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Molecular-dynamics approach: From chaotic to statistical properties of
compound nuclei
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Statistical aspects of the dynamics of chaotic scattering in the classical model of o.-cluster nuclei
are studied. It is found that the dynamics governed by hyperbolic instabilities, characterized by the
positive Lyapunov exponents and the fractal dimensions, which results in an exponential decay of the
survival probability, evolves to a limiting energy distribution whose density develops the Boltzmann
form. The angular distribution of the corresponding decay products shows symmetry with respect
to the vr/2 angle. The time estimated for the compound nucleus formation ranges within the order
of 10 ' s.
PACS number(s): 24.60.Lz, 24.60.Dr, 05.45.+b, 05.60.+w

In the description of compound nuclei molecular dy-
namical approaches [1] (MDA) generating chaotic behav-
ior appear to provide an interesting alternative to quan-
tum stochastic methods [2] based on the random matrix
theory. Indeed, the resulting exponential decay of the
classical survival probability reIIIects the presence of Er-
icson fluctuations [3] as can be seen [4] from the semi-
classical energy autocorrelation function of an S-matrix
element. The corresponding unitarity deficit [5] allows
us to determine [1] the probability for the compound
nucleus formation. An important related issue which,
however, G.nds no quantitative documentation in the lit-
erature so far is the problem of statistical properties of
the objects to be interpreted as compound nuclei formed
within the molecular dynamics frame. These properties
are responsible for the decay characteristics such as ener-
getic and angular distributions of the outgoing particles.
The Boltzmann form of the energy distribution and the
symmetry with respect to 7r/2 of the angular distribution
are considered to constitute the most convincing signa-
tures that memory is lost and a certain kind of equilib-
rium is reached [6].

Because of an explicitly dynamical character MDA of-
fers a very attractive frame for addressing the related
questions. In particular, does an ensemble of two collid-
ing objects, each composed of a certain limited number
of interacting constituents, evolve to some limiting en-
ergy distribution. And, if so, under what conditions this
happens, what is the distribution and what are the time
scales involved. ? This question difFers from the one asked
in statistical mechanics where one assumes that at equi-
librium the system will have the most probable distri-
bution which results in the Boltzmann distribution, the
density of which is exp( —E/T). For an isolated system
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of n interacting particles obeying a nonlinear energy dis-
tribution law, Ulam conjectured [7] that n.o matter what
the initial distribution of energy is, we have convergence
to the exponential distribution. This conjecture, based
on the computer experiments, was proved later on math-
ematically [8]. The case of interest for the present con-
siderations corresponds, however, to open phase space
phenomena [9] and the particles escape from the inter-
action region after some time depending on the initial
conditions. Is there, then, enough time for the random-
ization to occur?

The model specified in Ref. [10] offers an interesting
and realistic MDA scheme and will be used here for ad-
dressing the above questions. This model was invented
to describe the breakup processes and can be considered
as a classical counterpart of the time-dependent cluster
theory [ll]. Thus, the elementary constituents are the
pointlike alpha particles and the corresponding two-body
potential has a van der Waals-type form which in the
present case can be parametrized as follows:

V(r) = ao/r + ai exp[ —(r —a2) /as ]

+a4 exp[ —(r —as) /ae ] for r ) r

V(r) = a7 + a, (r —r;„)' otherwise,

with parameters aq ———5.673 MeV, a2 ——3.781 fm, a3 ——

1.23fm, a4 ——1.6MeV, a5 ——4.351 fm, a6 ——0.896 fm,
and ao is the Coulomb parameter. The core param-
eters a7 = —3.164MeV and as ——4.004MeV/fm en-
sure continuity of the potential and its derivative atr;„=3.6355 fm. The above interaction is derived from
the adiabatic time-dependent Hartree-Fock approxima-
tion and thus incorporates globally the eKects of quan-
tum statistics. In order to make a clear point on the role
of deterministic chaotic dynamics no stochastic force of
Ref. [10] is included in the present analysis.

MDA study of the scattering processes is usually based
on the concepts of the transport theory [12] which, for
instance, allows us to determine the classical survival
probability P~(E, t) for a system to remain in the in-
teraction region with respect to a j —+ i transition. This
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is a quantity which, according to the semiclassical con-
siderations, determines, via the Fourier transform, the
energy autocorrelation function C;& of an S-matrix el-
ement, C,~(e) = (S,* (E)S;~(E + e))~, and thus makes
a link between the quantum and the classical picture.
Chaotic scattering connected with the existence of only
unstable periodic trajectories (hyperbolic chaotic scatter-
ing) results in an exponential decay:

P(E, t) - exp( —pt).

