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Cranking Bohr-Mottelson Hamiltonian applied to normal bands of odd-A nuclei
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Normal bands of the well-deformed odd-A nuclei are studied with the cranking Bohr-Mottelson
Hamiltonian proposed by us. The condition of validity of the model and comparison with the Harris
expansion are discussed. The phenomena of identical bands are brie8y discussed with the help of
the present model.

PACS number(s): 21.10.Re, 21.60.Ev, 27.70.+q, 27.90.+b

I. INTRODUCTION

The rotational spectrum of the well-deformed nuclei
has been one of the most fascinating and fruitful fields
in nuclear structure studies. The picture of a rotating
nucleus is quite simple. The cranked shell model has
been successfully applied to many interesting phenom-
ena, such as backbending [1], intruder states [2], and su-
perdeformed states [3]. In all such developments, empha-
sis is given to the single particle picture and the collec-
tivities are taken into account by the cranking frequency
and nuclear deformation. The Bohr-Mottelson Hamilto-
nian has long stood as the principal model for nuclear
collectivities. It has been successfully applied to nuclear
collective motions of low spin values [4]. Extending to
higher spin states was not very successful [5].

In a recent publication [6], we have shown that a crank-
ing Bohr-Mottelson Hamiltonian (BMH) can be derived
from the cranked shell model and a simple formula for the
rotational spectrum of the well-deformed nucleus was ob-
tained. In this theory, collective motions are put in the
foreground and the effects of the single particle motions
are taken into account perturbatively. They are included
in a few parameters which can be calculated from micro-
scopic models. This simple model has been successfully
applied to the low lying normal bands of the even-even
nuclei [6] and the superdeformed bands in the A 190
[7] and 150 [8] regions with precision of the order of 0.1'%

in the level energies.
It is to be noted that the success of the model relies on

the condition that the nucleus rotates as a whole without
abrupt changes in the single particle orbits. For low lying
bands of even-even nuclei before band crossing, this con-
dition is met by the joint action of deformation and pair-
ing interaction. For the superdeformed bands, the large
deformation hinders the change of the internal structure

'Mailing address: Department of Technical Physics, Peking
University, Beijing 100871, China.

during the transitions. For an odd-A-nucleus, the situa-
tion is complicated due to the presence of the unpaired
nucleon. For simplicity, the bands with clear indications
of coupling between vibration and single particle motion
or mixing of single particle states [9] will be excluded
from our studies. Signature splitting for K=1/2 and 3/2
bands can be taken into consideration by perturbations.
To avoid other complications, we shall define the levels of
a band to be regular when the energy differences between
successive levels increase monotonically and evenly with
level spins. Signature splitting of K = 1/2 and 3/2 bands
is considered by comparing average energies of successive
pairs of levels. Our studies will be limited to regular lev-
els. Fortunately, most of the low lying odd-A bands are
partly or wholly regular, so that we are still able to make
a general survey of the bands of odd-A nuclei with the
present model.

In the next section, a brief sketch of the model will
be given with emphasis on the modifications necessary
for application to the odd-A nuclei. In the third section,
all the rare-earth and actinide bands based on a single
particle state, with four or more regular levels, are an-
alyzed and the results discussed. As may be expected,
important nuclear structure information is contained in
the parameters of the model. Hence the validity of the
model is discussed in the fourth section in comparison
with the Harris expansion. Finally, as a topic of current
interest, identical bands at normal deformations [10, 11]
are discussed with the help of the present model and a
long list of the identical bands is given in the last section.

II. THE CRANKINC BMH

For quadrupole deformations, the cranking BMH can
be written in the general form

h, 0 h 6H' = —
2

—
2 + V((u, ao, a2),

o ao

where V(w, ao, a2) can be calculated as the eigenenergy of
the cranked shell model Hamiltonian for Axed ~, ao, aq,
and intrinsic states. Bo and B2 are the mass parameters
for P and p vibrations. For the well-deformed states,
V(cu, ao, a2) has a deep minimum at ao ——no(cu), a2 ——
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n2(u), and can be expanded around np and n2..

