Ξ^{-} -hypernuclear states in heavy nuclei

S. Tadokoro, H. Kobayashi, and Y. Akaishi

Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo 188, Japan

(Received 6 September 1994)

The possibility of observing heavy Ξ -hypernuclei by (K^-, K^+) reactions is investigated. Several narrow peaks are clearly seen in the K^+ spectrum of ${}^{208}\text{Pb}(K^-, K^+){}^{208}_{\Xi}\text{Hg}$ reaction calculated by the Green's function method. They correspond to Ξ^- bound states with spin-stretched high angular momentum. The excitation of the Ξ^- bound states amounts to about 0.4 μ b/sr MeV for the ${}^{208}\text{Pb}$ target in the case of 2 MeV detector resolution, which is considerably larger than that for the ${}^{12}\text{C}$ target. It is discussed whether or not the mass-number dependence of nucleus- Ξ potential depths is observed between A = 12 and 208.

PACS number(s): 25.80.Nv, 21.80.+a, 21.60.-n

I. INTRODUCTION

Strangeness S = -2 hypernuclei would give important information concerning the ΞN and $\Lambda\Lambda$ interactions. Evidence for the formation of double- Λ hypernuclei is obtained from old emulsion experiments [1] and a recent experiment at KEK [2]. As for Ξ hypernuclei seven candidates from emulsion data are reviewed in a pioneering theoretical work by Dover and Gal [3]. Recently, there appear two events in the KEK emulsion experiment which may be attributed to the formation of Ξ -atoms and/or nuclei [4]. However, the supply of data on doublestrangeness (S = -2) hypernuclei is still limited. At BNL, 1–2 GeV/c highly-intense and well-separated $K^$ beam becomes available and the S = -2 spectroscopy is now feasible by means of (K^-, K^+) reactions. We can expect to get experimental information on the nucleus- Ξ interaction by populating Ξ -hypernuclear states. Thus, a key problem at present would be the possible existence of bound Ξ -hypernuclei.

We investigate Ξ^{-} -hypernuclear spectra from 208 Pb (K^-, K^+) as well as 12 C (K^-, K^+) by using the Green's function method [5]. In the case of ¹²C Ikeda et al. discussed in detail the formation of Ξ^- states and calculated the transition rate from Ξ^- states to possible double- Λ states [6]. A remarkable feature they obtained is the narrowness of Ξ -state widths, which encourages the search for Ξ hypernuclei. Yamamoto has suggested that the depth of the nucleus- Ξ potential derived from the Nijmegen potential [7] has no saturation property but changes from about -12 MeV for A = 12 to about -24 MeV for A = 208 [8]. This is due to weak exchange force of the meson-theoretical ΞN potential. Thus, the mass-number dependence of nucleus- Ξ potential depth is an interesting problem in relation to the nature of ΞN interaction. In order to know whether the mass-number dependence really exists or not, the (K^-, K^+) experiment should be performed not only on light-nucleus target but also on heavy-nucleus target. Because core-excited states densely distribute in the heavy-target case, the reaction is required to have a selective population mechanism. We will show that the ${}^{208}\mathrm{Pb}(K^-,K^+)$ reaction with an incident momentum 1.65 GeV/c excites selectively Ξ^- bound states with spin-stretched high angular momentum. We propose an experimental search for some prominent $\Xi^$ peaks in ²⁰⁸Pb.

In Sec. II we explain the Green's function method. The nucleus- Ξ potentials employed are discussed in Sec. III. The Ξ^- -hypernuclear spectrum from $^{208}\text{Pb}(K^-, K^+)$ is given in Sec. IV and compared with that from $^{12}\text{C}(K^-, K^+)$. Summary and conclusions are given in Sec.V.

II. GREEN'S FUNCTION METHOD

The double-differential cross section for the (K^-, K^+) reaction is given within the distorted-wave impulse approximation (DWIA) as

$$\frac{d^2\sigma}{dE_{K^+}d\Omega_{K^+}} = \beta \left[\frac{d\sigma}{d\Omega_{K^+}}\right]^{(\text{el})} S(E) , \qquad (1)$$

where β is a kinematical factor, $[d\sigma/d\Omega_{K^+}]^{(el)}$ is the Fermi-averaged differential cross section for the elementary process $K^- + p \rightarrow K^+ + \Xi^-$ and S(E) is the strength function of a hypernuclear system. The kinematical factor β is defined by

$$\beta = \left\{ 1 + \frac{E_{\kappa^+}^{(2)}}{E_{\Xi}^{(2)}} \; \frac{p_{\kappa^+}^{(2)} - p_{\kappa^-} \cos \theta_{K^+}}{p_{\kappa^+}^{(2)}} \right\} \frac{p_{\kappa^+} E_{\kappa^+}}{p_{\kappa^+}^{(2)} E_{\kappa^+}^{(2)}}, \quad (2)$$