The resulting autocorrelation function has a Lorenzian
form: C(e) 5/(e + ibad), a characteristic of Ericson
fIuctuations observed in the decay of compound nuclei.
Whether this automatically guarantees appearance of the
other characteristics of the compound nucleus is, how-
ever, not immediately obvious. Actually, the literature
presents schematic two-dimensional studies of chaotic
scattering on deformed nuclei [13] or on various three
center potentials [14—16] which lead to the exponential
decay of I (E, t) but the angular distribution of outgo-
ing trajectories is not symmetric with respect to the ir/2
angle and the corresponding energy may remain even a
constant. A realistic MBA description of nuclei involves,
however, many more degrees of freedom. In the model
considered here, both the target nucleus and the pro-
jectile are composed of the interacting o. particles, each
of them moving in the six-dimensional phase space. Fur-
thermore, in order to simulate reality and for consistency
with the transport theory the nuclei are defined as the
statistical ensembles of elementary constituents. Each
configuration in such an ensemble is constructed [1, 10]
so as to ensure the proper binding energy of a nucleus
and its internal linear and angular momenta zero.

We begin by studying the time evolution of the en-
ergy distribution of particles for C + C head-on reac-
tion and concentrate on the higher energy part because
it eventually drives the decay. First, 4 x 10 scattering
events involving various internal configurations of both
nuclei have been generated. The time evolution is con-
tinued in each case until the resulting compound sys-
tem does not decay. Thus, for longer times the number
of events which determine the energy distribution of in-
dividual particles decreases. As, however, is shown in
Fig. 1 this process clearly establishes a limiting energy
distribution p(E) comparatively soon, within the times
of the order of 8—10x10 22 s (measurement of time be-
gins at the closest approach distance). Before collision,
the energy distribution of particles is the one representing
ground states of the two nuclei at separation and is well
localized. The initial relative motion boost shifts this
distribution to positive energies. The early stage of the
collision converts energy of the relative motion into an
internal one and, therefore, p(E) disperses in the direc-
tion of much higher energies. These high energy particles
quickly escape from the interaction region and for the
remaining events p(E) approaches an exponential form
whose slope allows us to define a temperaturelike param-
eter T. This, however, is not yet a limiting distribution.
By preserving the exponential form p(E) decreases the
slope which reaches the limiting value corresponding to
T = 1.3 MeV for times of the order of 10 s as can be
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FIG. 1. Upper part: Energy distribution of particles for
C + C head-on reaction at 20 MeV incident energy: be-

fore collision (solid circles —solid line is to guide the eye), at
the initial stage (t = 0 in our time scale) —when the relative
momentum of the two C becomes zero (squares —solid line
represents Gaussian fit), at t = 6 x 10 s (triangles —long
d.ashed line represents exponential Bt), at t = 16 x 10 s
(diamonds —short dashed line represents exponential fit) I and
at t = 24 x 10 s (open circles —dash-dotted line represents
exponential fit). Dotted line indicates the limiting distribu-
tion of the kinetic energy. Lower part: Corresponding time
dependence of the parameter T describing the slope of the
exponential fits to the high energy distribution of particles.

seen from the time evolution of the parameter T shown in
the lower part of Fig. 1. Independent estimates [17] pre-
dict the minimum number of collisions for a compound
system to reach equilibrium to be three. Then assuming
that the time between subsequent collisions equals the
traversal time through the system, for our energy of 20
MeV one essentially obtains the same value of 10 2 s.
At the same time the distribution of the kinetic energy
alone also reaches the limiting value but the correspond-
ing slope parameter T = 1.6MeV, as it is indicated by
the dotted line in Fig. 1. The difI'erence in T refIects the
fact that this is a strongly interacting quasibound sys-
tem. Consequently, some particles with large kinetic en-
ergy may enter the region of significant attraction which
lowers their total energy and changes the corresponding
slope of p(E) towards the smaller T. It is also interest-
ing to notice that, as the direct calculation shows, out
of the initial 20 MeV of energy, on the average, about
14.5 MeV is deposited in the kinetic energy. Since the
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kinetic energy enters the Hamiltonian in the separable
form one may expect the equipartition theorem [18] to
hold for that fraction of energy. Bearing in mind that
our problem involves 18 degrees of freedom one obtains
T = 1.6MeV almost exactly.