V(u, ap, a2) ™V((d, np n2) + 2 Vpp(ap —np)

+Vo2(ao —no) (a2 —n2)

+2V22(a2 —n3) (2)

where Voo, V02, and V22 are functions of u, o.o, and o.2.
With this expansion, the eigenenergy E' of H' can be
easily evaluated as a function of u, which is the Routhian
of the system.

The projected angular momentum and energy of the
system are given, respectively, by

(1) = QI(I+ 1) —K2 = ——l BE'
h 0(d

and

of the neighboring even nuclei, the experimental values
of heep and hu~ vary from 0.8 to 1.2 MeV. The error
involved in the above approximation is compensated by
slight changes of the values of other parameters (within
1%%) and the quality of fitting is unaffected. As ~ -+ 0,
the constant term 2(hup + hler~) depends obviously on
the value of hug + hu~. But we are always fitting the
level energies with respect to the bandhead, so this term
cancels exactly. With these simpli6cations, E' can be
put in the simple form

E'= —E 1 —B(u2+ 1 —B~2 3

—
2 Air/ (1 —Bc&i )

where

E(~) = E' —(u = E' + her QI(I + 1) —K2 . (4)
OE'

Bhi

A = 3Bia' = 2h' ) l(~1~*1»['/(E- —Ep)
n+0

(8)

The above formulation is general enough to include all
the cases in our former applications [6—8] and the appli-
cation to the odd-A nuclear bands. In all cases, once V
is obtained, simple algebra will complete the rest of the
deductions.

For application to the normal bands with axisymmet-
rical deformation, it is suKcient to evaluate V by pertur-
bation. As in Ref. [6], V can be put in the form

V = —2Biu) (3ap + 2a2) + 2Cp(ao —ap) + 2C2a2,

where Bq is the mass parameter for the rotational mo-
tion and ap is the static deformation value (a2 ——0 for
axisymmetrical deformation). Then E' is given by

E' = (n~ + -)h(u~
~

1—Bi(u2 l
B&~ )

which is exactly the usual formula for the moment of
inertia. Another free parameter in Eq. (7) is

3Bg A

where Coao may be determined solely from the static
potential energy surface of the nucleus.

Signature splitting for K = 1/2 and 3/2 bands can be
considered in the framework of the perturbation expan-
sion. For the K = 1/2 bands, the first order perturbation
of the Coriolis term does not vanish; hence a term of the
form —(2n~hur j ~ 2n) must be added to the expansion of
E', where n = +1/2 is the signature quantum number.
I et

a = (-,'-,' l~ I
—,'-,')

3B,
+(np + —,') h(up 1— ' ~)

3B,~2&—
2 B

lap�(4

~

1— (6)

which is connected to the usual decoupling parameter ag
by the relation

1a = —2ag.

Then for K = 1/2 bands we have

For the present applications, excitation of the vibra-
tional modes has been excluded, hence np ——n~ = 0. In
this case, the ~-dependent parts of the first two terms in
Eq. (6) amount to a few percent only. To reduce the free
parameters, we shall further assume h~p ——her~ = E„=
1 MeV and B2 ——Bo in the erst two terms. For most

I

E'= -E„ 1 —B~2+ 1 —B~2 3

—3iAur'(1 —B(u') ' —(—1)r '~'ah~ . (12)

For K = 3/2 bands, the third order perturbation en-

ergy does not vanish and is signature dependent. In this
case, the nonvanishing term is of the form

h3 3 )- (0-, nl~*l~-, n)(~-, nl~*l~2n)(~2nl~*l02n) . , I 1/2yr 3 3—
(Ep E )(Ep E )

(13)

The expressions for V and E' become

V= Bi(u (3ap+——2a2) —(—1) ~ E~ ap

+—Cp(ap — p) + iC2a (14)

E' = i E Ql —B&u2 —2G((u3 + Ql —B(u2/3

(1 —()'
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( = (1 —B(u —G(u () (16)