where $E_{K^+}^{(2)}(p_{K^+}^{(2)})$ is total energy (momentum) of K^+ in the laboratory system determined by the free K^-N twobody kinematics at the incident momentum p_{K^-} . It is noted that β is not constant but proportional to $p_{K^+}E_{K^+}$. The strength function S(E) is obtained by the Green's function method [5],

$$S(E) = -\frac{1}{\pi} \operatorname{Im} \sum_{\alpha \alpha'} \int d\mathbf{r} \, d\mathbf{r}' f_{\alpha}(\mathbf{r}) G_{\alpha \alpha'}(E; \mathbf{r}, \mathbf{r}') f_{\alpha}(\mathbf{r}'), \quad (3)$$
$$f_{\alpha}(\mathbf{r}) = \chi^{(-)*}(\mathbf{p}_{K^{+}}, M_{C}/M_{HY}\mathbf{r})\chi^{(+)}(\mathbf{p}_{K^{-}}, M_{C}/M_{HY}\mathbf{r})$$
$$\times \langle \alpha | \psi_{N}(\mathbf{r}) | i \rangle, \quad (4)$$

0556-2813/95/51(5)/2656(8)/\$06.00

<u>51</u> 2656

© 1995 The American Physical Society

where kets $|i\rangle$ and $|\alpha\rangle$ are states of the target and of a core nucleus, respectively and $\psi_{N(Y)}$ is the annihilation operator of N(Y). Recoil effects are taken into account through the factor $M_C/M_{\rm HY}$ in Eq. (4) [9]. Here $G_{\alpha\alpha'}(E;\mathbf{r},\mathbf{r}')$ is Green's function for the hyperon interacting with the core nucleus.

$$G_{\alpha\alpha'}(E;\mathbf{r},\mathbf{r'}) = \langle \alpha | \psi_Y(\mathbf{r}) \frac{1}{E - H + i\eta/2} \psi_Y^{\dagger}(\mathbf{r'}) | \alpha' \rangle, \quad (5)$$

with

$$H = T_{\text{nucl}-\Xi} + U_{\text{nucl}-\Xi}.$$
 (6)

If $U_{\text{nucl}-\Xi}$ is taken to be a single-particle optical potential, Green's function becomes diagonal with respect to core-nucleus states $|\alpha\rangle$. We can take into account spreading widths of proton-hole states (nuclear core states) and the energy resolution of a detector by putting a finite value into η in Eq. (5).

The distortion of meson waves is calculated in the eikonal approximation as

$$\chi^{(+)}(\mathbf{p}_{K^{-}},\mathbf{r}) = \exp\left[i\mathbf{p}_{K^{-}}\cdot\mathbf{r} -iv_{K^{-}}^{-1}\int_{-\infty}^{z_{-}}U_{K^{-}}(\mathbf{b}_{-},z')dz'\right], \quad (7)$$

$$\chi^{(-)*}(\mathbf{p}_{K^+},\mathbf{r}) = \exp\left[-i\mathbf{p}_{K^+}\cdot\mathbf{r} -iv_{K^+}^{-1}\int_{z_+}^{\infty}U_{K^+}(\mathbf{b}_+,z')dz'\right], \qquad (8)$$

$$z_{-} = \hat{\mathbf{p}}_{K^{-}} \cdot \mathbf{r}, \quad z_{+} = \hat{\mathbf{p}}_{K^{+}} \cdot \mathbf{r},$$
(9)

where $v_{K^{\pm}}$ is the velocity of the meson and \mathbf{b}_{-} (\mathbf{b}_{+}) is the component of **r** perpendicular to \mathbf{p}_{κ^-} (\mathbf{p}_{κ^+}). The meson-nucleus optical potential U_m (m stands for K^- or K^+) is given by

$$U_{m}(\mathbf{r}) = -i\frac{v_{m}}{2}\bar{\sigma}_{mN}\rho\left(\mathbf{r}\right),\tag{10}$$

$$\bar{\sigma}_{mN} = \sigma_{mN}^{\text{tot}} (1 - i\bar{\alpha}_{mN}), \quad \bar{\alpha}_{mN} = \text{Re}\bar{f}(0)/\text{Im}\bar{f}(0), \quad (11)$$

where σ_{mN}^{tot} is the isospin-averaged total meson-nucleon cross section and f(0) is the isospin-averaged forward elementary amplitude. We neglect the effect of $\bar{\alpha}_{mN}$ because the differential cross section is rather insensitive to it [10], and use the following meson-nucleon total cross sections [11]:

$$\sigma_{K^-p}^{\text{tot}} = 32.5 \text{ mb}, \quad \sigma_{K^-n}^{\text{tot}} = 25.5 \text{ mb},
\sigma_{K^+p}^{\text{tot}} = 19.6 \text{ mb}, \quad \sigma_{K^+n}^{\text{tot}} = 20.1 \text{ mb},$$
(12)

which correspond to the case of an incident momentum $p_{\kappa^-} = 1.65 \text{ GeV}/c.$ Straightforward angular momentum algebra gives

partial-wave decomposition of S(E):

$$S(E) = \sum_{JM} \sum_{l_{Y}, j_{Y}} \sum_{n_{N}, l_{N}, j_{N}} \sum_{l'_{Y}, j'_{Y}} \sum_{n'_{N}, l'_{N}, j'_{N}} \sqrt{(2j_{N}+1)(2j'_{N}+1)} \times (j_{N} \frac{1}{2} J0|j_{Y} \frac{1}{2}) \frac{1}{2} (1 + (-1)^{l_{N}+l_{Y}+J}) (j'_{N} \frac{1}{2} J0|j'_{Y} \frac{1}{2}) \frac{1}{2} (1 + (-1)^{l'_{N}+l'_{Y}+J}) \times S^{JM}_{(l_{Y}j_{Y}, n_{N}l_{N}j_{N}), (l'_{Y}j'_{Y}, n'_{N}l'_{N}j'_{N})}(E),$$

$$S^{JM}_{(l_{Y}j_{Y}, n_{N}l_{N}j_{N}), (l'_{Y}j'_{Y}, n'_{N}l'_{N}j'_{N})}(E) = -\frac{1}{\pi} Im \int dr \int dr' r^{2} r'^{2} \tilde{j}_{JM} (p_{K^{-}}, p_{K^{+}}, \theta_{K^{+}}; r)^{*} \phi_{n_{N}l_{N}j_{N}}(r) \times S^{J}_{(l_{Y}j_{Y}, n_{N}l_{N}j_{N}), (l'_{Y}j'_{Y}, n'_{N}l'_{N}j'_{N})}(E; r, r') \tilde{j}_{JM} (p_{K^{-}}, p_{K^{+}}, \theta_{K^{+}}; r') \phi_{n'_{N}l'_{N}j'_{N}}(r'),$$

$$(13)$$

where the function $\tilde{j}_{JM}(p_{K^{-}}, p_{K^{+}}, \theta_{K^{+}}; r)$ is defined by

$$\chi^{(-)*}(\mathbf{p}_{K^+}, M_C/M_{\rm HY}\mathbf{r})\chi^{(+)}(\mathbf{p}_{K^-}, M_C/M_{\rm HY}\mathbf{r}) = \sum_{J=0}^{\infty} \sum_{M=-J}^{M=J} \tilde{j}_{JM}(p_{K^-}, p_{K^+}, \theta_{K^+}; r)Y_J^M(\hat{\mathbf{r}}),$$
(15)

 $\phi_{n_N l_N j_N}(r)$ is a radial-part wave function of the proton which absorbs the incident meson and J is the total spin of the hypernucleus. In the case of forward K^+ production $\theta_{K^+} = 0^\circ$, Eq. (13) and Eq. (14) are further reduced to

$$S(E) = \sum_{J} \sum_{l_Y, j_Y} \sum_{n_N, l_N, j_N} \sum_{l'_Y, j'_Y} \sum_{n'_N, l'_N, j'_N} [W] S^J_{(l_Y j_Y, n_N l_N j_N), (l'_Y j'_Y, n'_N l'_N j'_N)}(E),$$
(16)

$$[W] = (2J+1)\sqrt{(2j_N+1)(2j'_N+1)}(j_N\frac{1}{2}J0|j_Y\frac{1}{2})\frac{1}{2}(1+(-1)^{l_N+l_Y+J})(j'_N\frac{1}{2}J0|j'_Y\frac{1}{2})\frac{1}{2}(1+(-1)^{l'_N+l'_Y+J}),$$
(17)

$$S^{J}_{(l_{Y}j_{Y},n_{N}l_{N}j_{N}),(l'_{Y}j'_{Y},n'_{N}l'_{N}j'_{N})}(E) = -\frac{1}{\pi} \mathrm{Im} \int dr \int dr' r^{2} r'^{2} \tilde{j}_{J}(p_{K^{-}},p_{K^{+}};r)^{*} \phi_{n_{N}l_{N}j_{N}}(r) \\ \times G^{J}_{(l_{Y}j_{Y},n_{N}l_{N}j_{N}),(l'_{Y}j'_{Y},n'_{N}l'_{N}j'_{N})}(E;r,r') \tilde{j}_{J}(p_{K^{-}},p_{K^{+}};r') \phi_{n'_{N}}l'_{N}j'_{N}(r'),$$
(18)

where we use the relation

$$\tilde{j}_{JM}(p_{K^{-}}, p_{K^{+}}, \theta_{K^{+}} = 0^{\circ}; r) = i^{J} \sqrt{4\pi(2J+1)} \tilde{j}_{J}(p_{K^{-}}, p_{K^{+}}; r) \delta_{M0}.$$
(19)

We neglect couplings between $(n_N l_N j_N)$ and $(n'_N l'_N j'_N)[\neq (n_N l_N j_N)]$, and between $(l_Y j_Y)$ and $(l'_Y j'_Y)[\neq (l_Y j_Y)]$ by adopting single-particle potentials.

