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The possibility of observing heavy Z-hypernuclei by (K ~, K1) reactions is investigated. Several
narrow peaks are clearly seen in the Kt spectrum of 2*Pb(K~, K *)2%%Hg reaction calculated by

the Green’s function method. They correspond to =

bound states with spin-stretched high angular

momentum. The excitation of the =~ bound states amounts to about 0.4 ub/sr MeV for the ?°®Pb
target in the case of 2 MeV detector resolution, which is considerably larger than that for the 2C
target. It is discussed whether or not the mass-number dependence of nucleus-E potential depths is

observed between A = 12 and 208.

PACS number(s): 25.80.Nv, 21.80.+a, 21.60.—n

I. INTRODUCTION

Strangeness S = —2 hypernuclei would give important
information concerning the ZN and AA interactions. Ev-
idence for the formation of double-A hypernuclei is ob-
tained from old emulsion experiments [1] and a recent
experiment at KEK [2]. As for 2 hypernuclei seven can-
didates from emulsion data are reviewed in a pioneer-
ing theoretical work by Dover and Gal [3]. Recently,
there appear two events in the KEK emulsion experiment
which may be attributed to the formation of Z-atoms
and/or nuclei [4]. However, the supply of data on double-

strangeness (S = —2) hypernuclei is still limited. At
BNL, 1-2 GeV/c highly-intense and well-separated K~
beam becomes available and the S = —2 spectroscopy is

now feasible by means of (K~, K™) reactions. We can
expect to get experimental information on the nucleus-=
interaction by populating E-hypernuclear states. Thus,
a key problem at present would be the possible existence
of bound Z-hypernuclei.

We investigate E~-hypernuclear spectra from
208pH(K—,K*) as well as 2C(K~,K™) by using the
Green’s function method [5]. In the case of 2C Ikeda
et al. discussed in detail the formation of E~ states and
calculated the transition rate from Z~ states to possible
double-A states [6]. A remarkable feature they obtained
is the narrowness of Z-state widths, which encourages
the search for = hypernuclei. Yamamoto has suggested
that the depth of the nucleus-Z potential derived from
the Nijmegen potential [7] has no saturation property
but changes from about —12 MeV for A = 12 to about
—24 MeV for A = 208 [8]. This is due to weak exchange
force of the meson-theoretical EN potential. Thus, the
mass-number dependence of nucleus-Z potential depth is
an interesting problem in relation to the nature of =N in-
teraction. In order to know whether the mass-number de-
pendence really exists or not, the (K—, K*) experiment
should be performed not only on light-nucleus target but
also on heavy-nucleus target. Because core-excited states
densely distribute in the heavy-target case, the reaction
is required to have a selective population mechanism. We
will show that the 2°8Pb(K —, K*) reaction with an inci-
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dent momentum 1.65 GeV /c excites selectively 2~ bound
states with spin-stretched high angular momentum. We
propose an experimental search for some prominent =~
peaks in 208Pb.

In Sec. II we explain the Green’s function method.
The nucleus-E potentials employed are discussed in
Sec. II1. The Z7-hypernuclear spectrum from
208ph(K—,K ) is given in Sec. IV and compared with
that from 2C(K—,K™*). Summary and conclusions are
given in Sec.V.

II. GREEN’S FUNCTION METHOD

The double-differential cross section for the (K, K*)
reaction is given within the distorted-wave impulse ap-
proximation (DWIA) as

d%o do 1
= S(E
dEg+dQg+ [dQK+} (B), (1)

where 3 is a kinematical factor, [da’/dQK+](el) is the
Fermi-averaged differential cross section for the elemen-
tary process K~ +p — Kt +Z" and S(E) is the strength
function of a hypernuclear system. The kinematical fac-
tor (3 is defined by

/6_{1+E£(2*)' pgl_pK*cosoK+}px+EK+
- 2 ’
R T

(2)
px+
where Ef{zz (pgi)r) is total energy (momentum) of K+ in

the laboratory system determined by the free K~ N two-
body kinematics at the incident momentum P, Itis
noted that (3 is not constant but proportional to P B,
The strength function S(FE) is obtained by the Green’s
function method [5],

S(E) = ——%Imz/drdr'fa(r)Gaa'(E;r,r')fa(r'), (3)
fa(r) = x*(px+, Mo /Muyr)x ) (px -, Mo /Muyr)
x(alyn(r)|i), (4)
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where kets |¢) and |a) are states of the target and of
a core nucleus, respectively and ¥y (y) is the annihila-
tion operator of N(Y'). Recoil effects are taken into ac-
count through the factor M¢/Myy in Eq. (4) [9]. Here
Gao' (E;r,1') is Green’s function for the hyperon inter-
acting with the core nucleus.

