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Surface response in the Fermi-liquid drop and nuclear transport properties
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Response functions for isoscalar multipole excitations are calculated for a large range of tempera-
tures and analyzed in terms of transport coeKcients. The dynamics of the nucleons is treated semi-
classically by applying the collisional Landau-Vlasov equation for the interior region, supplemented
by the "efFective nuclear surface approximation" introduced previously to describe the dynamics of
the surface. Collisions are considered in modified relaxation time approximation with a temperature-
and frequency-dependent relaxation time. The strength distribution shows a marked transition from
the zero sound like behavior at small temperatures to the one corresponding to collision dominated
modes. The latter appear at small frequencies and are underdamped. Within our present model
the transition occurs at large temperatures of about T & 4 MeV. For the intermediate temperatures
the overdamped modes are found as related to the low-lying peaks in the strength function. The
results are illustrated by the calculations of the strength function for the quadrupole excitations in
the nucleus Pb.

PACS number(s): 21.60.Ev, 24.30.Cz

I. INTRODUCTION

Collective motion at 6nite excitations still is not com-
pletely understood. One would commonly expect it to
be governed by "macroscopic" features, the more so the
larger the excitation is. Traditionally the macroscopic de-
scription of average static and dynamic characteristics of
nuclei has been based on the classical liquid drop model
(LDM) [1,2]. On the other hand it should be apparent
that the specific properties characteristic of Fermi liq-
uids cannot be discarded [3,4] when we want to describe
a nucleus as a finite drop. One property of this type, for
instance, is the dynamical distortion of the Fermi surface
[5—7] accompanying collective motion.

Collective dynamics of a Fermi liquid can be de-
scribed within the phase-space approach which is based
on the semiclassical collisional Landau-Vlasov equation;
see Refs. [5,8]. Specific problems appear for small fi-

nite systems like a nucleus where in the surface region a
semiclassical description becomes doubtful. However, as
shown in Ref. [9], this difficulty may eventually be cir-
cumvented by making use of the effective nuclear surface
approximation. " The latter uses a special leptodermous
expansion in the smallness parameter a/B = A
where a stands for the thickness of the diffuse edge and
B is the nuclear radius. One may then define the effec-
tive nuclear surface as the position of the maxima of the
time-dependent spatial gradient of the particle density.
In this way one can split the dynamic problem into two
parts: (i) For the interior region, where relatively small
dynamic oscillations of the particle density take place,
one may apply the semiclassical Landau-Vlasov equa-
tion. One may even go one step further and translate
this equation for the distribution function into a set of
equations for the physically observed quantities such as

II. FERMI-LIQUID DROP MODEL (FLDM)

We shall consider below small vibrations of the nuclear
surface near a spherical shape, which are induced by an
external field V,„&(t). To this end we introduce a collec-
tive variable Q(t) in the usual way,

R:Rp [1 + q(t) Yjp (r")], (2 1)

where Ro is the equilibrium radius of the nucleus and

the particle density, current, and pressure tensor. This
has been demonstrated in Ref. [10] for the case of small
amplitude vibrations. (ii) In the nuclear edge, instead
of solving a very complicated dynamical problem, one
may use simple macroscopic boundary conditions for the
previously mentioned observed quantities. These bound-
ary conditions, together with the continuity equations
for particle number and momentum, reflect similarities
to the standard dynamic problem of the classical hydro-
dynamics [11]. We will consider the properties of the
nuclear resonances as functions of temperature. These
properties were studied earlier in Refs. [12,13] within the
framework of the quantum response theory. Such kinds
of investigations are interesting also in connection with
averaging procedures of the nuclear responses considered
in Refs. [14,15].

In Sec. II we shall exhibit some of the basic properties
of the Landau Fermi-liquid theory as applied to a finite
drop. We then continue to derive in Sec. III response
functions for collective vibrations. Their interpretation
in terms of transport theory is given in Sec. IV. The
discussion of numerical results will be presented in Sec.
V.
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Q(t)=Q e (2.2)

Y(o(r") are the spherical harinonics representing axially
symmetric shapes. For Q(t) we will assume the form

g-/2m* for T « ez, where ep is the Fermi energy and
pF is the Fermi momentum. The quantity b V (r, p, t)
in Eq. (2.3) is the Wigner transform of the variation of
the self-consistent potential

A. Equations of motion inside the nucleus
V = V., +bv (2.6)

In the nuclear volume, where variations of the density
g(r, t) are small, the quasiparticle concept of the Landau-
Fermi-liquid theory [5] can be justified. Therefore in the
interior of suKciently heavy nuclei one may describe the
particle phase-space dynamics in a semiclassical approx-
imation in terms of the distribution function f(r, p, t)
which is obtained as a solution to the collisional Landau-
Vlasov equation

bf + 'k7 bf V bV V„f q bSt(f) 0 (2 3)

NF
(2.7)

where N~ = p~m*/(vr2hs). The quantity W(p, p ') is usu-
ally parametrized in terms of the Landau constants Tp
and Ti as

where V,q is the equilibrium mean field which is approx-
imately constant for the nuclear interior. The dynamic
component bV is expressed in terms of the interaction
amplitude X(p, p ') as

&(pP ') = ~o + ~ip»', p =P/p (2 8)
Here V—:V (r, p, t) stands for the Wigner transform
of the mean field V, which in principle should include
V,„i(t). However, we will assume that the external field
is concentrated in the nuclear surface and will thus in-
clude V,„k(t) in the boundary conditions. The variation
bf(r, p, t) in Eq. (2.3) is the dynamic component of the
distribution function

Z = 6.~(i+a, ), (2.9)

These constants are related to the incompressibility mod-
ulus K of nuclear matter and efFective nucleon mass m*
by

f = f.q+bf

where f,~ is the Fermi distribution function,

(2.4) 1m*=m~ 1+-X, ~, (2.10)

f,„= 1+ exp (2.5)

for the equilibrium inside the nucleus. Here,
p /2m*, m* is the effective nucleon mass, A is the chemi-
cal potential, and T is the nuclear temperature; A = eF ——

where m is the nucleon mass.
In Eq. (2.3), bSt(f) denotes the collision term which

we shall consider in the 7 approximation [5], modified,
however, by the frequency and the temperature depen-
dence of the "collision time" v. This dependence follows
from the generalized w approximation considered in Refs.
[6,7,10,16],