The differential cross section to a definite hypernuclear bound state is obtained by integrating Eq. (1) on small energy interval suitably chosen, and is expressed as

$$\frac{d\sigma}{d\Omega_{K^+}} = \alpha \left[\frac{d\sigma}{d\Omega_{K^+}}\right]^{(\text{el})} Z^{\text{eff}},$$
(20)

$$\alpha = \left(\frac{p_{K^+}}{p_{K^+}^{(2)}}\right)^2 \frac{p_{K^+}^{(2)} / E_{K^+}^{(2)} + (p_{K^+}^{(2)} - p_{K^-} \cos \theta_{K^+}) / E_{\Xi}^{(2)}}{p_{K^+} / E_{K^+} + (p_{K^+} - p_{K^-} \cos \theta_{K^+}) / E_{HY}},$$
(21)

where Z^{eff} is the effective proton number of the exclusive reaction. One should avoid confusions between α and β , and between Z^{eff} and S(E).

III. NUCLEUS-E POTENTIAL

Dover and Gal [3] made theoretical analyses of old emulsion data attributed to (K^-, K^+) Ξ -hypernuclear productions [12] and extracted nucleus- Ξ potentials of Woods-Saxon type;

$$U_{\text{nucl}-\Xi} = \frac{V_0 + iW_0}{1 + \exp\{(r - R)/a\}}$$
(22)

with $V_0 = -24 \pm 4$ MeV (real-part strength), $R = 1.1 A^{1/3}$ fm and a = 0.65 fm.

We assume the nucleus- Ξ^- potential of Woods-Saxon form with the same values of range and diffuseness parameters as the above. The imaginary-part strength is taken to be $W_0 = -1$ MeV. This imaginary part, together with the real part $V_0 = -24$ MeV, gives level widths of 1.2 MeV for 1s state and of 0.5 MeV for 1p state in the Ξ^- -¹¹B system. These widths are in good agreement with the $\Xi^- p \to \Lambda\Lambda$ conversion widths obtained from the Nijmegen model-D potential [7] by Ikeda *et al.* [6]. We examine also a stronger conversion case of $W_0 = -3$ MeV to know how results are sensitive to the imaginary potential.

The real-part strength V_0 is assumed to be -24 MeV for ²⁰⁸Pb. We, however, employ $V_0 = -16$ MeV in addition to -24 MeV for 12 C. Reasons why we investigate the shallow potential case are the followings. Yamamoto has suggested that the depth of the nucleus- Ξ potential derived from the Nijmegen interaction has no saturation property but depends on the mass number of the core nucleus [8]. This property is attributed to the fact that no single meson carries double strangeness and therefore the exchange force is weak between Ξ and N. Aoki *et* al.observed the twin Λ -hyperfragment production via capture by the emulsion-counter hybrid experiment Ξ at KEK [4]. The energy of the stopped Ξ^- on ¹²C is estimated to be -0.54 ± 0.20 MeV, which deviates from the finite-size Coulomb levels, -0.97 MeV for 1s, -0.28 MeV for 2p and -0.26 MeV for 2s. The $V_0 = -16$ MeV potential, when it is added to the Coulomb potential, shifts down the 2p state to -0.56 MeV, giving a plausible (but not unique) explanation for the stopped Ξ^- energy.

