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Microscopic abrasion-ablation approximation to projectile fragmentation
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This microscopic abrasion-ablation model approximates primary fragment cross sections using
the Glauber interaction probabilities of the individual nucleon orbitals. It estimates the excitation
energy distribution of the primary fragments using the density of hole states left by the abraded
nucleons. The secondary (observable) cross sections are obtained by taking into account the statis-
tical decay of each primary fragment over its entire range of excitation energy. The agreement with
experimental data is good for light projectiles but deteriorates with increasing mass of the projectile,
due to the increasing importance of secondary collisions of the abraded nucleons with the rest of the
projectile.

PACS number(s): 25.70.Mn

I. INTRODUCTION

Fragment emission has been recognized as a common
feature of heavy-ion reactions at intermediate and higher
energies for many years now [1—6]. Its importance and
subtleties are confirmed by the fact that it continues to be
the subject of experimental [7—12] and theoretical [13—17]
study. The process has also won a great deal of current
interest as a means for producing secondary beams of
exotic nuclei [18].

One of the first models to attempt a description of
heavy-ion &agmentation was the abrasion-ablation one
of Bowman, Swiatecki, and Tsang [2]. In the model's
abrasion stage, the nucleons in the overlap volume of two
energetic heavy ions are scraped oB' (abraded) as the ions
pass each other. In the subsequent ablation stage, the ex-
cited projectile and target &agments decay by emitting
particles. Bowman, Swiatecki, and Tsang estimated the
excitation energy of each fragment as the difference in
the surface energy of the abraded fragment and that of a
sphere of equal volume. Although the model succeeds in
describing the overall characteristics of the data, it sys-
tematically overestimates the cross sections of fragments
from which few nucleons had been abraded. Final-state
interactions, introduced in the model's abrasion stage by
Hiifner, Schafer, and Schiirmann [3] and also Oliveira,
Donangelo, and Rasmussen [6], succeed in providing the
extra energy needed for the discrepant nuclei to decay.

However, final-state interactions muddy the model's
clean division of the nucleons into participants and spec-
tators of the reaction. Once the abraded nucleons are
taken into consideration when calculating a fragment's
excitation energy, it is dificult to argue that they would
not inHuence its charge and mass by abrading other nu-
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cleons. Thus, instead of completing the abrasion-ablation
picture of fragmentation, the introduction of a 6nal-state
interaction makes its inadequacies apparent.

Although over 20 years have gone by since the
abrasion-ablation model was proposed, work on projec-
tile &agmentation continues. In the time that has passed,
the great increase in computing power and reduction in
its cost have made the dynamical simulation of heavy-ion
reactions feasible. Among the available models are the
cascade [19] and Boltzmann-Uehling-Uhlenbeck (BUU)
[20] ones and the various versions of molecular dynamics
[21—23]. One hopes, by using one of these, to obtain a
more accurate description of the abrasion of nucleons and
deposition of energy occurring in the initial stage of the
collision. Each of these models has individual advantages
and drawbacks, making them more or less suitable for the
description of fragmentation reactions. But, because of
their complexity, all are much more time consuming than
a geometric or Glauber abrasion calculation.

Two recent works have used a revised abrasion-
ablation model consistent with the spectator-participant
picture in one more attempt to obtain a simple descrip-
tion of the observed experimental &agmentation yields
[14,16]. They approximate the primary fragment exci-
tation energy as that of the holes left by the abraded
nucleons. The resulting excitation energy is, on the aver-
age, two to three times larger than that obtained in the
original abrasion-ablation model. The agreement of these
models with the light-projectile data is surprisingly good,
given that they do not take into account the Anal-state
interactions found to be important in earlier calculations.
However, after looking more closely, one Ands that 6nal-
state interactions are still needed to obtain agreement
with the experimental data, although to a lesser degree
for light projectiles than for heavy ones.

This work attempts to provide a microscopic foun-
dation for the revised abrasion-ablation models of
Refs. [14,16]. It begins with a careful derivation of the
expressions for the microscopic abrasion cross sections
and for the secondary yields after ablation. Calculations
with the model are then compared to experimental data
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and to dynamical simulations using the BUU approach.
The comparison with BUU simulations sheds light on
the manner in which the microscopic abrasion calculation
might be later extended to include more of the physics
of the &agmentation process.

II. THEORE'APICAL DEVELOPMENT

In this section, expressions for the microscopic abra-
sion cross sections are derived. In the first part, "exact"
expressions for the abrasion cross sections are obtained.

I

In the second, approximations are made that reduce these
to a calculable form. Finally, the calculation of secondary
ablation yields is discussed.

A. Derivation of Glauber amplitudes and cross
sections

Let us begin, as do Hiifner, Schafer, and Schiirmann
[3], with the Glauber approximation to the amplitude for
the scattering of a projectile (P) by a target nucleus (T)
[24],

+0 0 -+M M (ri) =
27ri

d2$ e~g.b MpMr e'~j' —1 OpOr
I M ~

j &P,l&T

The two ions, initially in their respective ground states,
IO~) and IOz), are excited to states IM~) and IMT),
respectively. We will assume that the fast nucleons in
the projectile can be distinguished &om the slow ones in
the target and thus neglect antisymmetrization between
the ions.

The transition operator contains the phase shift "func-
tions, "

gz~ = y, ~(s~+b —s~) for the scattering of nucleon j
of the projectile by nucleon l of the target. If we take the
projectile to move in the z direction, we can decompose
the position vector x~ of particle j (with respect to the
projectile center of mass) into its z component and a com-
ponent sz in the impact parameter plane, xz ——(s~, z~).
The target coordinate xl can be decomposed similarly
with respect to the target center of mass, x& = (s&, z&).
The impact parameter b denotes the relative position of
the two centers of mass in the plane perpendicular to the
z direction.

Although we will not assume that the nucleons only
scatter elastically, we will assume that the basis is large
enough to ensure that the e'+&' are urutary. (y~~ could
be a matrix including such processes as N + N —+ N +
L, L + L, etc. The basis would then have to include
these channels as well. )

Returning to the expression for the scattering ampli-
tude, we can write the angular distribution in its terms
as

(q) = I+0 M M (a)l',

where we have abbreviated the initial state as 0
OPOr

As we will not observe the Anal states of the target,
we can sum over them and use closure to eliminate Mr
from the expression. We have

(a) = ).I+~ M M (v)l'
MT

k2
g2g d2gI i~ (b —b') O

(2~) 2
I ~I

j,l

e '+ —1 MP MP e'+' —1 OP Or
j,l

To obtain the corresponding cross section, we integrate this expression over angle. We have

1
d2

do
00—+My k2 g d~

6 (OTIX0 M (b) IOT) (4)

where

—i t bXo M )b) = (O«e 'e,"I ) —) M«)(M«
M «M

j,l

i~j& (b)
I M M

j,l

It is this last expression that we will now try to simplify.
To do this, we must erst characterize the initial and 6nal
states.