Signature splitting for other K bands can be consid-
ered by higher order perturbations. However, it may be
more useful to study large signature splitting with differ-
ent approaches. Small splitting can be tolerated for the
6rst few regular levels.

where G = 3(—1) ~ Eap/Cp, B = 3Bi/Cp, and ( is
given by the equation

ith level and the bandhead

are compared with the calculated energy differences
D (i), and the relative root mean square (rms) deviation
4 is calculated for a given set of parameters,

vn . . 2 1/2
1 ). D, () D.()
m - i D.(i)

III. ANALYSIS OF THE ODD-A. BANDS

Rotational bands for the odd-A nuclei in the 155 &
A & 185 and A & 231 regions are studied. For the nuclei
in the range 155 & A & 185, all the data given in Nuclear
Data Sheets [14] are considered. For the actinides, data
are mainly taken from Ref. [15] with a few supplements
from Nuclear Data Sheets [16]. Only those bands with a
definitely assigned single particle state and four or more
consecutively measured regular levels are considered.

The method for fitting the parameters may be ex-
plained as follows. I et the number of levels of a given
band be m+ 1. This number is limited by the number
of the measured levels or by the occurrence of irregular-
ities in level spacing due to band crossing or any other
causes. The experimental energy differences between the

The parameters are determined by the condition of the
minimum 4 which is taken as the rms deviation of the
fitting. Since the first several difFerences D (i) are usu-
ally smaller than the later ones, such a fitting procedure
gives more weight to the levels with small ~. This is rea-
sonable, since we expect that the model is more accurate
for small u values. However, there are cases, particularly
for K = 1/2 bands, where D, (1) or D, (2) becomes very
small; then Eq. (18) may greatly exaggerate the error of
the fitting. For the long K = 1/2 bands (more than seven
levels), the first one or two levels may be omitted to im-
prove the quality of fitting. In some cases, only ci = 1/2
or —1/2 of the K = 1/2 band is measured. Such bands
are also used in the analysis.

In total 280 regular or partly regular odd-A bands are
analyzed with rms deviation b. less than 1%, with a few

TABLE I. Experimental (D, (i)) and calculated (D, (i)) energies (in MeV) of five long bands,
with D(i) = E(i) —E(0).

Ta —[541]
i D, (i) D, (i)
1 0.0946 0.0946
2 0.2917 0.2935
3 0.5898 0.5881
4 0.9787 0 9689
5 1.4436 1.4259
6 1.9682 1.9501
7 2.5382 2.5334
8 3.1467 3.1689
9 3.7967 3.8507
10 4.4957 4.5739
11 5.2489 5.3341
12 6.0574 6.1278
13 6.9200 6.9517
14 7.8351 7.8032
15 8.8010 8.6800
16 9.8170 9.5801
17
18
19
20
21
22

171re

D, (i)
0.1310
0.2843
0.4579
0.6484
0.8540
1.0723
1.3023
1.5431
1.7944
2.0567
2.3285
2.6126
2.9020
3.2082
3.5172
3.8354
4.1460
4.4910

-,'[4o4]
D, (i)
0.1307
0.2836
0.4562
0.6465
0.8524
1.0724
1.3052
1.5495
1.8042
2.0685
2.3417
2.6229
2.9117
3.2074
3.5095
3.8178
4.1317
4.4509

233U
D, (i)
0.0432
0.0922
0.1553
0.2297
0.3149
0.4107
0.5176
0.6352
0.7612
0.8988
1.0431
1.1994
1.3607
1.5347
1.7114
1.9022
2.0931
2.3000
2.5029
2.7232
2.9344
3.1719

—;[633]
D, (i)
0.0406
0.0925
0.1557
0.2300
0.3151
0.4109
0.5171
0.6334
0.7596
0.8955
1.0408
1.1951
1.3583
1.5301
1.7101
1.8982
2.0941
2.2975
2.5082
2.7260
2.9506
3.1819