IV. Ξ^- -HYPERNUCLEAR SPECTRA FROM (K^- , K^+) REACTIONS

Spectra for ¹²C(K^-, K^+) and ²⁰⁸Pb(K^-, K^+) reactions are calculated at forward-angle $\theta_{\kappa^+} = 0^\circ$ with an incident momentum $p_{\kappa^-}=1.65$ GeV/c. We adopt $[d\sigma/d\Omega_{K^+}]^{(\mathrm{el})} = 35 \ \mu \mathrm{b/sr}$ [13]. In the calculation two proton-hole states $1p_{3/2}^{-1}$ and $1s_{1/2}^{-1}$ are included for the $^{12}{\rm C}$ case and six proton-hole states $3s^{-1}_{1/2},\,2d^{-1}_{3/2},\,1h^{-1}_{11/2},$ $2d_{5/2}^{-1}$, $1g_{7/2}^{-1}$ and $1g_{9/2}^{-1}$ for the ²⁰⁸Pb case. Proton-hole wave functions are calculated by using the Woods-Saxon potential with geometrical parameters of $r_0=1.27$ fm and a=0.67 fm. We employ strength parameters of V_0 = -61 MeV, $V_{LS}=22$ MeV. Hypernuclear spectra do not strongly depend on the detail of proton-hole wave functions, especially in the Ξ^- bound state region. Spreading widths of the proton-hole states are taken from ${}^{12}C(p, 2p)$ [14] and ²⁰⁸Pb(e, e'p) [15] experiments. We assume ΔE = 2 MeV as the energy resolution of a spectrometer. Results are shown in Figs. 1 and 2. The quasifree production of Ξ^- gets much stronger than the bound-state population, because of large momentum transfer 0.5 GeV/cwhich is about two times as large as the Fermi momentum in a nucleus. It is noted that all the deep-hole states sizably contribute to the continuum spectrum.

FIG. 1. The Ξ^- -hypernuclear spectrum from ${}^{12}C(K^-, K^+)$ for $p_{K^-} = 1.65 \text{ GeV}/c$ and $\theta_{K^+} = 0^\circ$. The threshold of Ξ^- and the core nucleus (ground state) is denoted by the vertical line. The full curve represents the total double-differential cross section. The dotted and dashed curves are for the contributions from proton hole states $1p_{3/2}^{-1}$ and $1s_{1/2}^{-1}$, respectively.

FIG. 2. The same spectrum from $^{208}\text{Pb}(K^-,K^+)$ for $p_{K^-}=1.65~{\rm GeV}/c$ and $\theta_{K^+}=0^\circ$. See also the caption of Fig. 1.

In Figs. 3 and 4 the calculations are compared with experimental data obtained at KEK by Iijima et al. [13]. The experimental data are averaged between $\theta_{K^+} = 1.7^{\circ}$ and 13.6°. However, we show the result at $\theta_{K^+} = 0^\circ$ because one at 13.6° is almost same. The magnitudes of the cross sections are fairly reproduced by our calculation in the Ξ^- quasifree production region. Since energies of $\Xi^$ are very high in the quasifree region, for example about 100 MeV at the quasifree peak, Ξ^- hardly feels the influ-

FIG. 3. Comparison between our calculated spectrum $(\theta_{K^+} = 0^\circ)$ for ¹²C target and the KEK experimental data taken from Ref. [13]. The experimental spectrum is averaged between $\theta_{K^+} = 1.7^\circ$ and 13.6° .

FIG. 4. The same as Fig. 3 but for the ²⁰⁸Pb target case.

ence of the nucleus- Ξ^- potential. Therefore, even if we change parameters of nucleus- Ξ^- potential, the spectra in the quasifree region are almost unchanged.

A. ¹²C
$$(K^-, K^+) \stackrel{12}{=} Be$$

Let us discuss in detail the spectra in the boundstate region of Ξ^- . Figure 5 shows the spectrum for

FIG. 5. The hypernuclear spectrum for ${}^{12}C$ target in the bound-state region as a function of $M_{\rm HY} - M_A$, where $M_{\rm A}$ and $M_{\rm HY}$ are target and hypernuclear masses, respectively. The spectrum is calculated with $V_0 = -24$ MeV and $W_0 = -1$ MeV. Energy resolution is taken to be 0 MeV.

FIG. 6. The same as Fig. 5 but it is smeared with $\Delta E = 2$ MeV.

the ¹²C target calculated with $V_0 = -24$ MeV and $W_0 = -1$ MeV, where the energy resolution is taken to be zero in order to compare it with the previous result by Ikeda *et al.* [6]. Two separated peaks appear below the $\Xi^- + {}^{11}$ B threshold at 399 MeV. The lower and upper peaks correspond to the excitation of hypernuclear states $[p1p_{3/2}^{-1} \otimes \Xi s_{1/2}]^{J=1}$ and $[p1p_{3/2}^{-1} \otimes \Xi p]^{J=0,2}$, of which decay widths are 1.2 MeV and 0.5 MeV, respectively. The widths are in good agreement with what Ikeda *et al.* obtained from the Nijmegen model-*D* potential. In the quasifree production region, however, our spectrum

FIG. 7. The same as Fig. 6 but it is calculated with $V_0 = -16$ MeV.

is smooth, while their spectrum is rugged even though there is no resonance. This indicates that the Green's function method is easier to get a good description of the continuum spectrum than the Kapur-Peierls method used by them. We introduce into the spectrum the effect of energy resolution of a spectrometer. The result with 2 MeV smearing is shown in Fig. 6. The heights of two peaks at $M_{\rm HY}$ - $M_A \sim 387$ MeV and 398 MeV become about 0.09 and 0.17 μ b/sr MeV, respectively. The effective proton numbers are estimated to be 0.012 and 0.017.