We will assume that both the initial and final states

I

can be expressed as antisymmetrized products of single-
particle states. We denote the set of initially occupied
states by Qo and take their number to be Ao. We assume
that the final states of interest will be those describing the
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occupancy (or vacancy) of a set of single-particle states
that we denote by Mo. The set of Gnal states, Mo, will
contain the set of initally occupied states, 00, but need
not be restricted to them.

A final state mill be characterized by the subset of /HO
of occupied. single-particle states, which we will denote by
occ, and by the single-particle states, p, , not contained
in Mo, that the remaining nucleons occupy. The 6nal
number of occupied states in ~0, A „,cannot exceed

I

the initial number of nucleons, Ao. Ao & A „.
We write the antisymmetrized initial state as

(x& . . x&oIOs') =
Ao

1
, ) (—I)" (&p(.)lo~) (6)

p j=1

where we denote by p each of the possible AOI permu-
tations of the indices. We can mrite the Anal state in a
similar manner as

(x„.. . , x„.IMp)—
p

Aocc

(zp(, ) Im, )
j=1

Ap

(&p(') I»)
j=A...+1

where we have denoted the set of states occ by {mq, . . . , m~ ..).
To simplify the notation slightly, we follow Ref. [3] in defining for each nucleon in the projectile,

Q(x, ) =

We then write the matrix element as (we neglect the 1 for the moment)

Q(~j) os') = ~, f
2 2=1

Aocc

d z; ) ( l)"+" —(m~lx„( ))

Ao

Aocc+ 1

Ao Ao

(» Ixp'(j)) Q(x. ) (xp(, ) lo~') (9)

Since the product Q. Q(xz) is symmetric in the coordinates, it is invariant under permutations. We can thus remove

the permutation p from the 6nal-state coordinates, pass it through the product, and apply it to the initial coordinates.
We can then go one step further and apply the permutations to the initial-state index rather than the coordinate one.
(In practice, this is a change of variables, but they are dummy variables. ) Finally, we rearrange the matrix element
as

(
Aocc

Q(, ) &~) = ~, ):(—)'" ~'*,(,l" )Q(" )(" 1'„(,))
2 P)P j=1

Ao

d'*~(~~I~~)Q(x' )(~~lopp (~))
~

~

j=A...+1

Now we observe that the matrix element only depends on the permutation pp'. We can thus redefine the sum pp p,

as another sum g with pp' -+ p and p' ~ q. The sum over the permutations q is trivial and cancels the factor of
s

1/Ao!, leaving us with

Aocc

Q(x, ) o~) = ) (
—i)'

J p j=1

Ao

Q~.p(i) Q( &p(~) ~

j=A, +1

where we have taken the liberty to define

Q p(j } =
(mj IQIop{j)) and Qp p(j )

= (» IQIop(j))

In terms of these, we can write the quantity Xop~Mp of Eq. (5) as

Aocc A.o

. ... Qp (&)~ Q~, p(i)
2=1 j=Aocc+ 1

nt
Qp'(i) ~~Q&~ p(~)'

The next step will be to eliminate the states outside of Mo, the pj that we assume will not be observed. In order
to do this, we make use of a general property of antisymmetrized products, which is demonstrated in Appendix A.
This is that
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) ( l)P+s

Psp

N ( M

) Qp'(j)scQ/gp(j) ) ) ( l)p+P'

(Ieg s. ..skN )PsP'
..Q. .p (j)s, Qs~. p(i ) ~

j=1

M&N,

M&N, (l4)

where, on the right-hand-side expression, we mean by g&& & &
the sum over all possible N element subsets of the

states k1, k2, . . . , kM.
We use this result to simplify the sum over the unobserved pj states. We denote the sum over all possible combi-

nations of the yj states by g& &. We use the equality above to rewrite this sum of products as a product of sums.
We have

Aocc Ap
I) Os mMs ( ) ) )M( ) ... Qp'(j) iraq Q~Sp(j) Qp'{j) ySQpqp(j)

f» ~) &» ~) PP' j=1 j=Aocc+1

Aocc Ap

Q, (, ) Q-, p(j) ). Q, (,)„Q~P(j)
j=A...+1 (,qAA.

We can now use closure to rewrite the sum over the states p in terms of the states in Mo,

0 Qp'{j) pQ&p(s) p'(j) p(j) 0 Qp'(j) mQ~p(j)
P, P Alp mgMp

We then have, for g& l Ao ~M, the expression

Aocc

) X (b)=
(

„) (—&)+ Q (),Q,„()
occ 0(.-) PsP 2=1

Ap
~t

p'(j) p(j) 7 ~p'(j) ~Q~P(j)
j:A~«+1 k ~GAAa

(l.7)

We can simplify this slightly by verifying that the terms in the sum, P zAA, that are also in the set of occupied
states, occ, will vanish due to the antisymmetrization. If we define the set of vacant states in Mo, denoted by vac, as
the set of states which are not in occ, we can write the result in a somewhat symmetrical form as

) Xo M (b)= ) ( y)p+p
&occ (~O &occ).

Psp

Ap

Aocc ). Qp(j) Q p(i) '

j='1 mQ occ

M

j=Aocc+1
~p'(j) p(i ) ) Qp'(j ) Q p(j)

mQvac

The expression for quasielastic scattering is similar. To
obtain it, we need only include the additional diago-
nal terms. We note that the quasielastic expression is
strictly elastic only when the initial and final sets of
single-particle states, 00 and Mo, coincide. When Mo
contains additional states, it contains quasielastic contri-
butions to the scattering. These are due to reactions in
which nucleons are excited to the additional states in Mo
instead of being abraded.

B. Optical averages and other approximations

Using the Glauber approximation to the nucleus-
nucleus scattering amplitude and expressing the initial
and final projectile states as antisymmetric products of

I

t

single-particle states, we have derived "exact" expres-
sions for abrasion and quasielastic cross sections. We
now reduce these to a calculable form by making two
simplifying approximations.