235'
D (i)
0.0462
0.1030
0.1707
0.2491
0.3385
0.4386
0.5504
0.6709
0.8051
0.9448
1.1004
1.2578
1.4345
1.6062
1.8028
1.9870
2.2021
2.3962
2.6285
2.8309
3.0786
3.2874

—', [743]
D.(i)
0.0472
0.1047
0.1727
0.2510
0.3397
0.4386
0.5477
0.6669
0.7962
0.9356
1.0848
1.2440
1.4129
1.5915
1.7798
1.9775
2.1847
2.4013
2.6270
2.8619
3.1059
3.3588

239p 1
2

D (')
0.0184
0.1065
0.1355
0.2608
0.3008
0.4619
0.5128
0.7074
0.7696
0.9956
1.0693
1.3244
1.4093
1.6917
1.7881
2.0953
2.2038
2.5330
2.6547
3.0032
3.1417
3.5011

[63o]'
D (i)
0.0185
0.1066
0.1350
0.2614
0.2995
0.4630
0.5105
0.7096
0.7661
0.9992
1.0643
1.3297
1.4030
1.6990
1.7801
2.1054
2 ~ 1934
2.5456
2.6409
3.0188
3.1205
3.5227

D(i) = E(2i+ 2) —E(2); this band is observed with signature 1/2 only.
The first two levels have been omitted, D(i) = E(i+ 2) —E(2). With the data from Ref. [15],

large deviations occur for the five levels i = 13, 15, 17, 19,21. These deviations disappear when
more recent data from Ref. [16] are used, as listed in this table.
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exceptions which are close to l%%uo. The rest are irreg-
ular bands, most of which fall into two categories; the
major part of them are bands with intruding single par-
ticle states and large signature splitting, some of them
are bands of nuclei near the transition region.

As an illustration for the quality of fitting, five long
bands are listed in Table I with parameter values given
in Table II. It is quite impressive that the simple formulas
with two parameters can give a good representation of the
spectrum up to very high spin values, such as I = 28.5
for the ground state band z [743] of U and I = 34.5
for the band z [541] of Ta.

IV. COMPARISON WITH HARRIS EXPANSION

Besides the 6tting of the band spectra, comparison
with the Harris expansion forms a crucial test of the va-
lidity of our model for odd-A nuclei. At the beginning of
Sec. II, it was shown that the most general result of the
cranking BMH is that the Routhian E' is a function of
~. Thus, the Harris expansion

Eo 281~ P2~I 1 2 4

is a very general expression for E', which may be valid
for small values of w. With the present model, expanding

TABLE II. Determined values of the parameters A (h MeV ), B (h MeV ), and rms
deviation A, for some bands. The values of the parameters Pi (5 MeV ) and P2 (fi MeV )
and the rms deviation Az fitted by Harris expansion are listed for comparison with Pi, and P2,
calculated from Eq. (20) with the A and B values given in the same lines. The first five bands are
those listed in Table I.

Bands
1 [54I]b

Ta 2 [404]

"'U
—,
' [633]

235 II 7 [743]

P11 —[630]

Ta —[404]

No.

10

19

10

23

10

23

10

18

P2.

36.06 1.384 36.98 25.09 0.0116 36.44

35.84 1.444 36.80 26.02 0.0079 36.60

31.00 3.116 33.08 48.97 0.0041 32.02

30.66 3.288 32.85 51.16 0.0016 32.18

84.74 1.890 86.00 80.33 0.0027 86.00

85.46 1.426 86.41 61.07 0.0012 86.28

95.06 0.440 95.35 20.93 0.0112 95.20

79.01 1.420 79.96 56.24 0.0045 79.96

79.33 1.210 80.14 48.10 0.0035 80.20

31.32 2.664 32.10 42.21 0.0062 32.30

31.45

72.40

68.10

86.67

71.55

22.85

59.06

46.75

59.62

0.0104

0.0052

0.0044

0.0036

0.0019

0.0113

0.0048

0.0036

0.0108

34.37 0.0108

10 31.88 2.349 33.45 37.83 0.0047 33.20 47.525 0.0066

'"Ta ' [402]