1
Goat . N — R ) gy !
(Bix.x) = (albr () =gt (), (9
with
H = Tnucl—E + Unucl—E- (6)

If Upucl—= is taken to be a single-particle optical poten-
tial, Green’s function becomes diagonal with respect to
core-nucleus states |a). We can take into account spread-
ing widths of proton-hole states (nuclear core states) and
the energy resolution of a detector by putting a finite
value into n in Eq. (5).

The distortion of meson waves is calculated in the
eikonal approximation as

X(+) (pK— , r) = exp |:sz .r

—ivgt /_: Ug-(b_, z')dz'] , (7N
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X" (p,, ,r) = exp [—ipk+ ‘T
oo
—ivgh Ug+ (b4, z')dz’] , (8)
z4
Z— zf)K~ + T, z+=f,K+ - T, (9)
where vk is the velocity of the meson and b_ (b,) is

the component of r perpendicular to P, (pK+). The

meson-nucleus optical potential U, (m stands for K~ or

KT) is given by
Un(r) = —i*0mnp (1), (10)
amn = Ref(0)/Imf(0), (11)

OmN = 0’:::5\,(1 — ’iamN),

where o4 is the isospin-averaged total meson-nucleon

cross section and f(O) is the isospin-averaged forward
elementary amplitude. We neglect the effect of &, be-
cause the differential cross section is rather insensitive to
t [10], and use the following meson-nucleon total cross
sections [11]:

ot ,=325mb, o}, =25.5mb,
0Rt, =19.6 mb, ot =20.1mb, (12)
which correspond to the case of an incident momentum
p,_=1.65 GeV/e.

Straightforward angular momentum algebra gives
partial-wave decomposition of S(E):

s®m=Y ¥ ¥ ¥ Jeiv+tneiy+y

IM ly,jy nn, NN 1y, 3% niv o i

x(in3J0liy 3)3(1 +

JM
x SUY]Y;"N’NJN) (Iy 3y miyl NJN)(

——Im/dr/dr'rzr'szM

SJM . . . (
(IyjymnInin), (I iy mivInin)

1)) (G L0013 (1 + (1))
E), (13)

Py sPpys 9K+ i7) Prninin (T)

X Gy sy mntnin) by sy iyl i) B3 T )T (P3P s 0,057 )iy (1), (14)

where the function :Y:JM(pK_ 1Py 0,4 ;7) is defined by

co M=J
X (P, » Mo /Muyr)x P (p,_, Mco/Muyr) =Y > jom(p
J=0M=—-J

e 1P i)Y (B), (15)

Snninin () is a radial-part wave function of the proton which absorbs the incident meson and J is the total spin of

the hypernucleus. In the case of forward K+ production BK +

=0°, Eq. (13) and Eq. (14) are further reduced to

— J
S(E) =220 Ly iy Danwdnsin 2ty iy 2oyl W Sy sy mntnin ), (b s ity i) (B)s (16)
(W] = (27 +1)y/(2iv + D2y + D(in3T0liy 3) 5 (1 + (-1)'V 1+ (i 3T05% 3) 3 (1 + (=1)! W Hv +7), (17)
Sty sy mvinin) ty sy migtiy i) (B) = —7Im / dr / dr'r?r2] 5 (P Prcss7) brninin (1)
X Gy iy mutinin) @iy mi i) BT )11 (P 3Py i T )b 1 in (71), (18)

where we use the relation

Jom (P Py, =0%7) =

4m(2J + 1)js(p,._ P, . 57)0mo0- (19)
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We neglect couplings between (n,l,j,) and
(nly 11 7% )[A(miy Ly iy )], and between (1, 3y ) and (I, 7,) [
(I, jy )] by adopting single-particle potentials.