We begin by averaging over the target ground state.
We write the cross section as

0~~M~ —— d b XO~My

where

Xo M (b) = (OT ) Xo M (b) OT)
(»)

To evaluate the latter expression, we use the coherent
approximation used in Ref. [3]. We have

XO~M (b) = &,(& & ), ) (—&)"+"
Psp

Ap

A, (
Qp (') -Q-p(')

g=1 mgocc

~p (') p(') — Q. (')-Q-.(')»
mgvac
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where the average single-particle amplitudes are given by

q, (,.)
—

(m e'x (b( os(, ))b 4 I

lgT
OO

dzd smt(z, s) exp i — dz UP (z, b —s) oz~~)(z, s) . (22)

The quasielastic expression is similar in form to the abra-
sion ones.

Although these expressions are in principle calcula-
ble, their calculation would still be quite demanding.
At each impact parameter, we would need to obtain at
least Ao (Ao + 1)/2 matrix elements, Q „l )

——(Q l ) )
*

(more if Mo contains more states than those in 0()) which
would then have to be combined in antisymmetric prod-
ucts. To avoid this, we make yet another simplifying
approximation: we neglect the matrix elements between
nonidentical states. While we do indeed expect the ne-

I

glected matrix elements to be small, it is not obvious
that they need be negligible in comparison to the ones
we keep. Yet, the approximation is an extremely conve-
nient one. We will use it for this reason alone, keeping in
mind its need of justification.

Having made this last approximation, that is,

Q- (') ~ Q ()(b)~- & )

we rid ourselves of a few extra indices by redefining the
surviving matrix elements as

Q, (b) =
OO

dzd so (z, s)exp i f— dzUP (z, b —s) oz(z, s) . (24)

We note that this approximation effectively reduces the
set of final single-particle states Mo to the set of initial
ones Qo, as it discards the matrix elements that would
couple the states in 00 to any other states in ~o.

With these simplifications, the permutation sums can
be performed explicitly. We find

T(b) = 1 —l~(b)l' = 1 — IQ, (b)l'.

The reaction cross section is then given by

0, , = d bTb.

(28)

(29)

Xo~M (b) =

and

h h

j6occ
I Q, (b) I' (1 —

I Q, (b) I') (25)
g QVB.C

It can be shown that the abrasive X expressions, when
summed over all configurations and all mass losses, yield
the transmission coeKcient,

X (26)
Aocc(Ap (occ~A «}

If we interpret the elastic X expression in terms of an
S matrix,

S(b) = Q (b),
jqc)p

(27)

we can write the corrresponding transmission coeKcient
as

The abrasion cross sections thus exhaust the reaction
cross section.

Similar Glauber multiple scattering expressions have
been used in Refs. [13,25] to describe the elastic scat-
tering and breakup of halo nuclei. The relationship of
our expressions to those derived by Hufner, Schafer, and
Schiirmann is detailed in Appendix B.

The distinction between neutrons and proton is easily
introduced by making their isospin index evident. We can
write the difI'erential contribution to the cross section of
Eq. (25) as

&o~z ~ (b) =
gv +Occv

IQ,.(b) I'
gv'EVacv gm QOCCn'

IQ,.(b) I'
j Qvac

(31)

with all other expressions just as straightforward.
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C. Primary and secondary yields ergies,

The cross sections derived above are given for a well-
defined set of occupied final single-particle states. We
want to transform the latter into a difFerential cross sec-
tion that depends on the excitation energy of the final
fragment. To this end, we associate a single-particle en-
ergy to each of the projectile single-particle states. Then
we estimate the excitation energy in terms of the single-
particle energies, ej, of the holes left by the knocked-out
nucleons.

In a single-particle picture, knockout of the outermost
nucleons would produce the ground state of the fragment
nucleus. However, the corresponding sum over hole en-

gv +VcLcvp jm Cv&cwp

would not necessarily be zero. Thus, the excitation en-

ergy, e, must be defined relative to this "ground state"
energy,

s =') tj„+ ) ej» —so
v +VScv j gvac

The differential primary cross section can then be written
as

lop
QE

(s, Zg, Ay) =
(occv)occ~ )Zf )A f )

8 s — ) t&„— ) E& + Eo

gv +VSCv

gv +Occv )v +VScv j~ Qocc 2~ Gvac~

(34)

Physically, the estimate of the excitation energy in
terms of the hole energies corresponds to the assump-
tion that the knocked-out nucleons leave the projectile
suddenly without perturbing it while exiting. It also as-
sumes that the remaining nucleons are true spectators,
feeling no inBuence of the knocked-out projectile nucleons
nor of the target ones. Such assumptions are consistent
with the Glauber approximation to the cross sections.

The conversion &om a detailed description in terms of
the final occupied single-particle states to a distribution
in excitation energy neglects single-particle information
that could play a role in the subsequent decay of the pri-
mary &agment. In a given range of excitation energy, it
is possible to have contributions to the cross section from
both simple and complex particle-hole configurations. In
a preequilibrium analysis, the simple configurations that
concentrate the excitation energy in few particles and
holes would tend to decay more rapidly than the complex
ones. By lumping all configurations into an excitation-
energy-dependent cross section, we have assumed that
such preequilibrium efFects can be neglected.

We thus assume that the decay during the ablation
stage occurs by (multiple) statistical particle emission
&om an equilibrated primary kagment. We write the
result of the evaporation calculation as the probability,
P(Z, A; e', Zy, Ay), of yielding a residue of charge Z and
mass A, given a primary compound nucleus of charge Zy,
mass Ay and excitation energy c. In terms of this quan-
tity and the differential primary yield, do'0(s, Zy, Ay)/ds,
the secondary cross section, o.(Z, A), can be expressed as

»(Z, A) = ) J d~P(Z, A;e, Zg, A )(e, IZED, Ay) .

Zy, Ay

It is this quantity which is to be compared with the ex-
perimental data.

III. RESULTS AND DISCUSSION

We begin this section by brie8y discussing the optical
potentials and the nuclear structure and statistical decay
models used in the calculations, as well as the physical
parameters used. We then compare calculations to exper-
imental d.ata for light, medium, and heavy nuclei, in turn.
We close with the comparison of a Glauber abrasion cal-
culation to a dynamical simulation performed using the
BUU approach.

A. Optical potentials, +rave functions, and other
details

The optical potentials in the abrasion matrix elements,
Eq. (24), are estimated using the impulse approximation.
The real part of the forward nucleon-nucleon scattering
amplitude is neglected while its imaginary part is deter-
mined by the optical theorem. The optical potential for
neutrons thus reduces to

i UP (z, b) = (rp„p (z, b)+(r„„p„(z,b),

while that for protons becomes

i UP'(z, b) = oppp (z, b) + o„„p„(z,b) .

The target proton and neutron densities, p (z, b) and
p„(z, b), are estimated using global fits to geometrical
parameters obtained from elastic electron scattering data
[27]. The same geometry is used for both neutrons and
protons.