'"Ta -,'[5I4]
'"Yb -,'[5I2]
'"Yb '[5I2]
'"Ta -,'[404]

'"Tm —,
' [404]

' "Tm 2[404]

L11 —[404]

Lu —[404]

Lu —[404]

12

10

17

10

12

31.10 1.700 32.33 26.64 0.0033 32.00

36.72 0.898 37.32 16.89 0.0039 37.08

44.00 0.515 44.34 11.35 0.0005 44.42

39.80 1.026 40.48 20.49 0.0014 40.14

31.76 2.465 33.40 39.57 0.0024 32.80

31.84 2.425 33.46 39.01 0.0021 33.20

37.40 0.837 37.96 15.70 0.0008 37.90

36.08 2.093 37.48 38.06 0.0043 37.00

33.96 2.156 35.40 36.93 0.0032 35.00

29.78 2.015 31.12 30.29 0.0020 30.80

24 60 2.830 26.49 35.37 0.0106 25.20

32.20

19.35

11.00

26.90

53.85

47.50

16.90

48.09

46.12

37.63

55.22

0.0051

0.0045

0.0006

0.0045

0.0054

0.0040

0.0011

0.0061

0.0053

0.0039

0.0165

Number of Qtted levels.
Decoupling constant ag ——4.40.
Decoupling constant ad ———0.587.
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Eq. (7) in terms of w, we have

p1 ——(A+ sBE„) p2 ——2B(A+ ssBE„) . (20)

With E„=1 MeV, the parameters A and B can be ob-
tained from P1 and P2. From the above formulas, one can
see more clearly that a change of E„can be compensated
by a small change of the parameters A and B. In case of
K = I/O, Eq. (19) is changed to

E' = Eo+ —,'(—1)' '~'op&~ —2pi~' —p2~'. (21)

To test the validity of the present model, we shall first
compare the precision of fitting spectra with the present
model and the Harris expansion. Since the di8'erence be-

tween the two formulas begins at the w terms, compari-
son for a short band will not lead to definite conclusions.
In Table II, we have listed all bands with number of regu-
lar levels greater than 12 and some shorter regular bands
chosen at random. With the exception of the erst line of
entry of the table, the rms deviations of the Harris ex-
pansion are consistently larger than those of our formula.
The Erst entry of Table II is a state with large decoupling
constant, for which the rms deviation of Gtting with our
formula is 0.0116 while it is 0.0108 for the Harris expan-
sion. Both are large in comparison with the average rms
deviation L = 0.005 for regular bands.

Secondly, the values of P1 and P2 determined by least
squares fitting of the empirical spectrum with the Harris

TABLE III. Identical bands are listed in groups separated by the vertical stripes (g for ground
band).

1860

180~

178Hf

»6Yb g

'55Sm 1[521]
174~

160E

Tm -[404]" Sm -[521]
"'Yb -' [521]

'"'Tm
—,
' [523]

'"Hf -,'[512]

D7 g
' 'Er -[523]
' 'Lu -[404]

165E 11 [5p5]

154NR

174Yb

Lu —"[404]

179Hf 1 [5l 0]

154SXn g
1"5Yb 1 [521]

Ta —[514]

W -[512]
'"Er -'[512]

173I 9[ 1 ]

159D 11 [5p5]

Hf —[521]

Ir —', [402]

"'Os —' [521]

'"Re —', [514]

Ta -', [541]

'"Cd -', [521]

176~

'"Hf g

Lil —[404]

'"Dy -', [521]

"'Ho -,'[523]
"'Dy -', [523]

Yb -[512]

Re —[524

Os —"[514]

170Yb g

'"Tb -,'[411]
'59Cd ' [521]

Lu -[404]
166E

Ta —[514]

W —[512]

'"Ta -', [514]

"'Er -'[521]

"'Ho —,
' [4»]