SSt(f) = — Sf(o p, t) — dt4A(k)(aoYoo + oooYoo(p k))
'

exp(t(k P —oot))),
1 t9f ~(e)
7 06 6=6'~g

(2.ii)

where bf(r, p, t) is considered as a superposition of plane sound waves of amplitude A(k),

df(o, P, t) = f dn A(k)f(p. k) exp[i(k . r ~t)], — (2.i2)

f(p k) = ) ckL, ((u, k)YI.O(p k), k = k/k. (2.i3)

Tp

T2+ (,'(Ru)2' (2.14)

Formula (2.14) has been derived in Ref. [10] by inte-

The relaxation time r in Eq. (2.11) is assumed to be
frequency dependent. Following Ref. [10] we take the
form

grating Eq. (2.3) over e ~, assuming that for Ru && A

and T (& A the derivative of the equilibrium distribution
function f ~(e,~) over its argument is sharply peaked at A

and that the interaction amplitude W(»7, p') of Eq. (2.8)
can be parametrized only by two constants Tp and Ti.
In this case ( = 3/4' . We point out that the inclusion
of memory eÃects in the relaxation time was also consid-
ered in Refs. [17—19]. Using the attenuation coefficient
approach of Landau [5,20], a value of ( = 1/4vr2 was ob-
tained in Ref. [19]. Formula (2.14) may in some sense
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8—bp+ p,~V'. U = 0,Bt (2.is)

the equation for momentum conservation

be compared with expressions suggested in Ref. [21] for
the imaginary part of the self-energy to be used in micro-
scopic computations like those of Refs. [13,12,21]. This
form, however, differs in a twofold sense: Besides the
3j4zr2 another parameter was considered which weakens
the dependence on both ~ and temperature T at large
values of these quantities.

Let us transform the Landau-Vlasov equation (2.3) to
equations for the p moments of the distribution function
f(r, p; t), like the continuity equation

due to the following choice of the amplitude:

A(k) = Yio(k)) (2.ig)

K BW BWp 2-
bII p

———bpb p
—p + ——V'. R'b p9 BTp 6p~ 3

t9U BUp 2-
t9PP BPC„3 (2.20)

where TV is the displacement Beld,

which we are going to apply to describe vibrations of
multipolarity l. Following Ref. [10], we can represent
the dynamic part of the momentum Aux tensor bII p in
Eq. (2.16) as

BU
mp, q +) SII p=0,

Bt (9'pp' (2.i6) U= —W,
Bt

(2.21)

etc. ; see Ref. [8]. In Eqs. (2.15) and (2.16), U are the
Cartesian components of the mean velocity field,

p is the Fermi surface distortion parameter,

Peg R (S2) 0 1 (2.22)

2
U (r, t) = dp —bf(r, P;t), (2.17) and v is the viscosity coeKcient,

and bp is given by

2
Sp(r, t) = dp bf (r, p; t) ~ Yio(r), (2.IS)

where the proportionality to the spherical harmonics is

z = —— '~ Im (S'),
2 (dGy

(2.23)

with Go = 1 + Wo and Gi = 1 + Wi/3. The quantities
ww and S are connected to each other by the dispersion
relation (see Ref. [5])

2&7
Gi —Qi(() Gi &o-

2M'T —1
(2

zwr —1)
3 l z&r = 0.

zcur —I) zcur —1
(2.24)

Here, k is the wave number,

(=Sl 1+( i ) (u p~
~r) ' =

v~k' m* ' (2.2s)

1 d
i(&) =

2
(2.26)

is the Legendre function of the second kind. Substituting
the relation

1
lim

(I~+O X —(R —Z(I
= P + izr6(z —(R)(~ —6r. )

(2.27)

into the integral (2.26) and comparing with the explicit
expression for this integral for (I —+ +0 gives the defini-
tion of the physical sheet of the many-valued logarithmic
function, which appears in Eq. (2.26) in the complex U = V'(p, (2.28)

plane of the variable (. This definition corresponds to
the well-known Landau rule to avoid the pole singularity
[2o]

We emphasize that we have not employed any trunca-
tion scheme for the moments of Eq. (2.3) in deriving the
equations of motion (2.1S), (2.16), and (2.20). However,
our approach involved the somewhat complicated disper-
sion relation (2.24), which was derived directly from Eq.
(2.3). This is to be contrasted with the common fluid
dynamic approach (see Refs. [3,22—32]), in which a trun-
cation of the equations of moments of (2.3) is achieved
by restricting the value of the multipolarity of the dy-
namical Fermi-surface distortion. We also add that our
approach is more adequate for the description of the zero-
sound regime and for the transition to the hydrodynam-
ical regime in the case of small values for the Landau in-
teraction parameter I"0 which is usually used in nuclear
Fermi liquid.

Prom Eqs. (2.12)—(2.14), (2.17), and (2.19) one gets
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where

1+%,/3 ng

p~ ik
3

dQi, Yio(p k)exp[i(k . r —cut)].
4m V-i(r t) = ~-i(t)P(r) (2.36)

po = (4~/3)ro, aiid Ro ——roA ~ is the nuclear radius.
We will assume that the external field

(2.29)

With Eq. (2.28), Eqs. (2.15) and (2.16) are reduced to
one equation for the potential p,

is concentrated in the surface region of the nucleus. For
F(r) we take the form

B2~ 1 f 12') 4 BpILoeq 2 l
~ + Oeq+PqBt2 9

~ geq) 3 Bt

(2.30)

p) eq 4 ) R=RO

After substitution of Eqs. (2.35) and (2.37) into Eq.
(2.34) we have

B. Boundary conditions and external field
where

K
, q. t (t) Yio (r),
o

'" (2.38)

U &
= R(t) = RoQ(t)YIo(r), (2.31)