The neutron-neutron cross section, ~, is taken to be
equal to the proton-proton one, a„„. Simple fits to the
energy-dependent &ee-space total cross sections are used
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for the proton-proton cross section, o„„,and the proton-
neutron one, o„„.

Harmonic oscillator wave functions with a characteris-
tic energy of Ru = 40/A ~ MeV are used for the projec-
tile states. The single-particle energy levels are obtained
Rom a spherical Nilsson scheme with the same charac-
teristic energy but including spin-orbit splitting and an
E . E shift.

Abrasion matrix elements were calculated for various
nuclei using the complete radial and angular wave func-
tions for each state and, again, using just the radial wave
functions of each level. A comparison of the resulting
primary cross sections and energy distributions revealed
negligible differences. In the results presented here, each
abrasion matrix element is calculated with just the ra-
dial wave function of a level and is then used for all of
the states of that level. This approximation can sub-
stantially reduce the execution time of the combinatorial
calculation of primary yields and energy distributions. It
does so by reducing the sum over the combinations of
occupied states in each partially filled level to a simple
binomial factor.

As the number of abraded nucleons increases, combi-
natorial calculations of the primary yields and the en-
ergy distributions of Eq. (34) quickly become unfeasible.
In such cases, saddle-point approximations can be used
to obtain quite good estimates of the yields and energy
distributions. These approximations are described in de-
tail in Appendices C and D. A comparison shows the
approximate yields to be within 10% of the combinato-
rial ones when two particles are abraded and within 5%
when three are abraded. In the calculations, the saddle-
point approximations to the primary yields and energy
distributions are used whenever the number of abraded
protons or neutrons exceeds six and the excitation en-
ergy exceeds 20 MeV. The exact combinatorial yields are
used at lower excitation energy or when fewer than six
protons and neutrons have been abraded.

In Fig. I, the primary fragment cross section of the mi-
croscopic model, for 600 MeV/nucleon Ar incident on

C, is compared to that of the geometrical model of Ref.
[2]. The cross section of the microscopic model follows
fairly closely the trend of the geometrical one except at
large values of the primary fragment mass. Due to the
diffuse surface of the nuclei in the microscopic model, it
places the abrasion of a few nucleons at larger values of
the impact parameter than the sharp-surfaced geomet-
rical model does. The resulting cross sections are thus
larger. As the overlap of the two nuclei increases, the
surface contribution becomes less important and the mi-
croscopic and geometric cross sections tend to coincide.

The average excitation energy of the microscopic model
is compared to that of the geometrical model in Fig. 2,
again for 600 MeV/nucleon Ar incident on C. The
average value of the excitation energy in the microscopic
model lies well above the collective excitation estimate
of the geometrical model. The width of the energy dis-
tribution of the microscopic model is also shown in the
figure. The geometrical model predicts a unique excita-
tion energy for the kagments of a given mass and charge.
In contrast, the microscopic one predicts a wide range of
excitation energies for these same fragments. It is im-
portant to take this range of energies into account when
calculating their decay.

The emission of gammas, neutrons, protons, and al-
pha particles is taken into account in the statistical de-
cay of the ablation stage. The giant dipole resonance
is assumed to dominate the p emission. Cross sections
for particle emission are obtained from global fits to re-
action cross sections. The calculations use low-energy
constant-temperature level densities matched to higher-
energy Fermi-gas ones with level density parameters of
a A/7 —A/8 MeV ~, pairing shifts of 12/~A MeV,
and experimental ground state masses. The calculations
are performed using the Weisskopf-Ewing evaporation
formalism in which angular momentum conservation is
neglected [26]. Since a simple extension of the combina-
torial calculations shows the average angular momentum
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FIG. 1. Primary fragment production cross sections of the
reaction Ar + C are shown for the microscopic model
(solid line) and the geometrical model of Ref. [2] (dotted line).

FIG. 2. Average excitation energy of the primary frag-
ments of the reaction Ar + C is shown for the microscopic
model (solid line) and the geometrical model of Ref. [2] (dot-
ted line). The width of the excitation energy distribution of
the microscopic model is denoted by the dashed lines.
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of the kagments to be small, at least for light nuclei, this
approximation seems reasonable.

B. Comparison with experiment

Model calculations are compared, in Fig. 3, to the sec-
ondary elemental and isotopic yields of Ref. [7] for the
reaction Mg + C at E~ b= 600 MeV/nucleon. The
experimental cross sections are fairly well described by
the calculations, with the exception of the yields of neon
and Huorine. The calculation overestimates the elemental
yield of neon and underestimates that of Huorine, which
has one less unit of charge. This suggests that the real
neon fragments have more excitation energy than the cal-
culation attributes to them and, thereby, emit a proton to
form fIuorine residues more frequently than predicted by
the calculation. However, the calculated Huorine yields
that disagree most with the data are at least two mass
units lighter than the discrepant neon isotopes. The for-
mation of a Buorine isotope by decay of the neon ones
would thus require the emission of at least a proton and
a neutron, which would require even more excitation en-
ergy. As the other isotopic yields are fairly well described
by the calculation, the disagreement between calculation
and experiment could instead be due to details of their
nuclear structure.

In Fig. 4, the secondary elemental and isotopic yields
of Ref. [7] for the reaction Ar + 2C at E~ b= 600
MeV/nucleon are compared to the model calculations.
In this case, the overall agreement between the calcula-
tion and the data is quite good. A systematic discrepancy
does appear in the yields of the heaviest isotope of chlo-
rine, sulphur, and phosphorus, which are overestimated
by the calculation. As the production cross sections of

these isotopes are almost completely determined by the
abrasion cross sections to their ground states (the forma-
tion of any of these isotopes in an excited states almost
always results in decay), we can conclude that the ground
state production is overestimated in the abrasion stage.
This is an indication that processes more complicated
than the sudden abrasion one will need to be taken into
account to describe these cross sections.

Increasing the mass of the projectile accentuates the
systematic discrepancy between the experimental data
and the model results. This can be clearly seen in Fig. 5,
where the secondary elemental and isotopic yields, again
of Ref. [7], for the reaction Fe + C at E~ b= 600
MeV/nucleon are compared to the model calculations.
Although the calculation describes the general trend of
the data quite well, it overestimates the yields of the
heavier isotopes of each element by factors of 2—5. A
slight tendency to overestimate the yields of the lighter
isotopes is also noticeable here. The excessive heavy iso-
tope yields again suggest that processes other than the
abrasion one play a role in the &agmentation.