There is a possibility that the depth of the nucleus- Ξ potential depends on the mass number of core nucleus, as stated in Secs. I and III. Figure 7 shows the spectrum when the shallow potential of $V_0 = -16$ MeV is used. In this case there remains only one peak which corresponds to the $[p1p_{3/2}^{-1} \otimes \Xi s_{1/2}]^{J=1}$ configuration.

B. ²⁰⁸Pb $(K^-, K^+) \stackrel{208}{=}$ Hg

Figures 8(a) and 8(b) show the spectra for the 208 Pb target calculated with $V_0 = -24$ MeV and $W_0 = -1$ MeV in the cases of energy resolution $\Delta E = 0$ MeV and of $\Delta E = 2$ MeV, respectively. In the spectra we can see a series of Ξ^- bound-state peaks at $M_{\rm HY}$ - $M_A \sim 358, 362, 368, 374, 381$, and 387 MeV below the Ξ^- +²⁰⁷Tl threshold at 391 MeV. The prominent ones at 374, 381, and 387 MeV correspond to the excitation of spin-stretched states $[p1h_{11/2}^{-1} \otimes \Xi h_{9/2}]^{J=10}$, $[p1h_{11/2}^{-1} \otimes \Xi i_{11/2}]^{J=11}$ and $[p1h_{11/2}^{-1} \otimes \Xi j_{13/2}]^{J=12}$, respectively, as explained later. The selective excitation of spin-stretched states in the high momentum transfer reaction was pointed out many years ago by Dover et al. [10]. Hole states with small angular momentum such as $3s_{1/2}^{-1}$, $2d_{3/2}^{-1}$, $2d_{5/2}^{-1}$ are hardly excited in the Ξ^- bound-state region by the (K^-, K^+) reaction with large momentum transfer, though they give sizable contributions to the spectrum in the Ξ^- quasifree production region. Furthermore the second largest-*l* hole states, $1g_{9/2}^{-1}$ and $1g_{7/2}^{-1}$, show no sharp-peak structures because of their broad spreading widths [15]. Thus, the spectrum of $^{208}\text{Pb}(K^-, K^+)$ has the structure determined dominantly by the excitation of $p1h_{11/2}^{-1} \otimes \Xi^{-}$ hypernuclear states.

Let us discuss the structure of the prominent peaks in detail. Figure 9 shows the excitation spectra of the hypernuclear states with the configuration $p1h_{11/2}^{-1} \otimes \Xi$. A selection rule

$$l_p + l_{\Xi} + J = \text{even} \tag{23}$$

follows from the factor $[1 + (-1)^{l_N+l_Y+J}]/2$ in Eq. (17) which comes from the matrix element $\langle (l_Y 1/2) j_Y || \mathbf{Y}^J || (l_N 1/2) j_N \rangle$. For example, although $\Xi h_{9/2}, \ \Xi h_{11/2}$ and $\Xi j_{13/2}$ can contribute to the J=10hypernuclear state, the first one dominates the others by forming a spin-stretched state together with $p1h_{11/2}^{-1}$. Similarly, $\Xi j_{13/2}$ and $\Xi j_{15/2}$ are relevant in the case of the J=12 state, and the former gives the main component again forming a spin-stretched state. Figure 10 compares contributions from ls splitting partners. One of them is so weakly excited due to angular-momentum coupling coefficients of Eq. (17) that the ls splitting of Ξ^- cannot be observed but, fortunately, does not destroy the peak structures in Fig. 8. Thus, it is known that the J=12peak almost purely consists of the $[p1h_{11/2}^{-1} \otimes \Xi j_{13/2}]^{J=12}$ state.

It is noted that Ξ^- single-particle bound states exist at least up to $l_{\Xi}=7$ with the assistance of the Coulomb attraction between Ξ^- and ²⁰⁷Tl. Figure 11(a) shows Ξ^- density distributions together with the net potential which is a sum of strong, Coulomb and centrifugal poten-

FIG. 8. The spectrum from ²⁰⁸Pb(K^-, K^+) for $p_{K^-} = 1.65$ GeV/c and $\theta_{K^+} = 0^\circ$ calculated with $V_0 = -24$ MeV and $W_0 = -1$ MeV. (a) The case of resolution $\Delta E = 0$ MeV. (b) The case of $\Delta E = 2$ MeV.