Ps+P. t, (2.32)

where U„and bII„„are the radial components of the ve-

locity field U, Eq. (2.17), and momentum fiux tensor
hll p, Eq. (2.20), respectively, which are determined in
the nuclear volume. The boundary conditions (2.31) and
(2.32) adopted here are the common ones which are used
for small vibrations in a finite liquid; see Ref. [11].These
conditions are similar to those used in Refs. [27—29] for
nuclear Quid dynamics. We note that the eKects of the
surface tension were ignored in Refs. [27—29]. The sur-
face pressure hPs which is due to the tension forces [1] is
given by

The dynamics in the surface layer of the nucleus can
be described by means of the macroscopic boundary con-
ditions derived in Ref. [33], using the effective surface
approximation [9]. For small vibration amplitudes they
read

/'hV ) o Ro4

&hp)., » (2.39)

(2.40)

Here P is the coeKcient which in the nuclear energy den-
sity formula appears in front of the term which is propor-
tional to [V'p, q(r)) . From Refs. [4,34], we have P=70—
90 MeV fm . Both in the definition (2.37) of E as well as
in the constant v the functional derivative of the mean
field with respect to the density appears. Within our lin-
earized approach this derivative has to be evaluated at
the equilibrium density. It may be noted that these fea-
tures are similar to the ones discussed in Ref. [1] for finite
nuclei. In a future paper, which is to be published else-
where, this similarity will be worked out in more detail.
Here we may just note that the factor (bV/bp), finally
drops out of all physical quantities we are going to dis-
cuss below. For the tension coefficient we have used an
expression found in Ref. [34] within the "sharp surface
approximation" [9]

hPs = (I —l)(t + 2)Q(t)Yio(r),
Bo

(2.33)

where 0 is the tension coefficient. Here and below we
neglect the relatively small corrections of the order of
A /, which are related to the external field.

In Eq. (2.32) there appears an external pressure P,„t.
It is here where we make connection to the external po-
tential V t we spoke of before by writing

III. RESPONSE FUNCTION

I et us write the linearized dynamic part of the nu-
cleonic density hp(r, t) as a sum of a "volume" and a
"surface" term,

hp(r, t) = hp (r, t)y(Ro —r) — pohR, (3.1)VDl By(Ro —r)

P,„t —— dr p ~(r) (2.34)
where bB is the variation of the nuclear radius,

For the density in equilibrium which appears in Eq.
(2.34) we take the form hR = RoQ(t) YIo (r) . (3 2)

p"(r) = poy(R —r) (2.35)

expressed in terms of the profile function y(x) which we
are going to approximate by a step function. The po is
the value of equilibrium density inside the nucleus, i.e. ,

The upper index "vol" in hp '(r, t) of Eq. (3.1) indicates
that this quantity is determined by the equation of mo-
tion in the nuclear volume and is given in terms of the
distribution function bf (r, p; t) through Eq. (2.18) . Solv-
ing Eq. (2.30) with the first boundary condition (2.31),
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one gets the potential p of Eq. (2.28) in the form

1 kBp
p(r, t) = —., Q(t)j i(kr)Yio(r),k2 j,' kRo

(3 3)

where j~(x) is the spherical Bessel function and j&(x) =
dji(x)/dx. From the continuity equation (2.15) with Eqs.
(2.28) and (3.3) one has

into Eq. (3.6) we obtain

x(~) = Kq-/q. .&, (3.8)

with the Q given by Eq. (2.2).
Using Eqs. (2.20), (2.21), (2.28), (2.33), and (3.3) one

may write the equation of motion (2.32) in terms of the
collective variable Q(t) and periodic time dependence of
the external field V, q in the form

(" ') = o kR q(t) (k )Yo( ). (3 4) 8((x)q+ C((x)Q+ Zi(x)q = —~q.„,. (3 9)

Therefore according to Eqs. (3.1), (3.2), and (3.4) one
finds that

We have introduced in this equation various new quanti-
ties, such as

kBp
Sp(r, t) = poQ(t)Yio(r) . ji(kr)y(Ro —r)

(d Bp
vpS' (3.io)

By(Ro —r)
p (3.5)

which by means of Eqs. (2.24) and (2.25) is a complex
function of u, as well as the quantities

For the monopole case the conservation law for particle
number, f droop = 0, is fulfilled identically in k because
Eq. (2.31) leads to a cancellation between the contri-
bution of the "volume" part and the contribution of the
"surface" part of hp(r, t) in Eq. (3.5).

With this solution we may now proceed to calculate
the response function y(w) which measures how the av-

erage of I" changes with the external field of Eqs. (2.36)
and (2.37). Expressed in terms of the Fourier transform
hp (r J of the transition density hp(r, t) it can. be defined
[2,4, 13,35] as

8((x) = mpoRos ji(x)
Xg) X

C,~ l = o.Ro'(l —1)(l+ 2),

[~i'(x) + ~i(x)]
~l

(3.11)

(3.i2)

(3.13)

(3.i4)

&ex'
drF(r)bp (r), (3.6)

where q,„~ is the Fourier component of the external field
[see Eq. (2.36)],

&i(x) = »Ro ., 4("(x) +~~(x)]
'~&(x)

From Eq. (3.9) one has

(3.i5)

q.„,(t) = q.„,e
—*( +*'l', ~ = +o. (3.7)

We may express the response function in terms of our
collective variable Q. Indeed, substituting the Fourier
transform of Eq. (3.5) together with F from Eq. (2.37) with

«(x)
(3.16)

gi (x) = —8i (x)~ —C( (x) + i~Z( (x)
&(s)

jI(x) ~s(l —1) (l + 2) q po& po&Ro )
P . VVp'+i xS

i j(x)
poA poARo )

(3.17)

where bs ——4mrpo 17 MeV and rp ——1.2 fm. In a
realistic situation the value of rp is a little smaller, when
related to the correct; particle density pp, but the results
of the calculations in FLDM are not sensitive to small
changes in ro. So the response function y(cu) defined in

Eq. (3.8) is written with the help of Eq. (3.16) as

K

gi(x(~) )
(3.18)
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function 3.18) areThe poles o e cof th llective response fun
'

(
determine y ed b the following equation:

(x) = —8((x)~' + C((x) —icuZ((x) = 0.Q&(X~ = —
& X (3.19)

e secular equation to the dispersion relation
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(d = +(d~ —2I~) n ==0 1, ..., (3.2O)
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20-

follow Ref. [37] and first rewrite the equation of motion
(3.9) for the collective variable Q(t) in the form of an
energy conservation law as

15
MlQ~ + ClQ~ + 7lQ~ ——Kqe~t (t)QR. (4.1)

10
Here we have taken the real part of Eq. (3.9) and speci-
fied to the physical velocity of the surface as a real quan-
tity: QR(t) = Re Q(t) and q,„t = Re q,„t,(t). Further-
more, we have introduced the quantities

0
1

Mi((u) = Re Hi(z) ——Im Zi(x), (4.2)

FIG. 2. The function ~7 (~) plotted versus ~/0 with
~o = (30/B) MeV .