The model calculations clearly disagree with &agmen-
tation data for heavy projectiles, as exemplified in Fig.
6, which compares calculated isotopic yields of the reac-
tion ~s Au + 2 Al at E~ t, =l GeV/nucleon to the exper-
imental ones of Ref. [12]. The calculation greatly over-
estimates the yields of neutron-rich isotopes and under-
estimates the yields of neutron-deficient ones. The cal-
culated secondary yields lie between the calculated pri-
mary yields from which they originated and the experi-
mentally observed yields. This is an indication that, at
least in this case, insufficient excitation energy is pro-
vided to the primary fragments in the model calcula-
tions. Indeed, the authors of Ref. [12], using the sta-
tistical abrasion model of Gaimard and Schmidt [14],
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FIG. 3. Calculated secondary yields in
the reaction Mg + C at El~b ——600
MeV/nucleon are shown as connected open
symbols for (a) elemental yields and for the
isotopes of (b) magnesium and sodium, (c)
neon and Quorine, and (d) nitrogen and oxy-
gen. The data of Ref. [7] are shown as solid
symbols. The experimental errors are smaller
than the size of the symbols.
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FIG. 4. Calculated secondary yields in the reaction Ar + C at E& b=600 MeV/nucleon are shown as connected open
symbols for (a) elemental yields and for the isotopes of (b) argon and chlorine, (c) sulfur and phosphorus, (d) silicon and
aluminum, (e) magnesium and sodium, and (f) neon and fluorine. The data of Ref. [7] are shown as solid symbols. The
experimental errors are shown only where they exceed the size of the symbols.
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FIG. 5. Calculated secondary yields in the reaction Fe + ' C at E~ b=600 MeV/nucleon are shown as connected open
symbols for (a) elemental yields and for the isotopes of (b) iron and manganese, (c) chromium and vanadium, (d) titanium
and scandium, (e) calcium and phosphorus, and (f) argon and chlorine. The data of Ref. [7] are shown as solid symbols. The
experimental errors are smaller than the size of the symbols.
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FIG. 6. Calculated secondary yields in
the reaction Au + Al at El b ——1
GeV/nucleon are shown as connected open
symbols for the isotopes of platinum and irid-
ium. The data of Ref. [12] are shown as solid
symbols vrith error bars.

were able to adjust their calculation to the experimen-
tal data by doubling the average excitation energy pro-
vided to the primary fragments. A similar modification
of the microscopic model (made by doubling the energies
of the single-particle states) does not prove as success-
ful, since it does not modify the ground-state —to—ground-
state &agmentation yields.

In summary, comparison of the microscopic abrasion-
ablation model to the experimental data shows good
overall agreement for light nuclei. Small discrepancies
between the experimental and calculated yields of the
heaviest fragments become larger as the mass of the pro-
jectile increases. The calculated yields from heavy pro-
jectiles show discrepancies with the experimental data for
both light and heavy fragments. InsufBcient excitation
energy of the calculated primary fragment distribution
seems to be responsible, at least in part, for these dis-
crepancies. It thus appears that the microscopic model
still underestimates the average excitation energy of the
abraded &agments, although it does so to a much lesser
degree than does the geometric model.

C. Diseussien

In this section, we discuss the role played by the sec-
ondary collisions of abraded nucleons with the projec-
tile &agment in explaining the general agreement of the
model with the data for light projectiles and its disagree-
ment for heavy ones. The projectile provides an ever big-
ger target for such interactions as its mass increases, thus
increasing their probability and importance. Illustrative
calculations presented in the following corroborate this
trend.

To study the relative importance of primary and sec-
ondary nucleon-nucleon collisions, we use the Boltzmann-
Uehling-Uhlenbeck (BUU) equation, thereby approxi-
mating the time evolution of the nuclear collision in terms
of the time evolution of the corresponding one-particle
density. Solutions to the BUU equation were obtained
using the test-particle method [20] as implemented in the
code by Bauer [28].

The BUU code was modified to calculate the average
numbers of various types of nucleon-nucleon collisions oc-
curring during the reaction. The test-particle method of
solving the BUU equation lends itself easily to the calcu-
lation of collision numbers. It simulates a large number
of similar reactions at the same time, using their averages

to determine average quantities, such as the mean field
and Pauli blocking factors, but confining the individual
nucleon-nucleon collisions within each of the similar re-
actions. The calculation of average numbers of collisions
then reduces to a simple classification and counting of the
collisions that occur. As the collisions must be counted.
individually for each test particle, it is also an easy mat-
ter to extract information about the average number of
nucleons that participate in each type of collision.

We group the collisions into three types: primary, sec-
ondary, and tertiary ones. We call a collision between a
projectile and a target nucleon a primary one. We take as
secondary collisions those between either two projectile
nucleons or two target nucleons, in which at least one of
the pair has already undergone a primary collision. We
call all other collisions tertiary ones. For a tertiary colli-
sion to occur in the simulations, at least one of the nucle-
ons must first participate in at least one primary and one
secondary collision. (It is the other nucleon in the sec-
ondary collision that induces the tertiary one. ) Tertiary
collisions thus tend to be less energetic than the primary
and secondary ones and are, thus, of less importance to
the abrasion process. They can still play an important
role in the equilibration of the excitation energy, however.

The Glauber approximation to the abrasion cross sec-
tions takes into account the interaction between the pro-
jectile and the target nucleons. We would. thus expect
it to approximate well the average number of primary
collisions and the average number of nucleons abraded in
these collisions. Within the approximation, the average
number of abraded nucleons, A b„can be written as the
sum of the probabilities of being abraded of each of the
initially occupied orbitals,

+ b. (b) = ). (~ —lq, (b)l')
j6o

The average number of collisions plays no explicit role
in our development of the Glauber approximation. How-
ever, we can use it to estimate the average collision num-
ber for each projectile orbital with the following intu-
itively reasonable expression,

%, (b) = f dzd z)o, (z, z)) zzzzz f dz p(z', b —z),'

where p is the total target nucleon density. That is,



262 B.V. CARLSON

we estimate the number of collisions as the average, over
each orbital, of the mean number of target nucleons en-
countered [29]. The total number of collisions, N, u, is
then the sum over all orbitals of their average numbers
of collisions,

N, s(b) = j dz dzp (z, s)szzzz J dz p*'(z', b—s),

(40)

with p being the total nucleon density of the projectile.
These expressions are easily generalized to take into ac-
count the difference between neutrons and protons. The
generalized expressions were used in the calculations.

