, recently measured by Kolata et al. [2]. We
start showing, in Fig. 1, that the inclusion of a linear
term in y gives a very good agreement to the exact func-
tion g(x, y) which is, apart from a constant factor, the
nuclear phase shift, even for diffusivities as large as one
half of the radius. Next we compare the nuclear phase
shift and the deBection function, in Figs. 2 and 3, for the
the two systems considered. Finally, we generate from
our formulas the total elastic optical-model cross-section
and calculate the far-side cross section for iiLi (Fig. 4)
and for iiC (Fig. 5). The calculations were done using
the optical potentials of [5].

We turn our attention to the cross section. We consider
angles at which the far-side amplitude is dominant. To
calculate the cross section we have to modify Eq. (1) in
order to take into account the fact that we are in the pres-
ence of a rainbow. So, we have to use the uniform semi-
classical approximation [10]. The results are in Figs. 4
and 5.

The reason for the difference between the semiclassical
approximation shown in the figures is in the inclusion of
higher-order terms of the uniform approximation. We
recall that this approximation is obtained introducing in
the integral

g 1.0

0.5

0.0
-3 -2 2 3 4 5

1.5

(c) y =1/2
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IF,(0) = dA~ S (A) ~A 2 exp i (2b —M) (26)

the mapping of the phase 2b —Ao on to the cubic function,

FIG. 1. The function g(x, y) proportional to the nuclear
phase shift calculated exactly (solid line), zero order (dashed
line) and up to first order, (dotted line), for three values of
y = n.'(a) y = 0.1, (b) y = s, and (c) y = 0.5.
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FIG. 2. The nuclear phase shift as a function of the angular
momentum for Li (solid line) and C (dashed-dotted) line.

FIG. 5. The same as in Fig. 4 for the system Li+ C.

28(Ai) —AiO+ 2h(A2) —A20

2
(29)

0—
that leads to

IF,(0) = exp(iA)
dA ~ . t'p'

dp, —iS(A) iA2 expi
i

—+ xp,
i

.
8p )

(30)

Expanding the function iS (A) iA2 &
as
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FIG. 3. The same as in Fig. 2 for the deHection function.

iS(A) iA2 —= ) (p + pq ) (p'+ x)
d jLL

and keeping up to second-order terms we find

IF,(0) = 2m exp(iA) [(po + iqi —2iq2x)

x Ai(x) —i(qo + 2ip2) Ai'(x)],

10

10

10Io

~ 10

11 12

where Ai(x) is the Airy function and we have used the
relation Ai" = xAi to obtain the above equation. The
usual uniform approximation consists in neglecting qi,
p2, and q2 in the above expression. The efFect of the
inclusion of these higher-order terms can be seen in Figs.
4 and 5. It is clear that in the present problem they have
an important role.

IV. CONCLUSIONS
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FIG. 4. The elastic cross section (solid line) of the system
C+ C compared with the semiclassical far-side component

calculated with the standard uniform approximation (dashed
line) including first-order corrections (dotted line) and sec-
ond-order terms (dashed-dotted line).

We have demonstrated in this paper that once the
phase shifts and defIection functions are accurately calcu-
lated using, e.g. , the method based on Dingle's functions
developed in Sec. II, then the appropriate semiclassi-
cal calculation reproduces very well the optical model
results, even in cases of loosely bounds nuclei. Our ana-
lytical formulas are quite good in describing the "data, "
represented here by the fit optical model calculation. One
may ask here how does the halo in ~ Li manifest itself' ?

Our findings in this paper support the conclusion reached
by Hussein and Satchler [5], in that there is little diifer-
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ence between the elastic scattering of normal nucleus,
C, and a halo one, Li [llj. The effect of the halo

on the scattering is therefore more subtle and should be
looked for in other observables, such as spin polarization
and quasielastic (transfer) process.

qi = (G1F1 + G1F1 + G2F2 + G2F2 —2qo) (A4)

Finally the second derivative yields
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and

, (G1F1 + 2G1F1 + G1F,"' —G2F2
16 (—T) '
—2G2F2" —G2F2"' —l2 v —2:qi ) . (A6)

APPENDIX: HIGHER-ORDER TERMS OF THE
UNIFORM AP PROXIMATION The first and the second derivatives of the function G

are given by

PO 2( 1 1+ 2 2) (Al)

In this appendix we calculate the terms p, and q; for
i = 0, 1, 2 that appear in Eq. (32). These terms are the
coefficients of the expansion (31) and they are obtained
taking the derivative of this equation at the stationary-
phase points. Thus, for po and qo, we readily get without
deriving

and

t'diSi ~ ]Si )
q dA

( dA2 A2 dA

Sl ~ „G'F"
4AI )[

"+
F

(A7)

and

(G1Fi —G2F2) (A2)

(AS)

The derivatives of the function F(p) are calculated de-
riving Eq. (27) which defines the mapping. We have

where the functions G = ~S]A~ and F = A(p) were in-
troduced and, from now on, primes denote a derivative
with respect to the variable p and subscripts refer to the
stationary-phase points. By taking the first derivative

Pl (Gi 1+ 1 1 2 2 2 2)4 —x

2 —x
~O' (Ai 2)

'

2 —(F, 2)'8" (A, .)
(A1O)

3(F1'2) 8" (A1,2)+6(F12) Fi'2o-"(Ai, .)+ (F12) O"'(Ai, .)
1

(A11)

The above equations are valid in the bright side of the rainbow, the corresponding formulas for the dark side are
obtained by analytical continuation.
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