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A careful reanalysis is done of the contribution to K+-nucleus scattering from the interaction
of the kaon with the virtual pion cloud. The usual approximations made in the evaluation of the
related kaon self-energy are shown to fail. We also Gnd new interaction mechanisms which provide
appreciable corrections to the kaon self-energy. Some of these contribute to the imaginary part
below the pion creation threshold. The inclusion of these new mechanisms in the inelastic part of
the optical potential produces a signi6cant improvement in the differential and total K+ nuclear
cross sections. Uncertainties remain in the dispersive part of the optical potential.
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I. INTRODUCTION

Systematic discrepancies between the microscopic opti-
cal potential calculations for K+-nucleus scattering [1—3]
and the experimental data [4—8] have led to suggestions
that it Inay be an indication of an increased size of the
nucleons in the nucleus [2, 9, 10]. These discrepancies
remain when a number of conventional nuclear correc-
tions (Pauli blocking, nucleon-nucleon correlations, off-
shell corrections, etc.) are taken into account [2, 3]. In
parallel, work has been done concerning the contribution
of the nuclear pion cloud to the K+ optical potential [ll,
12]. In [11] a qualitative estimate is done of the meson
cloud effects by assuming that the K+K cross section is
increased by bn (oK v+r), where bn is the excess num-
ber of pions per nucleon in the nucleus. In Ref. [12],
together with a good summary of the status of the prob-
lem, a thorough and instructive study of the meson cloud
contribution to the scattering amplitude is done by eval-
uating explicitly the real and imaginary parts. A K++
amplitude with off-shell extrapolation and crossing sym-
metry, inspired in the work on the arm interaction [13], is
used. The work relies upon the pion excess distribution
found in [14], which accounts for ph (particle-hole) and
Lh components in a correlated ground state. The inter-
ference of ph and Lh components is essential to produce
a positive pion excess number in the nucleus [14, 15].

In the present work we have made a more rigorous eval-
uation of the pion cloud contribution to the K+-nucleus
optical potential, which requires only the knowledge of
the pion propagator in the nuclear medium and a realis-
tic model for the Km amplitude. In nuclear medium, the
pion propagator is renormalized by allowing the pion to
excite ph and Lh components; such a model provides a
realistic model for the ~ nucleus interaction and accounts
for the basic components needed to produce realistic pion
nuinbers in finite nuclei [15]. Our model for the pion
propagator is brieQy described in Appendix A. The pion
distribution is not needed explicitly in our computation

of the K+-nucleus optical potential, although the formal
connection of the pion propagator to the pion distribu-
tion, n(q), will be made. Actually, one of our findings is
that the pion cloud contribution to the imaginary part
of the K+-nucleus optical potential cannot be cast as an
integral of the form jdsq n(q) f(q) as assumed in [12]
and also implied in [11].

For the Km amplitude we use the model of Ref. [12].
This model incorporates on-shell conditions and cross-
ing symmetry. A detailed study is made in Ref. [12]
about uncertainties &om the off-shell extrapolation, form
factors, etc. , allowing us to simplify the discussions and
concentrate on the novelties that the present work intro-
duces. For the sake of completeness, in Appendix B this
Kvr model is summarized. On the other hand, we intro-
duce new mechanisms also related to the scattering of
positive kaons with the pion cloud, which have not been
considered previously and are found to be very impor-
tant.