The differential cross section to a definite hypernuclear
bound state is obtained by integrating Eq. (1) on small
energy interval suitably chosen, and is expressed as

do [da

(eD
= AN 20
dQ+ dQg+ ] (20)

K+/EK+ +(pK+ T Dy +)/EHY,
(21)

cos 6
K

pe. | PA/E? + 00) —p, cosd,)/ED
@ = 2

where Z°f is the effective proton number of the exclusive
reaction. One should avoid confusions between « and 3,
and between Z°¥ and S(E).

III. NUCLEUS-E POTENTIAL

Dover and Gal [3] made theoretical analyses of old
emulsion data attributed to (K, K*) E-hypernuclear
productions [12] and extracted nucleus-Z potentials of
Woods-Saxon type;

Vo + iWo
1+ exp{(r — R)/a}

with Vp = -24+4 MeV (real-part strength), R = 1.14/3
fm and a = 0.65 fm.

We assume the nucleus-=~ potential of Woods-Saxon
form with the same values of range and diffuseness pa-
rameters as the above. The imaginary-part strength is
taken to be Wy = —1 MeV. This imaginary part, together
with the real part Vo = —24 MeV, gives level widths of
1.2 MeV for 1s state and of 0.5 MeV for 1p state in the
=Z~-11B system. These widths are in good agreement
with the 2= p — AA conversion widths obtained from
the Nijmegen model-D potential [7] by Ikeda et al. [6].
We examine also a stronger conversion case of Wy = —3
MeV to know how results are sensitive to the imaginary
potential.

The real-part strength Vj is assumed to be —24 MeV
for 208Pb. We, however, employ V5 = —16 MeV in ad-
dition to —24 MeV for 2C. Reasons why we investigate
the shallow potential case are the followings. Yamamoto
has suggested that the depth of the nucleus-E potential
derived from the Nijmegen interaction has no saturation
property but depends on the mass number of the core
nucleus [8]. This property is attributed to the fact that
no single meson carries double strangeness and therefore
the exchange force is weak between E and N. Aoki et
al. observed the twin A-hyperfragment production via
Z~ capture by the emulsion-counter hybrid experiment
at KEK [4]. The energy of the stopped =~ on '2C is esti-
mated to be —0.54 + 0.20 MeV, which deviates from the
finite-size Coulomb levels, —0.97 MeV for 1s, —0.28 MeV
for 2p and —0.26 MeV for 2s. The Vo, = —16 MeV po-

Unucl—E = (22)
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tential, when it is added to the Coulomb potential, shifts
down the 2p state to —0.56 MeV, giving a plausible (but
not unique) explanation for the stopped E~ energy.

IV. E=-HYPERNUCLEAR SPECTRA
FROM (K-,K*) REACTIONS

Spectra for 2C(K~,K*) and 2°®Pb(K, K+) reac-
tions are calculated at forward-angle 6 _, = 0° with
an incident momentum P, =1.65 GeV/c We adopt

[do/dQg+] V= 35 ub/sr [13]. In the calculation two
proton-hole states 1p3 /2 and 1s],, are included for the

12C case and six proton-hole states 33'1/2, 2d;/2, lh;1/27
2d;}

5/2) 197/2 and 1g9/2 for the 2°Pb case. Proton-hole
wave functions are calculated by using the Woods-Saxon
potential with geometrical parameters of 7g=1.27 fm and
a=0.67 fm. We employ strength parameters of Vo =
—61 MeV, VL s=22 MeV. Hypernuclear spectra do not
strongly depend on the detail of proton-hole wave func-
tions, especially in the =~ bound state region. Spreading
widths of the proton-hole states are taken from 2C(p, 2p)
[14] and 2°%Pb(e, e’p) [15] experiments. We assume AFE
= 2 MeV as the energy resolution of a spectrometer. Re-
sults are shown in Figs. 1 and 2. The quasifree produc-
tion of 2~ gets much stronger than the bound-state pop-
ulation, because of large momentum transfer 0.5 GeV/c
which is about two times as large as the Fermi momen-
tum in a nucleus. It is noted that all the deep-hole states
sizably contribute to the continuum spectrum.
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FIG. 1. The E™ -hypernuclear spectrum from **C(K~,K™*)
for P, =165 GeV/c and 0K+ = 0°. The threshold of =~ and
the core nucleus (ground state) is denoted by the vertical line.
The full curve represents the total double-differential cross
section. The dotted and dashed curves are for the contribu-

tions from proton hole states 1p /12 and 151 Iy respectively.
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FIG. 2. The same spectrum from *°®Pb(K~,K™) for
Py- =1.65 GeV/c and 0K+ = 0°. See also the caption of
Fig. 1.