The observation of primary interest for our present dis-
cussion is that the time of approaching the above equi-
librium values is strongly correlated with time the expo-
nential decay of the survival probability sets in. This can
be concluded from the upper part of Fig. 2 which shows
the number of events N(t) such that all the particles still
remain in the interaction region up to time t. Such an ex-
ponential decay is characteristic of the hyperbolic chaotic
scattering where delay of the scattering trajectories in the
interaction region is connected with the existence of only
unstable periodic trajectories. Under this condition the
decay rate in Eq. (2) is predicted [16,19] to be described
by

p = Z;A;(1 —D;),
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FIG. 2. Upper part: A number of two-body events N liv-
ing until a given time and leading to an o.-particle emission
after C + C head-on collision at 20 MeV incident energy.
Straight line represents exponential fit for times longer than
7 x 10 s. Inset shows the spectrum of positive Lyapunov ex-
ponents. Lower part: Corresponding energy spectra of emit-
ted o. particles, collected for shorter (t ( 8 x 10 s—circles)
and longer (t ) 8 x 10 s triangles) times of life of the
composite system (cf. upper part) in 0.5 MeV. Solid line rep-
resents Gaussian Gt to the former; dashed line -xponential
fit to the latter.

where A, and D, denote the positive Lyapunov exponents
and the partial &actal dimensions, respectively. All pos-
itive A; for our 18-dimensional problem, calculated ac-
cording to the prescription of Ref. [20], are shown in the
inset to the upper part of Fig. 2. There exist no well-
defined methods to calculate the partial fractal dimen-
sions D, for multidimensional problems. Because more
particles are involved and any of them can escape &om
the interaction region, typical D, in the present case is,
however, expected to be significantly closer to unity than
the fractal dimension ( 0.65) corresponding to the sim-
plified version of the same model [16] in the region of
hyperbolic instabilities. In fact, a simple estimate based
on the scaling relation between the difFerence in initial
impact parameter for a pair of the scattering events and
the resulting fraction of events uncertain in the decay
mode or emission angle (uncertainty exponent technique
[21]) gives a value of 0.9. This, most probably, does not
correspond precisely to any of the D; but provides a rea-
sonable indication for some average value. Via Eq. (3),
the above values of A and D give an estimate which agrees
with p 0.015 as extracted from the time dependence of
the survival probability shown in Fig. 2. This provides
direct evidence that in the classical limit the physics of
compound nuclei is governed by the positive Lyapunov
exponents and the structure of instabilities is fractal.

Another important and consistent result, extracted
from these calculations and illustrated in the lower part
of Fig. 2, is that the distribution of the kinetic energy
of the escaping o. particles collected from all the events
entering the exponential region (t ) 8 x 10 22 s) is also
exponential in energy. The slope parameter T describ-
ing this distribution equals 1.5MeV and is thus larger
than the one corresponding to the total energy distribu-
tion inside the compound system but somewhat smaller
than the one describing kinetic energy. The later effect is
natural and reHects the existence of attraction in the two-
body interaction. The former partly originates from the
fact that the escape of more energetic particles from the
compound nucleus is more probable due to the Coulomb
barrier. The fast particles, escaping at an early stage
of the collision (times up to 8 x 10 s), are Gaussian
distributed similarly as they are inside the compound
system (Fig. 1). Finally, we wish to mention, without
explicitly demonstrating here, the result, that for periph-
eral collisions of C + C in the decay channel to the
same final configuration we identify the power-law decay
of the survival probability which is typically connected
with the existence of more solid structures (KAM sur-
faces) in the underlying phase space [16]. No universal
limiting energy distribution exists in this case.