FIG. 9. The total excitation spectrum of hypernuclear states with the $p1h_{11/2}^{-1} \otimes \Xi^-$ configuration (solid curve), and the contributions from spin-stretched hypernuclear states $[p1h_{11/2}^{-1} \otimes \Xi h_{9/2}]^{J=10}$ (dotted curve), $[p1h_{11/2}^{-1} \otimes \Xi i_{11/2}]^{J=11}$ (dashed curve) and $[p1h_{11/2}^{-1} \otimes \Xi j_{13/2}]^{J=12}$ (long-dashed curve).

tials. The dotted line is for the $l_{\Xi}=7$ state with energy -5.8 MeV and the dot-dashed line is for a $l_{\Xi}=0$ state with energy -5.4 MeV. We can see that the $l_{\Xi}=7$ state is well confined in the nuclear surface region by the centrifugal potential and is essentially different from the $l_{\Xi}=0$ Coulomb atomic state. As a result, the final $\Xi j_{13/2}$ state has a remarkably good overlap with the initial $p1h_{11/2}$

FIG. 10. Weight factors of ls splitting partners for the same J.

state shown in Fig. 11(b). Furthermore partial waves $\tilde{j}_{J=12}(p_{K^-}, p_{K^+}; r)$ in Eq. (18) is peaked at $r \sim 6$ fm due to the large momentum transfer. Therefore the J=12 peak gets prominent. Thus the centrifugal force plays an essential role in strongly exciting the spin-stretched high-J states. It was discussed by Bandō and Motoba that pairs with nodeless single-particle wave functions acquire a particularly strong population in the case of the (π^+, K^+) reaction [16]. The present result provides another typical example of their statement with a physical explanation.

FIG. 11. Probability distributions and potentials for $\Xi^$ and p. (a) The Ξ^- case: The solid curve is for the net potential of strong, Coulomb and centrifugal ones with $l_{\Xi}=7$. The dashed curve is for the potential without the centrifugal one. The dotted and dot-dashed curves are for density distributions of the $\Xi 1j$ state with energy -5.8 MeV and of the $\Xi 6s$ state with energy -5.4 MeV, respectively. (b) The proton case: The solid curve is for the net potential with l=5. The dotted curve is for the density distribution of the $p1h_{11/2}$ state.

FIG. 12. The same spectrum as Fig. 8(a) but calculated with $W_0 = -3$ MeV and $V_0 = -24$ MeV. Energy resolution is $\Delta E = 0$ MeV.

We examine the effect of the imaginary strength of the nucleus- Ξ^- potential. Figure 12 shows the spectrum which is calculated with $W_0 = -3$ MeV and $V_0 = -24$ MeV in the case of zero resolution. The peaks at $M_{\rm HY} - M_A \sim 374$, 381, and 387 MeV, which are clearly seen in Fig. 8, become broad but still remain. Many sharp peaks around the Ξ^- threshold are due to the excitation of Ξ^- atomic states. If a very high resolution spectrometer would become available, several hypernuclear peaks can be observed even in the strong imaginary case of $W_0 = -3$ MeV which gives a width of 6 MeV in nuclear matter. On the contrary, we could consider the case of a weaker strength than $W_0 = -1$ MeV for high-J Ξ states. Such possibility of width suppression will be investigated elsewhere.

Finally it should be mentioned that the $p1h_{11/2}^{-1}$ state of ²⁰⁷Tl is not dispersed as seen from the ²⁰⁸Pb(e, e'p) experiment [15]. This may provide a justification of our treatment of $p1h_{11/2}^{-1} \otimes \Xi$ states based on the singleparticle models. In sum, the characteristics of the (K^-, K^+) reaction makes it possible to observe some isolated peaks due to the excitation of Ξ^- -hypernuclear bound states even in the case of ²⁰⁸Pb. The most prominent peak at $M_{\rm HY} - M_A \sim 387$ MeV in Fig. 8(b) has a height of 0.4 μ b/sr MeV and an effective proton number of 0.024.

V. SUMMARY AND CONCLUSIONS

The K^+ spectra for ¹²C and ²⁰⁸Pb(K^-, K^+) reactions are calculated at forward-angle $\theta_{\kappa^+} = 0^\circ$ with $p_{\kappa^-} = 1.65 \text{ GeV/c}$ by using the Green's function method. The nucleus- Ξ potential is assumed to be of Woods-

Saxon form with complex strengths, $V_0 = -24$ MeV and $W_0 = -1$ MeV. The calculated spectra are folded with an energy resolution of $\Delta E = 2$ MeV.