In Figs. 3 and 4 the calculations are compared with
experimental data obtained at KEK by Iijima et al. [13].
The experimental data are averaged between O+ = 1.7°
and 13.6°. However, we show the result at x+ = 0° be-
cause one at 13.6° is almost same. The magnitudes of the
cross sections are fairly reproduced by our calculation in
the £~ quasifree production region. Since energies of E~
are very high in the quasifree region, for example about
100 MeV at the quasifree peak, Z~ hardly feels the influ-
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FIG. 3. Comparison between our calculated spectrum

(6,4 = 0°) for 12C target and the KEK experimental data
taken from Ref. [13]. The experimental spectrum is averaged
between 6, = 1.7° and 13.6°.
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FIG. 4. The same as Fig. 3 but for the 2°®Pb target case.

ence of the nucleus-=~ potential. Therefore, even if we
change parameters of nucleus-E~ potential, the spectra
in the quasifree region are almost unchanged.

A.?C (K-,K*) 2Be

Let us discuss in detail the spectra in the bound-
state region of . Figure 5 shows the spectrum for
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FIG. 5. The hypernuclear spectrum for >C target in the
bound-state region as a function of Myy — M4, where M4 and
Muyy are target and hypernuclear masses, respectively. The
spectrum is calculated with Vo = —24 MeV and W, = —1
MeV. Energy resolution is taken to be 0 MeV.
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FIG. 6. The same as Fig. 5 but it is smeared with AE = 2
MeV.

the '2C target calculated with V; = —24 MeV and
Wy = —1 MeV, where the energy resolution is taken to
be zero in order to compare it with the previous result
by Ikeda et al. [6]. Two separated peaks appear below
the 2=+ !B threshold at 399 MeV. The lower and up-
per peaks correspond to the excitation of hypernuclear
states [plp;/12®551/2]‘]=1 and [plp;/12®5p]‘]=°’2, of which
decay widths are 1.2 MeV and 0.5 MeV, respectively.
The widths are in good agreement with what lkeda et
al. obtained from the Nijmegen model-D potential. In
the quasifree production region, however, our spectrum
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FIG. 7. The same as Fig. 6 but it is calculated with
Vo = —16 MeV.

S. TADOKORO, H. KOBAYASHI, AND Y. AKAISHI 51

is smooth, while their spectrum is rugged even though
there is no resonance. This indicates that the Green’s
function method is easier to get a good description of
the continuum spectrum than the Kapur-Peierls method
used by them. We introduce into the spectrum the ef-
fect of energy resolution of a spectrometer. The result
with 2 MeV smearing is shown in Fig. 6. The heights
of two peaks at Myy-M ~ 387 MeV and 398 MeV be-
come about 0.09 and 0.17 pb/sr MeV, respectively. The
effective proton numbers are estimated to be 0.012 and
0.017.

There is a possibility that the depth of the nucleus-=
potential depends on the mass number of core nucleus,
as stated in Secs. I and III. Figure 7 shows the spectrum
when the shallow potential of V5 = —16 MeV is used. In
this case there remains only one peak which corresponds
to the [111113_/12 ® Es1/2]”= configuration.

B. 2°%Pb (K, K+) 2°%Hg

Figures 8(a) and 8(b) show the spectra for the 20%Pb
target calculated with Vo = —24 MeV and Wy, = —1
MeV in the cases of energy resolution AE = 0 MeV and
of AE = 2 MeV, respectively. In the spectra we can see a
series of 2~ bound-state peaks at Myy-M4 ~ 358, 362,
368, 374, 381, and 387 MeV below the £~ 4-2°7TI thresh-
old at 391 MeV. The prominent ones at 374, 381, and
387 MeV correspond to the excitation of spin-stretched
states [plhl_ll/2 ® Ehg /)" =10, [plhl_ll/2 ® Zig1/2)” ! and
[plhl‘ll/2 ® Ej]_g/g]"zlz, respectively, as explained later.
The selective excitation of spin-stretched states in the
high momentum transfer reaction was pointed out many
years ago by Dover et al. [10]. Hole states with small an-
gular momentum such as 3s]° /12, 2d;/12, 2d5_/12 are hardly
excited in the Z~ bound-state region by the (K, K™)
reaction with large momentum transfer, though they give
sizable contributions to the spectrum in the =~ quasifree
production region. Furthermore the second largest-I hole
states, 1gg /12 and 1g, /12, show no sharp-peak structures

because of their broad spreading widths [15]. Thus,
the spectrum of 2°8Pb(K~, K*) has the structure de-
termined dominantly by the excitation of plhl_ll/2 R E"
hypernuclear states.