We compare, in Figs. 7 and 8, the average number
of collisions, N, u(b), and the average number of struck
nucleons, A b, (b), obtained from a Glauber calculation,
with those obtained &om the solution of the BUU equa-
tion. The calculations shown were performed for 300
MeV/nucleon 0 incident on Pb. In Fig. 7, we show

the average numbers for the 0 projectile. We display
the same quantities for the Pb target in Fig. 8.

In Fig. 7(a), we show the average numbers of various
types of projectile collisions as a function of the impact
parameter. The number of primary collisions in the BUU
calculation (solid line) is about the same as the collision
number obtained from the Glauber calculation (dotted
line). Both are much greater than the average number
of secondary projectile collisions (long dashed line). By
comparing these numbers to the total number of projec-
tile collisions (short-dashed line), we conclude that the
tertiary collisions are even fewer in number than the sec-
ondary ones. This suggests that the few nucleons that
do participate in secondary collisions leave the projectile
before interacting again. The projectile portion of the re-
action is thus clearly dominated by the primary collisions
with the target.

The average numbers of struck projectile nucleons,
shown in Fig. 7(b), have characteristics similar to those
seen in the collision numbers. The number of nucleons
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FIG. 7. The average number of collisions (a) and the av-
erage number of struck nucleons (b) as a function of the im-
pact parameter, for the O projectile in a collision of 300
MeV/nucleon 0 incident on Pb. The primary collisions
of the BUU calculation are represented by the solid line while
the dotted line represents the results of the Glauber calcula-
tion. The secondary projectile collisions are represented by
the long-dashed line while the short-dashed one gives the total
number of projectile collisions in the BUU calculation.

FIG. 8. The average number of collisions (a) and the aver-
age number of struck nucleons (b) as a function of the im-
pact parameter, for the Pb target in a collision of 300
MeV/nucleon 0 incident on Pb. The primary collisions
of the BUU calculation are represented by the solid line while
the dotted line represents the results of the Glauber calcula-
tion. The secondary target collisions are represented by the
long-dashed line while the short-dashed one gives the total
number of target collisions in the BUU calculation.
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struck in primary collisions in the BUU calculation (solid
line) is almost the same as that in the Glauber calculation
(dotted line). Both saturate at a value of 16 at an impact
parameter of about 5 fm, signifying complete abrasion of
the projectile for smaller values of the impact parameter.

The number of secondary projectile nucleons saturates
at a smaller value of 2.5 to 3 but at a larger impact
parameter of about 7 fm. This value of the impact pa-
rameter corresponds to an overlap of about half of the
oxygen nucleus with the lead one, implying the abrasion
of about eight nucleons. The prescription for final-state
interactions of Refs. [3,6] would estimate that an average
of four of these (half of the eight) will collide with another
projectile nucleon before escaping. The number obtained
kom the BUU calculation is slightly smaller, suggesting
that at most about 35% of the primary nucleons in the
oxygen projectile go on to collide with another projectile
nucleon.

The number of secondary projectile nucleons does not
drop back to zero as the impact parameter decreases be-
low 7 fm and the overlap increases. This is a result of the
definitions of the collision types, which permit nucleons
to undergo a primary collision after having undergone a
secondary one. For the same reason, the total number
of struck projectile nucleons need not be the sum of the
three types.

Now, let us turn our attention to the average numbers
of collisions of the Pb target nucleus, as displayed in
Fig. 8(a). As expected, the number of primary collisions
in the BUU calculation (solid line) is about the same as
the Glauber one (dotted line). By definition, they are
identical to those of the projectile in Fig. 7(a). However,
the number of secondary target collisons is large and of
the same order of magnitude as the primary ones. A com-
parison of the two to the total number of collisions reveals
that the number of tertiary collisions is also sizeable, be-
coming even larger than the number of secondary ones
for small values of the impact parameter. Thus, from the
point of view of the target, the reaction looks very differ-
ent than it does to the projectile. It looks very little like
the fast abrasion process that we had hoped to model
using the Glauber approximation.

The average numbers of struck target nucleons, shown
in Fig. 8(b), corroborates this conclusion. The number
of primary target nucleons (solid line) and the number
from the Glauber calculation (dotted line) are again very
similar. Note that, although the number of primary col-
lisions is necessarily the same for the projectile and the
target, the number of nucleons involved can be differ-
ent for the two. Indeed, the number of target nucleons
undergoing primary collisions is much larger than the
number of projectile ones and does not saturate at low
impact parameter. At complete overlap —at an impact
parameter of about 5 fm—the number of primary tar-
get nucleons is about 40. At lower values of the imapct
parameter, it increases even more. However, the values
there should not be taken too seriously. For values of
the impact parameter below about 4 fm, the projectile
nucleons undergo enough collisions to be stopped in the
target. This is the principal reason for the consistent dif-
ference between the primary numbers and the numbers

obtained from the Glauber calculation at low values of
the impact parameter.

As can be seen in Fig. 8(b), the number of secondary
target nucleons is about 80% of the primary one, a frac-
tion larger than the 50% estimate of Refs. [3,6]. The
BUU calculation thus suggests that a larger and larger
&action of the primary nucleons participate in secondary
collisions as the mass of the nucleus increases. Such a
trend seems quite reasonable. As the mass of the nu-
cleus increases, it provides an ever bigger target for such
collisions, thereby increasing their probability.

We note that the total number of target nucleons in-
volved in collisions is almost equal to the sum of the
primary and secondary ones for values of the impact pa-
rameter larger than about 4 or 5 fm (where stopping does
not occur). In this region, almost all tertiary target colli-
sions involve secondary nucleons or target nucleons that
later undergo primary or secondary collisions.

In summary, we conclude, from the comparisons with
the BUU simulations, that the Glauber calculation does
indeed approximate well the primary collisions between
the projectile and target nucleons (at least when the nu-
cleons are not stopped). It obviously cannot describe
the secondary and tertiary collisions, as it does not take
them into account. We have seen that the role played by
tertiary collisons seems to be a minor one and that they
can probably be neglected. We are thus left with the
secondary collisions to responsiblize for the discrepancies
between the Glauber calculation and the experimental
data.