Our study of the statistical properties of a compound
nucleus was based so far essentially on investigation of the
temporal aspects of chaotic motion. A more severe test
may come from the analysis of spatio-temporal aspects
such as the angular distribution of the decay products.
This particular characteristic is especially interesting in
nuclear physics but the need for studying the spatio-
temporal aspects of chaotic motion is identified [22] also
from the more general perspective. In the present con-
text we are mostly concerned with the conditions under
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which the compound system, in a sense, forgets the way
it was formed and as a consequence decays symmetrically
with respect to the 7r/2 angle in the center-of-mass frame.
In order to make such a study meaningful one needs to
break the mass symmetry in the entrance channel. For
that reason we still consider the same compound system
as before (six n particles) but, this time, produced in the
o. + Ne reaction. At 20 MeV for this initial configura-
tion the probability for the compound nucleus formation
is much smaller than for C + C; therefore, we lower
the energy to 15 MeV. The relevant results for two differ-
ent angular momenta l = 0 and l = 5 are shown in Fig. 3.
Because of lower energy the dynamics is somewhat slower
and, consequently, the initial stage of the reaction, before
the exponential decay, takes about 5 x 10 s longer than
previously. Still, one observes an impressive coincidence
between the behavior of the survival probability and the
form of angular distribution of the emitted o. particles.
Events surviving not longer than 11 x 10 s remember

the initial direction of motion and the emission of the
o. particles occurs in the forward direction with much
higher probability. A larger fraction of such a type of
events governs the dynamics for l = 5 than for the cen-
tral collisions (I = 0), simply because the corresponding
transmission coefBcients [I] are smaller for more periph-
eral collisions. The angular distribution of all the events
decaying after t = 20 x 10 s shows symmetry with
respect to the vr/2 angle for all angular momenta. The
dip in the region of vr/2 seen for I = 5 is the known egect
connected with the collective rotation of the compound
system. The angular distribution of cases decaying for
the intermediate times between 11x 10 and 20 x 10
s also displays the intermediate shapes which rejects the
fact that the transition is gradual. This distribution for
l = 5 is, however, already closer to the symmetric one
than for l = 0 because of a tendency to regular orbiting
which reduces the number of particles emitted in forward
direction already at this stage.

Q 000'

3-
~ 5 ~

aO1-f g I o

3-

k
0 s

0
4 ~ 4 4 coif:

0.01—

3 ~ I i I ~ I a I e

0 200 400 600 800 1000

t [10 "s]

43-

0
I I

n/2

6 [rad]

Q ooo

f

—2-

I I I I I I

200 400 600 800 i000
~ [lo-» s]

4
3-& ~ ~

0.1 =)

N

05 4

2-

0.01 =

0
~ ~ ~ ~

~ ~ ~ ~

~ ~

4

I I I

a~/4
I

7r/2

8 [wad]

o 0
0 4 0 I

o I 0 4
4 s e

FIG. 3. Relative number of events before n-particle emission from the composite system living up to a time t (on the left)
and. the yield of the outgoing cr particles (on the right) from the n+ Ne head-on reaction, l = 0 (upper part) and I = 5

(lower part) at 15 MeV incident energy as a function of the scattering angle. Triangles represent o, particles escaped before
t = 11 x 10 s and circles those escaped after t = 20 x 10 s. Full line in l = 0 part represents mean value of the yield.
Distributions for the intermediate times are indicated by squares. Error bars correspond to the statistical uncertainty (square
root of the number of events).
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The many-body model of nuclear dynamics generating
chaotic behavior is thus able to reproduce not only the
probability of the compound nucleus formation [1] and
the correlation width but also to account for more subtle
eKects connected with the decay such as energy and an-
gular distribution of the emitted particles. The appear-
ance of these characteristics is strongly correlated with
an exponential time dependence of the survival probabil-
ity. This, in turn, rejects the fact that the underlying
dynamics is connected with those regions of the phase
space which are characterized by the existence of unstable
periodic trajectories only. It is the presence of these tra-
jectories which leads to an exponential time delay. The
number of such trajectories increases exponentially with
energy. The exponential energy distribution of the emit-
ted particles and. the total energy conservation thus im-

ply that the survival and energy spectrum of the residual
system should also be governed by the unstable periodic
trajectories. This time, however, they are connected with

the phase space of the residual nucleus and are expected
[23] to prescribe the corresponding density of states. This
sets a parallel to the quantum mechanical picture: proba-
bility for a particle emission is proportional to the density
of states in the residual nucleus. One may then conclude
that appearance of the above attributes of compound nu-
clei demand. s the presence of hyperbolic instabilities in
the residual nucleus. This is a stronger condition than
the one encountered in the schematic models mentioned
above where chaos is generated by the coupling between
the projectile and the target. It is, however, interesting
to note that all the conditions for a compound nucleus
formation can be fulfilled in the systems with a relatively
small number of constituents.
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