Ci((u) = Re Ci(z) = C, + Re CI",

1
pi(~) = Re Zi(x) + ~1m 8((x) ——Im C((z),

(4.3)

(4.4)

In the second equation we assumed that the temperature
T is suKciently large so that we can neglect the ~ de-
pendence of the relaxation time w in Eq. (2.14). The
approximate solution (3.24) was found for heavy nuclei
with a particle number of about A & 100. The A de-
pendence 1o oc A / in Eq. (3.24) is in contrast to
the typical two-body collision behavior of A / . This
is a peculiarity of the overdamped mode. The damping
of this mode is directly related to the boundary condi-
tions (2.31) and (2.32) through I o oc bg oc o. and in this
respect it is similar to the one-body dissipation where
I' „,b d„oc A /; see Ref. [3]. This overdamped mode
is specifically related to the finite size of the system and in
principle has no analogous mode in infinite nuclear mat-
ter. This is in contrast with the underdamped volume
mode where I cx u and the A / dependence is due to
the A / dependence of u. The 7 dependence I o oc 7

is similar to the one for the collisional width of a giant
resonance in the zero-sound regime; see Ref. [10). In a
general case, the width I of the giant resonance may
be due to both sources: two-body collisions and Landau
damping (the escape width, which is relatively small for
heavy nuclei, is not taken into account in our approach).
Landau damping is included in our approach through the
dispersion relation (2.24) derived in the Landau theory
of the Fermi liquid; see Ref. [5]. However, it contributes
to I' only when the complex roots of Eq. (2.24) are
on the physical sheet. A detail analysis of the Landau
damping contribution to I'„and its relation to one-body
dissipation phenomena will be given in a separate publi-
cation. Here, we have concentrated on the temperature
behavior of the Fermi-liquid response function and on the
low-lying overdamped mode.

IV. TRANSPORT PROPERTIES

1
M((0) = —mpoBo = M, (4.5)

the inertia of irrotational How, and

C, (O) = C,"' —= C,'D, (4.6)

with |
&

being the stiffness coeKcient of the surface
energy.

For friction the situation is slightly different. We get a
form for T g 0,

which will serve as the basis to define transport coe%-
cients for the inertia, stiffness, and friction, respectively.

As it stands Eq. (4.1) is correct for frequency-
dependent Mi(cu), p~(cu), and Ci(cu). However, we have
to remember that our equations have been derived for a
strictly harmonic function Q(t) as given by Eq. (2.2).
This is consistent with Eq. (4.1) only if we replace these
frequency-dependent functions by constants.

With constant transport coefFicients the interpretation
of the various terms in Eq. (4.1) is easy. The term in
the square brackets just represents the collective energy.
The term proportional to the friction coefficient pt is the
change of heat associated with the "nucleonic" degrees
of freedom. The right-hand side measures the work done
per unit time by the external force, for normal displace-
ments of the surface. To define these constants various
procedures are possible.

(1) Zero frequency limit. For instance, in cranking-
model-type approximations one assumes the collective
motion to be suKciently slow such that the transport co-
eKcients can be evaluated in the "zero-frequency" limit,
namely, at w = 0. Applying this procedure here for tern-
peratures T g 0 we obtain for the inertia Mi and stifF-
ness C~ coefFicients the values of the classic hydrodynamic
model, namely,

The macroscopic response of a system to an external
field allows us to introduce the transport coeKcients. We

QJ (0) = 2vi, D Bo(l —1)

which because of

(4.7)
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3 A ~pO

10' Or3 T2

hing 3 2l + 1= »i,DRO(l —1)
l

(4.9)

has a dependence on temperature typical for hydrody-
namics. However, our result differs from the one found
in Ref. [3] for the classical liquid drop model of irrota-
tional Bow, if only extended to include two-body viscos-
ity. There, for multipole vibrations, friction was found
to be given by

6(l + 1) S~2S12

2l + 3 (S2 + S2)
(4.12)

Ci 1+ —
~

S~ —SI ——GoGi ~, (4.13)
b+Gi(l + 2) q

' 3

ing use of an analogous procedure like in the derivation
of Eq. (3.24) one gets from Eqs. (4.2)—(4.8), (4.10), and
(3.11)—(3.15), with SR = ReS and SI = ImS,

j(~)2 1

7p 7

In this limit we get also finite values for the coefIicient of
viscosity v(0), Eq. (2.23), and for the friction coefFicient

p(0), Eq. (4.4), at zero temperature.
For later purposes it is convenient to introduce the

dimensionless quantities

Mi = Mi/M, , Ci = Ci/Ci", pi = pi/pi" . (4.10)

Furthermore, in order to compare (see Sec. V) our results
with those of previous calculations of Refs. [37,38], we
also introduce the dimensionless quantity

Ql

2/MiCi
' (4.11)

which characterizes the degree of damping of collective
motion.

(2) Analytic expressions for the foui frequency regi-on
Above we have given explicit expressions for the trans-
port coeKcients in the zero-frequency limit for tempera-
ture T g 0. As a matter of fact it is possible to lift this
strict condition and to derive formulas which are valid
whenever cu & Si,DO, for which we have ~x~ & 1. This
condition can be applied to clarify the definition of trans-
port coeKcients in terms of the values of the quantities
(4.2)—(4.4) taken at w = wl ~, which gives the position of
the maximum of the strength function y" (u) = Im y(u)
for the low-frequency region; see Appendix B. By mak-

which is larger than the result for p& by a factor of
(2l + 1)/l. As will be explained in Appendix A we ob-
tained Eq. (4.7) from the Rayleigh function [see Eq.
(A5)] for a finite liquid drop, accounting for the bound-
ary conditions on the nuclear surface. The difference be-
tween the results (4.7) and (4.9) can be traced back to
a different treatment of the normal and the tangential
components of the momentum Aux tensor near the nu-
clear surface.