In light nuclei, secondary collisions are a small frac-
tion of the total number for most values of the impact
parameter. Their effect on most cross sections is small.
This is not the case at extremely peripheral values of the
impact parameter, where they are responsible for greatly
reducing the cross sections for few-nucleon removal. As
was remarked in the section comparing the model calcu-
lations to the experimental data, the latter cross sections
result primarily from abrasion directly to the fragment
ground state. From the lack of tertiary collisions in light
nuclei, we conclude that the secondary collisions reduce
these yields by knocking out more nucleons. (If the sec-
ondary collisions were to deposit energy in the fragment,
we would expect it to appear in the form of subsequent
tertiary collisions. )

In heavy nuclei, the situation appears more compli-
cated at first glance. A large fraction of the primary
nucleons undergo secondary collisions at all values of the
impact parameter. Their effects are visible in all cross
sections. A substantial &action of tertiary collisions is
also observed, suggesting that some equilibration in en-
ergy occurs. Yet, as noted above, the net number of
tertiary nucleons is almost zero for impact parameters at
which stopping does not occur. This suggests that there
is no net deposition of energy there, as the tertiary nu-
cleons later undergo primary or secondary collisions and
do not remain in the &agment. For impact parameters
at which stopping does not occur, the principal effect
of the secondary collisions in heavy &agments seems to
be again the abrasion of other nucleons, rather than the
deposition of energy.
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The seemingly sharp division between abrasive colli-
sions and stopped, energy depositing ones, seen in the
dynamical simulation, suggests a means of extending the
Glauber calculation to include more of the physics of the
reaction. This would be done by including secondary col-
lisions as abrasive ones that knock out still other nucle-
ons. Energy deposition in the &agment would only occur
if the primary nucleon were to be stopped. However, be-
fore such an either/or approximation is implemented, its
validity should be studied in further d.ynamical simula-
tions. The contribution to the excitation energy of pion
absorption following delta decay should also be verified.
Work on these subjects is in progress.

IV. CONCLUSIONS

A microscopic abrasion-ablation model is developed
which approximates primary &agment cross sections us-
ing the Glauber interaction probabilities of the individual
nucleon orbitals. It yields primary cross sections sim-
ilar to those of the geometrical model of Ref. [2]. It
estimates the excitation energy distribution of the pri-
mary &agments using the density of hole states left by
the abraded nucleons. It predicts the production of frag-
ments with a wide range of excitation energies, the aver-
age of which is two to three times greater than the energy
obtained in the geometrical model. Calculations con6rm
the general agreement with light-ion fragmentation data
that was seen in simpler models using similar approxima-

tions to the excitation energy distribution [14,16]. This
agreement deteriorates with increasing mass of the pro-
jectile, due to the increasing importance of secondary
collisions of the abraded nucleons with the rest of the
projectile. Dynamical simulations suggest that a viable
model might be constructed by extending the Glauber
abrasion calculation to include the eKects of abrasion due
to the secondary collisions. Work in this direction is be-
ing contemplated.
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APPENDIX A: A PROPERTY OF
ANTISYMMETRIZED PRODUCTS

Here we demonstrate the validity of a general property
of antisymmetrized prod. ucts of the one-body matrix el-

ements, Q k and Qk~. We show that

0

) ) ( 1)s+u'

(~1 ) ~ ~ ~ )~N )P)P
....q& (&)k;@k,J(i)~
i=1

M&N,

M&N, (A1)

where, on the right-hand-side expression, we mean by

I the sum over all possible N element subsets
of the states k1, k2, . . . , kM. The p and p' sums are sums
over the N elements of the set Mo.

Let us first look at the case in which M & N. Since
there are N terms in the product on the left-hand side,
at least one of the k indices must appear in two or more
of the terms when M & ¹ We can write a typical term

~p'(i)kqkP(&) ~p'(j )k~kP(2) . qp'(ilk& ~k&P(&)
l

The term associated with the permutation p'p,'. that ex-
changes i and j before applying p' will be identical to
the term shown but of opposite sign. The two will thus
cancel. The same argument can be used to show that
any term in which one of the k indices appears twice will
be cancelled by an identical term of opposite sign. When
M & N, the entire expression must then vanish.

When M = N, we can expand the product on the left-
hand side into N summands, each containing a prod-

uct of N terms. All but NI of these summands contain
at least one repeated k index and thus vanish. Each
of the surviving ¹!summands can be transformed to a
"standard" one through the choice an appropriate per-
mutation. (Remember that each of the summands must
still be summed. over all permutations. The choice of a
standard one merely "rotates" the representation of the
permutation sum but does not change its value. ) Sum-
ming over the K'. repetitions of the standard summand.
yields the right-hand side expression.

Finally, if we make the same expansion of the left-
hand-sid. e when M )N, we find that the same arguments
can be applied to the¹!surviving summands of each of
the (~) Ã-element subsets of the M states labeled by
the k s, yielding the right-hand-side again. .

APPENDIX B: HUFNER, SCHAFER, AND
SCHU RMANN

To make contact with the approximation used by
Hiifner, Schafer, and Schiirmann (HSS) in Ref. [3], we

return to the expression for the differential abrasion cross
section, Eq. (21),
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XO-+M (b) = ~,(~ ~ ), ) (—1)"+"
P)P

Ap

Aocc

&- q. (')-q-.(')
j=1 m, gocc

s i ~j=A, +1 mgvac

Integrating this over impact parameter and summing over the A „-element subsets of %0, we obtain an expression
for the inclusive cross section that HSS proposed to calculate. We have

OA...—— d 6 X~~M~ b,
(OcciA )

where

4
(OCCIAocc) 7'lP

Ao

Aocc ). &.(~)-&-.(~)
j=1 mqMo

r (i)s(') — . @i (i)-~-i(i)
j=A ..+i k ~Ego

(B2)

Note that the sums over single-particle final states in the last expression run over all states in Mo.
HSS assumed that the number of states in Mo was sufBcient for the sum to be well approximated using closure.

They also assumed the resulting expression to be diagonal, taking

where

. ~(')-q-. (') = '(~).(') .(')( )
mg~o

OO

P, (b) = jdzd*e o,. (z, s) exp s, —dzUx '(z, b —s)
2

o, (z, s). (B4)

When substituted in the expression for P& „~& &
Xci~Mp, the latter can be simplified to

Aocc

) Xo (b) = „„)P„(,)(b)
focc)A

Ap

(~ - P,(,)(b))
j=Aocc+1

Finally, HSS took all the Pz (b) to be equal, replacing the squared magnitude of the wave function in the probabilities
by the projectile single-particle density,

OO 2

Pz(b) = P(b) = f dzd e pp(z, s) exp —i dz Ux (z, b —s)
h2k

With this simplification, the expression for the cross sec-
tion reduces to

( Ao d'& [P(b)]"- ll —P(b)1 ' "-'
(d4occ j

(87)

which is their final result.

a nucleon in orbital j does not collide is given by

p~ = l&~(b)l'.

The probability that it collides is then

gj = 1 —pj.