160Gg

'"Yb -'[51o]

154GR

Os -"[503]

156Cg

182~

"'Tm -[523]
"'Tm

—,
'

[4O4]

164Yb
155D 1 [505]

'"E. -,'[521]
'"Hf -,'[512]
"'Sm —,[523]

Os —[512]

64Er g

Lil —[402]

'"Eu -', [411]
170F

Yb -[523]

Yu -[402]
'" Hf —'[521]

Ho —[404]

Lu - [404]

166E

158S

'"Lu -', [514]
164D

Eu —[411]

'528m g

'"Re -,'[4O2]

Ta —[404]

'63Re -,'[4O2]
' 'Tm —,[523]

'"Lu -', [4O4]

162E

172H f
"'Cd -,'[523]
'"Eu -,'[413]
'"Hf

—,
' [523]

'"Er -'[51O]

Hf

173T 7 [404]

Ta —[514]

172Yb

Lu —[514]

'"Hf —,
"[514]

'"W
—,
' [514]

Tb -[411]
157D 11 [505]

'"Lu —,
' [402]

Eu 3[411]

Ho —[404]

"'Tm —', [4O2]

170Hf

176Hf

Yb —[512]

'"Ho -,'[523]
131W 5 [512]

166Yb
' 'Ta 5[402]
'"Dy —', [521]

"'Dy —', [512]
' 'Er —[512]

Yb -'[510]

'"Ta —', [4O2]

'" Re -[404]

W —[512]

"'I-If -', [523]

'"Eu —', [413]

Lu -[514]

D57 g

'"Er —', [512]

'"Sm -', [521]

158Gg

Eu —[413]

Er 3 [523]

Lu -[402]
'"Ta -', [4O2]

Ta —[4O4]

Tm -[411]

Yb —[512]

Re —[402]

Lu -[402]
»9W 1[521]

"'Tb -', [411]

E —,[523]
3 [411]

'"Er
—,
' [51O]

'"Ta —,
'

[4O4]

Os —[521]

Tm -[411]
"'Tm -,'[4O4]

Ho -'[411]

'"Hf -'[521]

Yb —[521]

163E 11 [505]

' 'Tm -'[411]

"Er —', [512]
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TABLE IV. Examples of the identical band groups. For definition of G(I), see Eqs. (22) and
(23) in the text.

155Tb

—;[411]
I G, (- + I)

(keV)
0 65
1 90
2 118
3 135
4 168

165E

—,
' [512]

Gi(-,'+ I)
(keV)

95
111
136

161H

—,
' [404]

G, (-', + I)
(keV)

118
141
163
183
202
219
236
248

173T

—;[514]
Gi(- + I)

(keV)

140
166
189
213
231
253
264

—,
' [521]
G2 (I)
(keV)

127
177
222
270
315
357
396
433

155Tb
—,
' [411]
Gg (I)
(kev)

182
230
277
321
361
398
434
476

161H

—,
"[404]

G2 (I)
(keV)

282
325
365
403
438
469

173T

—;[514]
G2 (I)
(keV)

331
379
423
464
500

expansion can be compared with those calculated from
Eq. (20). We can see from Table II that in every case
the fitted Pi agrees with the calculated value, while the
fitted P2 is greater than that given by Eq. (20). A simple
explanation of this phenomenon is that the error involved

by neglecting higher order terms in the Harris expansion
is partly compensated by increasing P2. The coefficient

P2 in the Harris expansion is a renormalized quantity, not
a reliable coeFicient of expansion.