We would like to notice that for the temperature T =
0 in the zero-frequency limit we have some significant
correction to the liquid drop stifFness [see Eq. (4.3)] due
to both Fermi-surface distortion and retardation effects.
When derived within perturbation theory in the small
parameter 1/(air) (see Ref. [10]), this correction is seen
to be proportional to the anisotropy coeKcient p, Eq.
(2.22). The coefficient p has a Finite value for T = 0 even
in the limit u ~ 0, realized for the zero-sound condition,

15 T 2Gg ~~pO

2Gg ~~pO 15 T~R I +

(4.14)

The connection to the zero-frequency limit at T g 0
is easily understood if we realize that for the collision-
dominated regime one has [6]

(4.15)

where w = w/A.
For the rti of Eq. (4.11) we then get

S~

SIAM'/6

27l (/ —1)1
2Gibs(l + 2)MiCi

(4.16)

It is very interesting to note that for the present model
the low-frequency limit for temperatures T g 0 is so
closely related to the hydrodynamic limit. This can easily
be understood referring to the form (2.14) for r = r(w, T)
and to the position of the first maxima of the strength dis-
tribution. This strength distribution is shown explicitly
in Fig. 1. Concentrating on the peak at small frequencies
we may neglect the ~ dependence of ~ so that the con-
dition of collision dominance, w7 (( 1, can be rewritten
as

(4.17)

which is well fulfilled for temperatures of about T & 1
MeV.

For the case of the high-temperature limit as given by
Eq. (4.17), the qi of Eq. (4.16) may be rewritten as

2 ~pO
g) ——Gj

15 T2
27l(t —1)A

2G, bs(l + 2)
(4.18)

We only have to consider that according to Eq. (2.24)
we have ~SI~ && 1 and ~S& —sGoGi~ && 1.

(3) Fit by an oscillator response function. Even in the
case of strongly overdamped motion one is able to intro-
duce a differential equation for the collective variable, i.e. ,
to replace &equency-dependent coefBcients like the ones
of Eq. (4.1) by constants. As shown and applied to in
Refs. [12,13,17,37] the problem can be solved by defining
the transport coefBcients proper through a procedure of



SURFACE RESPONSE IN THE FERMI-LIQUID DROP AND. . . 2465

fitting an oscillator response function to selected peaks
of the collective response function. Here such a fitting
procedure would also be adequate at intermediate tem-
peratures, especially because our response function of Eq.
(3.18) has poles (n = 0) on the imaginary axis of the ur

complex plane similarly to the overdamped case in Refs.
[12,13,17,37]. In Appendix B we will discuss this method
adopted for the present purpose where we know the posi-
tion of the poles and we can calculate the residues directly
from Eq. (3.18). This allows us to Find the parameters
of the oscillator response function of Eq. (Bl) as an ap-
proximation to Eq. (3.18). The transport coefFicients are
then defined in terms of the parameters found with the
help of Appendix B. We shall use this procedure for the
poles n = 0, 1; see discussion of the results below.

For the overdamped mode the friction coefFicient p „
is related to the rate of damping I'o, Eq. (3.24), by

V. DISCUSSION

In the following we will concentrate on the isoscalar
quadrupole vibrations of Pb and we will thus omit
the index l = 2. In Fig. 3 we show the solutions to the
dispersion equation (2.24) in the complex plane obtained
by varying uv. . We get both regimes of zero and first
sound in the limiting cases of wr ~ oo and wr —i 0 (see
Refs. [4,10]), where S is close to the real axis, and a
continuous transition between these regimes where the
imaginary part of S takes on finite negative values.

The solutions to the dispersion equation (2.24) were
used to calculate the response function y(u) given by
Eq. (3.18). The imaginary part of the response function,
scaled by the factor Cist/K2 to get the dimensionless
quantity

&osc
Pose Mosc I'osc

I'0 (4.19) (5.1)

see Eqs. (B16) and (B12) and the second equation in
(B4). As noted in Sec. III, the overdamped motion cor-
responds to the collision-dominated regime ~ww~ (( l. In
this regime the stiffness C „is close to the hydrodynamic
limit C . This is confirmed by the numerical calcula-
tions discussed in the next section. So, taking into ac-
count the estimate in Eq. (3.24), one obtains

3 3 70
p „=—AA~ = —AA

5~ 5m T2 ' (4.20)

for low-frequency region where we can neglect the fre-
quency dependence of r, Eq. (2.14), for a finite tem-
perature. It can be noted that this formula is identical
to the pi(0) of Eq. (4.7) up to the factor (l —1). Ap-
parently such a factor has been lost when applying Eq.
(3.24) to Eq. (4.19). Also notice that expression (4.7) is
valid for underdamped motion whereas expression (4.20)
applies to overdamped motion. Using Eq. (4.11), the
corresponding effective damping constant g „ is given
by

is shown in the upper part of Fig. 1 as a function of the
dirnensionless frequency

c3 = M/0, Sn =44A '~' M V (5.2)

with 0 being defined in Eq. (3.21). The difFerent curves
show the temperature dependence of the response func-
tion. In the lower part of Fig. 1 we show the position
of the underdamped poles, found from Eq. (3.20) for
n = 1. To clarify the correspondence with different col-
lision regimes the dependence of err [see Eq. (2.14)] on
~ is plotted in Fig. 2 for the temperatures T consid-
ered in Fig. 1. The interaction parameters To ———0.2
and Ti ——0.6 used in our calculations are taken from Ref.
[10]. Since our main objective in this work is to study the
temperature behavior of the response function, we have
used the phenomenological value of ro ——(30/0) MeV
in (2.14) which reproduces the experimental data for the

~osc
lose

4.21
5bs(l —1)(l + 2) 5bs (l —1)(l + 2)T2 '

0.08
JmS

0.04

—0.00

—0.04

cd7 ((1 G)7 »1
"100

cue =0.1&

where we have used the approximate relation C „-C
and cu „gC~D/M „according to Eq. (B12). We find
the quantity w „to be fairly independent of temperature;
see discussion in Sec. V.