(C1)

APPENDIX C: APPROXIMATING THE
PRIMARY YIELDS

The abrasion calculation gives, for each impact param-
eter, the probability for each of the single-particle orbitals
to collide (or not) with the target. The probability that

The probability that all nucleons pass unscathed is given
by

Ap
1

.Pj
j=1

while the probability that all collide is given by
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Pp ——

Ap

(c4)
As a erst step toward approximating the probabilities,

we write them as
~ a c c

j=l

We can condense these, as well as the probabilities for
all other numbers of nucleons to pass, in a generating
function

Ap

(q' + *p.).

C+tOO

PA .—— . dP
2%x

Ap

~ ~

j=1
(q. + p .e P) ePAocc (Cg)

This is an identity, as the integral in combination with
the factor e" - extracts only those terms in the product
which contain a factor of xA - = (e ")A" .

After rewriting the integral as

Expanding this, we 6nd that the coefBcient of x - is the
probability that A „nucleons pass the target without
colliding. We write

C+4OO

PA = . dp exp[F(p) + pA „], (C10)
27cz

where
Ap Ap

(q~+&p~) = ). &"- PA...
Aocc =p

(c6)
Ao

F(p) = ) 1n(q~ + p, e "), (C11)

Ao

PAc 1 —PAc )
—1

(C7)

and the probability that just one nucleon passes,

The probabilities PA, and Pp are easily extracted, as are
the probability that all but one nucleon pass,

Ap p.e+ Aocc = Aocc )
q& + p&e

—I"o
= 0. (C12)

we approximate it by expanding F(p, ) + pA „through
second order about its stationary point pp. There, we
have

Ap

Pi = Po ) .—.
q' (C8)

The second derivative is

Ao

(q ~ + p.e Po)2 (C13)

However, the farther we get &om the two limiting cases
of all or none, the more complicated this combinatorial
calculation becomes.

After rotating to the real axis, the approximation to the
integral can be written as

F(Pp )+IJ0 Aocc

PA, --— dP, exP[F(yo) + PoAo —2d Fo(IJ, —Po) ] =
2' (C14)

We also want to estimate the maximum and extension in mass of the distribution of probabilities. We can do this
by looking for the maximum and width of the distribution of the PA . We neglect the effects of the term d Fp and
look at the dependence on A „ofthe argument of the exponential, F(pp) + ppA . The condition for the maximum
1S

dF(pp)
dAocc

+ p'0 = Amax )
q +p.e

Aocc =Amax ~
—1 2 2 Aocc =Amax

+Pp =0. (C15)

As the expression in parentheses must be zero to satisfy
Eq. (C12), we have for the solution

I

where the last equality is obtained by differentiating the
equation defining yp, Eq. (C12), with respect to A „.
Thus the distribution in mass has its maximum at

Ap

go=0 and Amax=) pj ~

j=1

The second derivative is
and a width of

Ap

A „= p~, (C18)

d2F(pp)
dA Aocc =Amax

dip
dAocc gp —p

).p, q,
)
(C17)

Ap

O'A = ) P&q& .
j=1

(c19)
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In the calculations, this analysis is performed indepen-
dently for neutrons and protons, with the combined prob-
ability obtained as the product of the individual ones,

P =P PZocc Nocc Zocc Nocc ' (C20)

The distributions in charge and neutrons number have
their maxima at

The approximate yields are used in the numerical cal-
culations whenever the number of abraded protons or
neutrons exceeds six. The exact combinatorial yields are
used when fewer neutrons and protons are abraded.

APPENDIX D: APPROXIMATING THE
PRIMARY FRAGMENT ENERGY

DISTRIBUTION
Zp

Z.„=) p,

and have widths of

Np

and &max = ) pj„ (C21) When using approximations to the primary yields, it
is convenient to also approximate their energy distribu-
tions. To do this, we extend the generating function to

Ap

Zp

0z = .pj.qj.
2 —1

Np

and oN —— pj„qj„. C22
j„=l

&(P ~) = (q~e "+S»e ")
j=l

(D1)

The expressions for the maximum and width of the mass
distribution, Eqs. (C18) and (C19), continue valid.

where the ej are the energies of the single-particle states.
The distribution could then, in principle, be calculated

with

1 6+iOO C+'t OO

p~ (s) = . dP dp exp[F(P, p)+ pA „+Ps],
ioo—C—XOO

(D2)

Ap

F(P, p) = ) ln(q~e ~" + p~e ") (D3)

Instead, we perform the y, integral as in Appendix C, but now for each value of P. We find

6+iOO

p o..(s) = . d/ exp(F[~ p(~)) + &(~)+o + ~s)
2md2F0 2mi

(D4)

with p(P) determined by the condition

dF
d~ u=~(V)

Ap ~(p)
+ occ occ ) p (p)q-e '~ + pje

(D5)

We have assumed that the second derivative, d2F/dp2, is a slowly varying function of P, approximated it by its value
at P = 0, and removed it from the integral.

Integrating the density of states of Eq. (D4) over the excitation energy, we obtain the result of Eq. (C14)

PA = PA
P(O, pp)+ p p A,

/2~d'FD
(D6)

since

v(P) I&=, = v0.

We calculate the moments of the energy distribution using the identity

(D7)

(s~) e +(o ~o) ~o&-- — e—&fP,~(P)]+v(P)&-.(
P=O

and make use of the derivatives of the condition defining p, (P), Eq. (D5), to evaluate the derivatives, d p/dP, that
appear in the resulting expressions. We then require that these be the moments of an approximate distribution of the
form

p~...(s) = PA ( (s —r)1+ H„~ exp
v'2~o2 ( (~2o.)"n! (, v2o )

(s —s)'
20
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where II denotes the Hermite polynomial of order n. A straightforward but tedious comparison of the moments of
the latter distribution with those of Eq. (D8), permits the identification of the distribution s parameters as

dP'[p t (p)]+~(p)&- ) 2 d'(I" [p l (p)]+t (p)&- )
dP p

o' dP2 (D10)

, .d"(F[P t (P)]+~(P)&-.)
P=O

and (Dl1)

d'(I" [P s (P)l + ~(P)&- )
dP6

+ 10(ns)

In practice, the quantities F, o and the o.„are calcu-
lated independently for protons and neutrons. With the
exception of o.6, the corresponding values for the com-
bined distribution are the sums of the values for the in-
dividual distributions, since these quantities are their cu-
mulants. The value of o.6 for the combined distribution
is also easily obtained by noting that it difFers from the

sixth-order cumulant by just the (ns)2 term.
The approximate distributions are used in the nu-

merical calculations, for the &action of the yield above
20 MeV in excitation energy, whenever the number of
abraded protons or neutrons exceeds six. The distribu-
tion of the &action of the yield that lies below 20 MeV
in excitation energy is calculated combinatorially.
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