Let us discuss the structure of the prominent peaks
in detail. Figure 9 shows the excitation spectra of the
hypernuclear states with the configuration plhl_ll/2 ® =.

A selection rule

lp +1l=+J =even (23)
follows from the factor [1 + (—1)w+iv+J]/2 in
Eq. (17) which comes from the matrix element

((Iy1/2)5¥||Y7||(In1/2)jn). For example, although
Ehg/2, Ehy1/2 and Ejiz/p can contribute to the J=10
hypernuclear state, the first one dominates the others
by forming a spin-stretched state together with plhl_ll/Z.
Similarly, Zj13/2 and Ej;5/2 are relevant in the case of
the J=12 state, and the former gives the main component
again forming a spin-stretched state. Figure 10 compares
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contributions from [s splitting partners. One of them is
so weakly excited due to angular-momentum coupling co-
efficients of Eq. (17) that the s splitting of =~ cannot
be observed but, fortunately, does not destroy the peak
structures in Fig. 8. Thus, it is known that the J=12
peak almost purely consists of the [plhl_ll/2 ®E]‘13/2]J=12
state.

It is noted that =~ single-particle bound states exist
at least up to lg=7 with the assistance of the Coulomb
attraction between Z~ and 2°7T1. Figure 11(a) shows
Z~ density distributions together with the net potential
which is a sum of strong, Coulomb and centrifugal poten-
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FIG. 8. The spectrum from ?°®Pb(K~, K*) for px- = 1.65
GeV/c and 0+ = 0° calculated with Vo = —24 MeV and
Wo = —1 MeV. (a) The case of resolution AE = 0 MeV. (b)
The case of AE = 2 MeV.

0.3

d26/dEg*dQg* (ub/st MeV)

T T T
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Myy-Ma(MeV)

1
340 350

FIG. 9. The total excitation spectrum of hypernuclear
states with the plhl_ll/2 ® Z7 configuration (solid curve),
and the contributions from spin-stretched hypernuclear states
b)lhl_ll/2 ® Ehg 3] =° (dotted curve), b)lhl_ll/2 ® Eiyg/a]’ =Mt
(dashed curve) and [_plhl_ll/2 ® Ejias2)’='? (long-dashed
curve).

tials. The dotted line is for the lz=7 state with energy
—5.8 MeV and the dot-dashed line is for a [z=0 state with
energy —5.4 MeV. We can see that the [==7 state is well
confined in the nuclear surface region by the centrifu-
gal potential and is essentially different from the l=z=0
Coulomb atomic state. As a result, the final =33/, state
has a remarkably good overlap with the initial plhyq/,
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FIG. 10. Weight factors of s splitting partners for the same
J.
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state shown in Fig. 11(b). Furthermore partial waves
Jr=12(P,._,P,,;7) in Eq. (18) is peaked at 7 ~ 6 fm due
to the large momentum transfer. Therefore the J=12
peak gets prominent. Thus the centrifugal force plays
an essential role in strongly exciting the spin-stretched
high-J states. It was discussed by Bando and Motoba
that pairs with nodeless single-particle wave functions
acquire a particularly strong population in the case of
the (w+, K*) reaction [16]. The present result provides
another typical example of their statement with a phys-
ical explanation.
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> N

[} -
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-30 — ;
0 5 10 15
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—~ N‘—
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[=9
-30 T T
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FIG. 11. Probability distributions and potentials for =~
and p. (a) The £~ case: The solid curve is for the net po-
tential of strong, Coulomb and centrifugal ones with l==7.
The dashed curve is for the potential without the centrifu-
gal one. The dotted and dot-dashed curves are for density
distributions of the =1j state with energy —5.8 MeV and of
the Z6s state with energy —5.4 MeV, respectively. (b) The
proton case: The solid curve is for the net potential with I=5.
The dotted curve is for the density distribution of the plh,; /2
state.
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FIG. 12. The same spectrum as Fig. 8(a) but calculated
with Wy = —3 MeV and Vy, = —24 MeV. Energy resolution
is AE = 0 MeV.