In the spectrum of 12 C there appear two narrow peaks which correspond to the $[p1p_{3/2}^{-1} \otimes \Xi s_{1/2}]^{J=1}$ and $[p1p_{3/2}^{-1} \otimes \Xi p]^{J=0,2}$ hypernuclear states, as has been shown by Ikeda *et al.* [6]. The double differential cross sections to the lower and upper states are estimated to be 0.09 and 0.17 μ b/sr MeV, respectively, when a spectrometer of $\Delta E=2$ MeV resolution is used. Since it is suggested that the nucleus- Ξ potential depth is shallower for 12 C than for 208 Pb, the spectrum is also calculated with $V_0 = -16$ MeV for 12 C. In this case, there remains only one peak in the spectrum.

In the spectrum of ²⁰⁸Pb several well-separated peaks are observed in spite of many possible excitations, as seen from our main result Fig. 8(b). The peaks have the spin-stretched high-J structure, and the most prominent one is the $[p1h_{11/2}^{-1} \otimes \Xi j_{13/2}]^{J=12}$ state bound by about 6 MeV below the Ξ^- threshold. The (K^-, K^+) reaction populates selectively high angular-momentum states with no node. The configuration $p1h_{11/2}^{-1} \otimes \Xi$ essentially determines the shape of the spectrum from the ²⁰⁸Pb (K^-, K^+) reaction. The high- l_{Ξ} single-particle state can be bound with the assistance of strong Coulomb attraction between Ξ^- and ²⁰⁷Tl. The centrifugal force also plays an essential role. Since the force confines Ξ^- in the nuclear surface region, the Ξ^- single-particle state is not an atomic but a nuclear state. Because of a remarkably good overlap between the initial $p1h_{11/2}$ and the final $\Xi j_{13/2}$ wave functions, the J=12 hypernuclear state is strongly excited with a double-differential cross section of 0.4 μ b/sr MeV and an effective proton number of 0.024.

It is investigated how the spectrum changes if a stronger imaginary strength of $W_0 = -3$ MeV is adopted. The peaks in ²⁰⁸Pb become broad and are hardly distinguished from each other with a $\Delta E=2$ MeV resolution detector. However, if we could use a high-resolution spectrometer, some of individual peaks can be separated out even in this strong imaginary case.

By carrying out (K^-, K^+) experiments on both light ¹²C and heavy ²⁰⁸Pb targets, we can expect to clarify whether or not the mass-number dependence of the nucleus- Ξ potential depth exists. An experimental observation of Ξ^- states in ²⁰⁸Pb is awaited.

ACKNOWLEDGMENTS

The authors would like to thank Professor Y. Yamamoto, Professor T. Fukuda, and Professor S.W. Hong for valuable discussions. This work was supported by the Grants-in-Aid for Scientific Research of the Japanese Ministry of Education, No. 06640377.

- M. Danysz et al., Phys. Rev. Lett 11, 29 (1963); D.J. Prowse, *ibid.* 17, 782 (1966).
- [2] S. Aoki et al., Prog. Theor. Phys. 85, 1287 (1991).
- [3] C.B. Dover and A. Gal, Ann. Phys. (NY) 146, 309 (1983).
- [4] S. Aoki et al., Prog. Theor. Phys. 89, 493 (1993).
- [5] O. Morimatsu and K. Yazaki, Nucl. Phys. A435, 727 (1985); A483, 493 (1988).
- [6] K. Ikeda, T. Fukuda, T. Motoba, M. Takahashi, and Y. Yamamoto, Prog. Theor. Phys. 91, 747 (1994).
- M.M. Nagels, T.A. Rijken, and J.J. de Swart, Phys. Rev. D 12, 744 (1975); 15, 2547 (1977); 20, 1633 (1979).
- [8] Y. Yamamoto (private communication).
- [9] E.H. Auerbach, A.J. Balitz, C.B. Dover, A. Gal, S.H. Kahana, L. Ludeking, and D.J. Millener, Ann. Phys. (NY)

148, 381 (1983).

- [10] C.B. Dover, L. Ludeking, and G.E. Walker, Phys. Rev. C 22, 2073 (1980).
- [11] Particle Data Group, Phys. Rev. D 45, 1 (1992).
- [12] D.H. Wilkinson, S.J. St. Lorant, D.K. Robinson, and S. Lokanathan, Phys. Rev. Lett. 3, 397 (1959); A. Bechdolff, G. Baumann, J.P. Gerber, and P. Cüer, Phys. Lett. 26B, 174 (1968).
- [13] T. Iijima et al., Nucl. Phys. A546, 588 (1992).
- [14] H. Tyrén, S. Kullander, O. Sundberg, R. Ramachandran, and P. Isacsson, Nucl. Phys. 79, 321 (1966).
- [15] A.E.L. Dieperink and P.K.A. de Witt Huberts, Annu. Rev. Nucl. Part. Sci. 40, 239 (1990).
- [16] H. Bandō and T. Motoba, Prog. Theor. Phys. 76, 1321 (1986).