V. IDENTICAL BANDS AT
NORMAL DEFORMATION

In analogy with the superdeformed bands, the anal-
ysis of the transition energies in neighboring odd and
even-even nuclei led Garrett et al. [10] to the suggestion
of identical bands at normal deformation. Later on, it
was discovered that the existence of the identical bands
is a rather widespread phenomenon. Identical bands
are discovered either between nearby even-even

Gi(I) = E(I+ 1) —E(I),
G2(I) = E(I + 2) —E(I) . (22)

(2) For two even-even nuclear bands, G2(I) can be
compared. For two odd-A nuclear bands with K g 1/2,
Gi(I) can be directly compared.

nuclei [11,12] or between odd-A nuclei and their even-
even neighbors [10—13]. It is further demonstrated that
there are no sharp lines of demarcation between identical
and nonidentical band pairs [11].To promote research in
this direction, it is necessary to have a clear and uni-
versal definition of the identical bands and a method to
locate them. First of all, the identity between the bands
is established by comparing the p-ray energies of the cor-
responding transitions.

To compare the p-ray energies of the different bands,
the following conventions are usually adopted.

(1) Let I be the level's spin; then the p-ray energies
Gi(I) and G2(I) are defined as

TABLE V. Examples of the identical band pairs.

0
1
2
3

5
6
7
8
10
12
14

176Yb

G2 (I)
(keV)

82

190

293

477
554

173T
—[541]

G, (-,' + I)
(keV)

83

187

390

482
563

158D

G2 (I)
(keV)

99

218

406

476
529
563
578

'"Re
—[514]
Gg (I)
(keV)

421

484
524
561
580

73Yb
—', [512]

G, (-', + I)
(keV)

79
101
122
144
165
186
206
225

1678

-,'[523]
Gi( +I)

(keV)

100
122
144
165
188
205
230

125
171
219
262
307
345
385

221
266
308
347
383

-' [411] —[512]
Gg (I) Gg (I)
(keV) (keV)
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(3) For comparison of an even-even band and an odd
band, Gz(I) is compared with the equivalent G2(I) given
by the expression

G2 (I) =
2 [G2 (I —1/2) + G2(I + 1/2)] .

If the odd nuclear band is a K = 1/2 band with a large
and positive decoupling constant (say, larger than 5),
G2(I) can be directly compared with G2(I + 5/2) of the
odd nuclear band.

(4) For comparison of a K = 1/2 and another odd-A
band, the G2(I) constructed according to Eq. (23) are
compared, with I taken as all positive integers.
With these rules, the criterion for a pair of identical
bands can be taken as that the difference between the
compared transition energies is less than 10 keV. For
short bands with no more than five levels, this condi-
tion must be met for all the compared transitions. For
long bands, this condition must also be met for the first
four or five transitions. The condition of the identity may
deteriorate slowly with increasing spin, but the difference
must be kept to less than 30 keV for all regular levels.
Compared with the the superdeformed bands, this is a
rather loose criterion. Yet it is strict enough to discard
some of the claimed identical pairs.

In principle, it is possible to make direct comparison
between all regular bands with the above convention. It
will be tedious work to select the identity pairs from hun-
dreds of bands, since the objects to be compared are not
just the experimentally determined level energies, but
transition energies and averages of transition energies.

Comparison of the kinetic moment of inertia (J)/w has

been proposed as a way of locating the identical pairs [13].
For our model, this is equivalent to the comparison of the
parameters A and B for two bands. Only the bands with
small difFerence in A and not very large difference in B
can be candidates for an identical pair. Each possible
pair is examined separately, and only those meeting the
identity criterion are classified as identical bands.

All of the spotted identical bands of the rare-earth nu-
clei are listed in Table III and a few examples for com-
paring the transition energies are given in Tables IV and
V. This investigation confirms decisively that the identi-
cal band is a common phenomenon for the normally de-
formed bands. It can be seen from Table III that nearly
half of the bands in the rare-earth region are identically
connected. Some others may be left out because our
analysis is limited to regular bands. Tables III and IV
also show that more than two bands can be connected by
identity links to form a group of identical bands. How-
ever, the existence of the different identical bands may
have different nuclear structure significance. Hence study
of the different kinds of identical bands and their grad-
ual loss of identities may form interesting systematics of
the rotational spectra. In any case, the success in locat-
ing identical bands may be considered as a credit to the
present model and an illustration of its usefulness in the
analysis of the rotational spectra.
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