We examine the effect of the imaginary strength of
the nucleus-Z~ potential. Figure 12 shows the spec-
trum which is calculated with Wy, = —3 MeV and
Vo = —24 MeV in the case of zero resolution. The peaks
at My —M, ~ 374, 381, and 387 MeV, which are clearly
seen in Fig. 8, become broad but still remain. Many
sharp peaks around the =~ threshold are due to the ex-
citation of E~ atomic states. If a very high resolution
spectrometer would become available, several hypernu-
clear peaks can be observed even in the strong imaginary
case of Wy = —3 MeV which gives a width of 6 MeV in
nuclear matter. On the contrary, we could consider the
case of a weaker strength than Wy = —1 MeV for high-J
= states. Such possibility of width suppression will be
investigated elsewhere.

Finally it should be mentioned that the plhl_ll/2 state

of 297T1] is not dispersed as seen from the 2°8Pb(e,e'p)
experiment [15]. This may provide a justification of our
treatment of plhl_ll/2 ® = states based on the single-
particle models. In sum, the characteristics of the
(K~,K™) reaction makes it possible to observe some
isolated peaks due to the excitation of Z~-hypernuclear
bound states even in the case of 2°8 Pb. The most promi-
nent peak at Myy — M4 ~ 387 MeV in Fig. 8(b) has a
height of 0.4 ub/sr MeV and an effective proton number
of 0.024.

V. SUMMARY AND CONCLUSIONS

The K+ spectra for 2C and 2°8Pb(K—,K™) reac-
tions are calculated at forward-angle 6, _, = 0° with

p,_=1.65 GeV/c by using the Green’s function method.
The nucleus-Z potential is assumed to be of Woods-
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Saxon form with complex strengths, Vo = —24 MeV and
Wy = —1 MeV. The calculated spectra are folded with
an energy resolution of AE= 2 MeV.

In the spectrum of '2C there appear two narrow
peaks which correspond to the [plp;/l2 ® Esl/z]le and
[p1ps /12®Ep]J =0,2 hypernuclear states, as has been shown
by Ikeda et al. [6]. The double differential cross sections
to the lower and upper states are estimated to be 0.09
and 0.17 pub/sr MeV, respectively, when a spectrometer of
A E=2MeV resolution is used. Since it is suggested that
the nucleus-= potential depth is shallower for 2C than
for 208Pb, the spectrum is also calculated with Vo = —16
MeV for 2C. In this case, there remains only one peak
in the spectrum.

In the spectrum of 2%8Pb several well-separated peaks
are observed in spite of many possible excitations, as
seen from our main result Fig. 8(b). The peaks have
the spin-stretched high-J structure, and the most promi-
nent one is the [plh;ll/2 ® Ejiz/2)’='? state bound by
about 6 MeV below the =~ threshold. The (K~,K™)
reaction populates selectively high angular-momentum
states with no node. The configuration plh;ll/2 ® =
essentially determines the shape of the spectrum from
the 208Pb(K —, K*) reaction. The high-l= single-particle
state can be bound with the assistance of strong Coulomb
attraction between Z~ and 2°7T]l. The centrifugal force

—_——

also plays an essential role. Since the force confines =

2663

in the nuclear surface region, the £~ single-particle state
is not an atomic but a nuclear state. Because of a re-
markably good overlap between the initial plhy;/; and
the final Zj,5/, wave functions, the J=12 hypernuclear
state is strongly excited with a double-differential cross
section of 0.4 pub/sr MeV and an effective proton number
of 0.024.

It is investigated how the spectrum changes if a
stronger imaginary strength of Wy = —3 MeV is adopted.
The peaks in 2°8Pb become broad and are hardly distin-
guished from each other with a AE=2 MeV resolution
detector. However, if we could use a high-resolution spec-
trometer, some of individual peaks can be separated out
even in this strong imaginary case.

By carrying out (K, K*) experiments on both light
12C and heavy 2°®Pb targets, we can expect to clar-
ify whether or not the mass-number dependence of the
nucleus-Z potential depth exists. An experimental obser-
vation of =~ states in 2°8Pb is awaited.
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