(4) General method for underdamped poles We wan. t
also to apply a similar method by just evaluating the
expressions (4.2)—(4.4) for transport coefFicients at the
real part w of the poles (3.20). The physical meaning of
such a definition is obvious if a pole is close to the real axis
for I' « w . This definition of the transport coefIicients
clarifies their relation to the characteristics of the excited
mode and will be used below for the description of the
underdamped motion.

—0.08

—0.12
0.

—0.1 6

—0 20 I I I t I I s I I I ~

0.0 0.2 0.4 0.6 0.8 1.0
ReS

1.2

FIG. 3. The sound velocity S„being the complex roots
of the dispersion equation (2.24), as a function of wr with
%0 ———0.2 and W~ ——0.6.
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energy ~ and the width I of the isoscalar quadrupole
resonance of finite nuclei at T = 0. Note that micro-
scopic calculations of 70 in nuclear matter underestimate
the value of I' for cold nuclei; see Ref. [10]. Our results
are not very sensitive to the values of the Landau param-
eters To and T» provided that one adopts the limits of
~Wo~ & 1 and ~Xi/3~ (( 1. It is interesting to note that
Fig. 2 shows two hydrodynamic regimes for small and
sufEciently large frequencies at temperatures T g 0 due
to the retardation effects related to the w dependence of
the relaxation time r, Eq. (2.14).

It is seen in Fig. 1 that in the zero-temperature limit
only one wide maximum appears at high frequencies. For
large temperatures, say, above T & 3 MeV, only one nar-
row peak exists but at low frequencies. For temperatures
in about the range 0 & T & 2 MeV, two maxima are
present, one at low frequencies ar/0 = 0.1 and one at
high frequencies cu/0 = 1. The strengths concentrated
in these maxima are redistributed such that the first peak
shifts to higher frequencies with temperature and the
opposite tendency takes place for the second maximum
which is shifted to lower frequency. In the temperature
region of about 0 & T & 3 MeV the change in the posi-
tion of the high-frequency resonance is small.

(a) Underdamped motion (n = 1). The high-frequency
resonance at T = 0, in Fig. 1, can be interpreted as
the giant quadrupole resonance because of its energy
Fi ——~q, width I'q ——hI'i, and its large contribution
to the energy-weighted sum rule (EWSR), which agrees
with experimental data. This resonance is related to the
underdamped mode. The width I"i is due to particle
collisions and for the zero temperature comes from the
retardation effects.

The results of numerical calculations of the poles for
the underdamped excitations, transport coefficients, and
degree of damping g are given in Table I. The mass co-
efBcient M is close to the adiabatic hydrodynamic quan-
tity M . The stiffness coeKcient C for small tempera-
tures is much greater than the liquid drop quantity C
due to the strong effects of the Fermi-surface distortions.
The quantity C decreases monotonously with temper-
ature and approaches the hydrodynamic limit C for
large temperatures. The effective damping parameter g
first increases with temperature T and then decreases, in
a way similar to the hydrodynamic law, as T; see Eq.
(4.18). The magnitude of rI is smaller than 1 in correspon-
dence with the underdamped motion. All the definitions
of the transport coefFicients discussed in Sec. IV give
about the same results for low and high temperatures for
which the poles are close to the real axis and, hence, to
the positions of the strength function maxima [39]. In
the intermediate-temperature region where I'i wi the
definitions discussed here lead to different results.

(b) Overdamped motion (n = 0). The nature of the
low-frequency maxima of the strength function at T g 0
seems to be different than that of the well-known low-
lying collective states observed in experiments for cold
nuclei. For temperatures of about 0 & T & 6 MeV these
peaks correspond to the overdamped poles. These poles
move from the real axis along the imaginary one following
the law 1 p oc T2, according to Eq. (3.24), and so the

TABLE I. Transport coefficients (4.10), pole frequencies
(mi ——Kui), and dimensionless efFective damping parameter
(4.11) versus the temperature T for the underdamped mode
(n = 1). The values of M, C, and g were calculated at the
frequency u = uz, M „,C „,and g „through the param-
eters of the oscillator response function (Bl); M l, C
and g for the frequency cu = u which corresponds to
the maximum of the the strength function (5.1). The param-
eters of the model are the same as in Fig. 1.

T (MeV)
mi (MeV)

pii /0
I'i /0

M
C
'I

Mosc
Cosc

IOSC

~l-l (MeV)

M(m)
C(m)

( )

0
10.7
1.44
0.38
1.1

20.9
0.3
1.1

21.1
0.3
10.6
1.43
1.1

20.9
0.3

2

10.0
1.35
0.48
1.0
16.1
0.4
0.9
16.1
0.3
9.3
1.26
1.0
15.6
0.4

4
7.7
1.04
0.68
1.0
4.7
0.5

0.009
0.1
0.6
0.44
0.06
1.0
1.1
2.5

6
3.6
0.49
0.70
1.0
2.0
0.8
0.09
0.6
0.8
1.2

0.16
1.0

8
1.9

0.26
0.27
1.0
1.1
0.6
0.8
1.0
0.7
2.0
0.27
1.0

0.6

10
2.3
0.31
0.16
1.0
1.1
0.4
1.0
1.0
0.4
2.3
0.31
1.0

0.4

TABLE II. The same as in Table I for overdamped motion
(n = 0) except for the transport parameters taken at u = cd„.
The microscopic quantities g;„and m;, are taken from
Refs. [37,38].

T (MeV)
I'p/0
Mosc
Cosc
pose

m (MeV)
(ip/0) &

M(m)
C(m)

( )

'@micro

~xnicra (MeV)

1
0.0035

0.2
F 1

116.5
0.03
0.004
1.0
1.1

40.1
0.46
2.13

2
0.014
0.2
1.1

29.1
0.11
0.015
1.0
1.1
10.0
1.63
1.19

3
0.032
0.2
1.1
13.0
0.24
0.033
1.0
1.1
4.4
2.82
1.12

4
0.058
0.2
1.1
7.2
0.44
o.o6
1.0
1.1
2.5

4.66
0.18

6 8
0.15 0.53
0.2 0.06
1.0 0.6
2.8 1.3
1.19 2.00
0.16 0.27
1.0 1.0
1.1 1.1
1.1 0.6

maximum value of the strength function falls off with
temperature T.

In Table II we show the transport coeKcients and ef-
fective damping q for the low-frequency peaks related to
the overdamped poles. The result of the numerical cal-
culation for the value of I 0 is very close to the analytical
solution (3.24) for temperatures of about 0 ( T ( 6
MeV. In the overdamped case we used the definition of
the transport coeKcients M „,C „, and g „through
the parameters of the oscillator response function (Bl) as
explained in Sec. IV and Appendix B.Table II shows sig-
nificant differences between the values obtained using this
method and the values of Eqs. (4.10) and (4.11) obtained
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from Eqs. (4.2)—(4.4) in the first maxima of the strength
function, at w = w~ ~, except for the stiffness coefFicient
which nearly has the hydrodynamic value. However, the
effective damping constant g decreases with temperature
approximately by the same law of T in both definitions,
in correspondence with Eqs. (4.21) and (4.18). Note that
the rate I 0 of damping of the observed quantities like the
mean velocity field (2.17) or particle density (2.18) for the
overdamped inode is proportional to 7 i [see Eq. (3.24)],
and so increases with temperature T approximately as
T . Nevertheless, for the &iction coefFicient p „we have

p „oc I' „oc I/I'o for the most important overdamped
pole close to the real axis [see Eq. (4.19)], and accord-
ing to Eq. (4.20), p „oc r oc T for the considered
low-fILequency region. Here we accounted for the results
of Table II which show that the stifI'ness C „is almost
independent of temperature and C „=C . So for the
overdamped mode the temperature dependences of the
quantities p „and I'0 are just opposite to each other.

The temperature dependence of q, denoted by q „in
Table II, is significantly difFerent from the microscopic
results of Refs. [37,38] for the efFective damping g
The microscopic quantity g;„ increases with temper-
ature whereas, as noted above, our g „decreases with
temperature. The dependence of g on the temperature
obtained in Refs. [37,38] is associated with the disappear-
ance of nuclear shell efFects in the stifI'ness coefFicient C
and inertia parameter M with increasing temperature.
The notable decrease with temperature of the frequency
of the first peak in the microscopic calculations of Ref.
[12] shown in Table II can be related also to the tempera-
ture dependence of the shell effects. As noted above [see
comment to Eq. (2.14)], we should take into account also
the difFerence in the definition of the (cu,T) dependence
of the relaxation time 7 .

Figure 2 shows that for large temperature T we have
1 for all w, and we are close to the first sound

regime (see Fig. 3). For small wr the coefficient p, in

Eq. (2.22), which is related to the Fermi-surface distor-
tions, approaches zero (see Fig. 4). We point out that
the transition to classical hydrodynamics is realized in
the limit p ~ 0. We thus conclude from Figs. 1—4 that
with increasing temperature we have a transition from
the zero-sound regime to the first-sound regime and the
Fermi-liquid drop model tends to the classical hydrody-
namic model [1]. This transition is realized as an under-
damped motion.
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APPENDIX A: LIQUID DROP VISCOSITY

Let us consider the classical hydrodynamic model for
irrotational and incompressible ffow. Following Ref. [3]
the equation for the energy conservation can be written
in the form (4.1) with the friction coefficient given by

hyd
'7l = P)

Here, up is defined by

(A2)

0.8

0.6

0.4

0.2

0.0
0 10 15

1.0
~ I

i
~ ~ ~ ~

/
~ ~ I ~

/
0 ~ ~ I

20

The first integration is to be taken over an arbitrary fi-
nite volume P inside the viscous matter described by the
Navier-Stokes equation and the second one is carried out
over its surface S. The quantity (Al) was obtained in
Ref. [3] from the Rayleigh function [11]which determines
the change of the energy concentrated in this volume V
per unit time. Note that for irrotational and incompress-
ible ffow the Navier-Stokes equation (2.30) has no viscous
terms and according to Eqs. (2.15) and (2.28) the equa-
tion of motion is the Laplacian equation. It means that
for the dynamics of a finite liquid drop the momentum
fIux tensor contains viscous components which lead to
viscous motion of the liquid drop only due to the bound-
ary conditions like (2.32).

With the help of Eqs. (2.31) and (A2), Eq. (Al) can
be rewritten as

p,
"" q' = 2v/dSus "+2+) /dSu;—

i=1
FIG. 4. The Fermi-surface distortion coefFicient

p, = p/(p, sA) versus wr with the same values of Wo and Xr
as in Fig. l.
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where II &' stands for the dissipative part of the mo-

mentum flux tensor (2.20) considered for irrotational and
incompressible How,

Jose
71 =

2 '/Mosc+osc

I'osc

2(dose
(B4)

2

II p
= 2v = —2g/

{dis) ~n
&pp Bp~ 8pp

(A4)

In Eqs. (A3) and (A4) the index i runs on the tangential
components of the quantities in the orthogonal coordi-
nate system [P = (r, i)]. The first term in Eq. (A3) is
related to the work of the dissipative force for normal dis-
placements of the nuclear surface, which we would like to
associate with the dissipation energy for a liquid drop,

Q = 2'R = —)(dsu IIt "i
PP (As)

Here, Z, is the Rayleigh function for incompressible irro-
tational dynamics in a liquid drop of a Bnite size. This
dynamics is described by Eq. (2.30) for motion inside
the liquid drop with the boundary conditions (2.31) and
(2.32) on its surface. The friction coefficient p& is ex-
actly the same as derived above in Eq. (4.7). So the
di8'erence between our definition of the friction coeK-
cient in Eq. (AS) and the one in Eq. (A3) is related to
the work of the dissipative force for tangential displace-
ments of the surface layer of Quid in a liquid drop. Notice
that according to the boundary condition (2.32) we are
only able to study work done by an external force per-
pendicular to the surface. As a matter of fact, it does
not make sense to attribute work in parallel movements
of the surface of a self-bound system like a nucleus. In
the end such a movement is determined by the motion of
the nucleons themselves.

osc 2 (( ~oscM„" q 2
g2 (Bs)

(d = +6071 —'LE~) n = 0, 1, . . . (B6)

For underdamped motion this equation is completely
equivalent to Eq. (B2). For overdamped motion the
situation is difFerent. Whereas, in Eq. (B2), f „will be-
come purely imaginary, its contribution will be included
into the I'o of Eq. (3.20) (see below). Besides the co+ we
need an additional quantity in order to be able to deter-
mine the values of the three transport coeKcients. For
instance, one may take the height of the maximum of the
strength function located at ~{ ~ and the identity

tt
(

(tn)
)

ti
(

(tn)
) (B7)

To simplify the notations we omit the index n in the
parameters of the oscillator response function (Bl). In
the text we have explained the method which allowed us
to calculate both the positions as well as the residues of
the poles directly. By comparison with Eq. (Bl) this
allows one to deduce the transport coefficients of inertia,
friction, and stifFness. The position of the poles have
been denoted by co and I' in Eq. (3.20) as

APPENDIX B: FIT BY AN OSCILLATOR
RESPONSE FUNCTION

Lose (~)
1 ( 1

2Mosc~osc ( io ~n
(»)

ttt —bfo )
where

- I'osc
DSCn 2

(B2)

~osc

2
+osc

~~
osc (B3)

Let us approximate the selected peak of the response
function y" (io) of Eq. (3.18) which is related to a given
nth pair of poles by the oscillator response function
y"„(~o) = Im )t „(io) in the form [37]

(a) For the underdamped case (n = 1, g ( 1) the quan-
tity 8 „is real. With the first condition (B6) we get E „
and I „from Table I and then the frequency u, from
Eq. (Bs) and the efFective damping rl from Eq. (B4).
From the second condition (B7) and Eq. (Bl) we obtain
the mass parameter M „.The stiKness C „can then be
found from the first equations in (Bs) or (B3). One may
check that the parameters f „,I' „,and M „are close
to those obtained by the method of a least-squares fit of
the oscillator strength function y"„(ur) of Eq. (Bl) to
the selected peak in the function )('"(w) of Eq. (3.18), in
all cases when we have distinct resonances with maxima
corresponding approximately to the real part ~i of the
pole; see Table I.

Note that for the case g ( 1 we can express L „of
Eq. (B3) in terms of I' „and the value cu( ), which
corresponds to the maximum of the oscillator strength
function y".,(~) of Eq. (Bl), as

~osc (B8)
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~osc = ~Eoscq (89)

and

= i(+E „—I' „/2), (810)

where

Eosc = n . . . )F&'
4(~(m, })2 ( )

lk 2 )l

with the frequency u~ ~ corresponding to the maximum
of the strength function of Eq. (87). Note that 0 in Eq.
(811)appears because in practical calculations related to
the fitting procedure it is convenient to rewrite all formu-
las of this appendix in terms of dimensionless quantities
like (5.1) and (5.2). We then find w( ) in terms of E „
and I"„in units of O. Coming back again to dimen-
sional quantities we get Eq. (Bll) with explicit 0 on the
right-hand side.

The oscillator frequency u „for the overdamped mode

We can verify now that the values of the quantities E' „=
ui, I' „=I'i, and ~~ ~ taken from Table I satisfy the
relation (88) for small and large temperatures when we
have a good resonance structure of the strength function,
at ui —~~ ~, and that all definitions give approximately
the same result.

(b) For the overdamped motion (n = 0, rl ) 1), E „of
Eq. (83) is purely an imaginary quantity,

04
F „=Fp + —2(or(m))2 —F2 (815)

Note that from the lower sign of Eq. (813) and Eq. (812)
we obtain

F-. = —(~.'..+ Fp) = (816)

strength function y" (ar) of Eq. (3.18) for intermediate
temperatures of about 1 & T & 6 MeV. This pole cor-
responds to Eq. (813) with a minus sign before E „
(E „)0 and F „)0 by definition). Hence, another
pole in Eq. (813) can be far from the real axis with
I'0 larger than O. The latter is confirmed by the proce-
dure of the above mentioned direct fitting by the least-
squares method with respect to the parameters E „,I' „, and M „. Such a procedure results in the val-
ues E „=E „/0 )& 1, I' „=I' „/0 )& 1 such that
E „=F „/2 but E „is a little smaller than I' „/2
(for the stable mode). So for Eq. (813) with the upper
sign we have I'0 = I' „&&0 and for the lower sign one
gets I"0 (( I' „.In the first case the overdamped pole is
very far from the real axis and cannot significantly afFect
the strength function y"„(pr) of Eq. (Bl). Therefore we
neglect the second term in Eq. (81).

We are interested in the values u~ ~ (( 0 and I"0 & 0
for the temperatures shown in Table II. In this case when
we should choose the + sign in Eq. (814) to get a positive
value for I' „,

is

&osc

Mosc
(»2)

because I'0 (( 0 for temperatures of about T & 6 MeV
and or „is of the order of 0; see Eq. (812) and Table II.

With the upper sign in Eq. (813) and for the low-
frequency region u~ ~ (( 0 the quantity I'0 is then

For the overdamped case the first condition (86) of the
considered fitting procedure with the definition (810)
gives and

02
I'p — » 0

2~ (rn)
(817)

Fp ——+E „+1 „/2. (813) (»8)

From Eqs. (Bll) and (813) one obtains

n4I + 2(io(rn))2 F2
rn (814)

As it is shown in Sec. IV only one pole, Eqs. (3.23) and
(3.24), near the real axis in the region of about I'p ( II
exists and is responsible for the low-lying peak in the

in accordance with the numerical direct fitting procedure
discussed above. Let us come back to Eq. (815) corre-
sponding to the

asap
in Eq. (810). Starting with I'p and

) from Table II we can calculate 1 „from Eq. (815)
and then E „from Eq. (Bll). Hence, we can find the
parameter or „from Eq. (812) and the effective damp-
ing rl from Eq. (84) (rl ) 1 for the overdamped mode).
The calculations of the M „and C, are the same as in
the previous case (a).
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