The calculations are done in infinite nuclear matter
and the contributions to the K+ self-energy are obtained
as a function of p, the nuclear matter density. By means
of the local density approximation, carefully studied and
justified in [16] in connection with vr-nucleus scattering,
we obtain the meson exchange currents (MEC) contri-
bution to the K-nucleus optical potential as a function
of p(r). Our model for the K-nucleus potential is ob-
tained by adding these new contributions, calculated in
the present work, to the conventional ones &om the im-
pulse approximation (see Appendix C) and to the stan-
dard nuclear corrections (nuclear correlations, off-shell
and binding effect, Pauli exclusion, etc. , calculated in
Refs. [2, 6]). This new optical potential is then used to
obtain the differential and total K+-nucleus cross sec-
tions by solving numerically the Klein-Gordon equation.
In the following, we will refer indistinctly to the kaon
self-energy or to the optical potential, as they are related
by II(k) = 2k V ~q(k). Nevertheless it is the self-energy
that appears in the Klein-Gordon equation.
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The paper is organized as follows. In order to test the
model used for pions in nuclei, the excess number of pi-
ons in the nucleus is calculated in Appendix A. In Sec. II
we recalculate the contribution &om the MEC mecha-
nism considered in Refs. [11,12] but relaxing the static
approximation. The new MEC mechanisms contributing
to the K+ self-energy in nuclei are presented in Sec. III,
where their contribution to the imaginary part of the K+-
nucleus optical potential is also evaluated. Section IV is
devoted to the study of the MEC contribution to the real
part of the K+ self-energy. In Sec. V, the K+-nucleus
diH'erential and total cross sections calculated with the
impulse approximation (IA), with IA+MEC, and with
the conventional optical potential plus MEC, are shown
and compared with experimental data for C and Ca
and also with the ratio of those cross sections over the
K+ deuterium cross section. Finally, in Sec. VI, we sum-
marize and parametrize the results for the MEC con-
tribution to the K+ optical potential and present our
conclusions.

medium is given by

—iII(k) = iD(q) (—i) —3 t (k, q; k, q), (1)q 1 o

(2~)4 2

where to is the isoscalar K+m axnplitude (average of
t~+ * for the three charged pions) and the factor i is
a symmetry factor. However, as depicted in Figs. 1(b),
1(c), and 1(d), the full propagator contains the Bee pion,
one ph or Ah correction, and higher order corrections
with 2ph, ph, Lh, 2Lh, etc. The contribution &om the
&ee pion has to be subtracted because it corresponds to
a piece in the &ee K+ self-energy. Analogously, once
this subtraction is made, we will have terms in the self-

energy coming 6.om 1ph or 1Ah excitations, which are
proportional to p. These terms must also be subtracted
because they are implicitly accounted for in the IA self-
energy II = t~N p, where t~N is the empirical KN t
matrix. Hence, the genuine pion cloud contribution to
the K+ self-energy is given by

II. FORMAL DERIVATION OF THE
"STANDARD" PION CLOUD CONTRIBUTION

g4
bII(k) = i bD(q) —t (k, q; k, q),

»(q) = D(q) —Do(q) —~
l

(OD(q) )
(2)

Here we call the "standard" mechanism the one de-
picted in Fig. 1. This is the only one considered in pre-
vious papers, and then it was calculated in the static
approach, which we describe in Sec. II A. In Sec. IIB we
calculate it exactly.

The K+ self-energy of the basic diagram shown in
Fig. 1(a) in an infinite spin-isospin symmetric nuclear

A. Static approximation

In the static approximation the q dependence in the t
matrix is neglected. For instance, in [12] q is set to zero
in t (k, q; k, q). In this case one obtains

dsq dqo
hll. t~t, (k) = — ImbD(q) 3 t (k, q;k, q)

0

dsq bN(q)
(2') 2a (q)

(4)

where the first equality follows from jdqo ReD(q) = 0, and D(q, q) = D(—qo, q). The second equality arises &om
the definition of the distribution of the "excess number of pions, " bN(q), defined in Appendix A by Eq. (All). In
this appendix, bN(q) is also calculated using our model for pion nucleus interaction. The results agree in shape and
amount with previous ones found in the literature [14, 15].

Hence, in the static approxixnation II(k) coxnes as a weighted integral of the K+~ amplitude with the pion distri-
bution in the nucleus. This result looks intuitive, but recall that N(q) contains n(q) and also the expectation values

(azp a ~ p) and (at& at
&) (see Appendix A). These three factors correspond, in fact, to having the K+ scattering

with a pion, annihilating two pions Rom the ground state or creating two pions &om the ground state, as symbolically
depicted in Fig. 2. Note that with our field theoretical formalism, the three terms are automatically included.

The approach of [12] corresponds to the static approximation of Eq. (4) with b'N(q) = 2bn(q) and 8n(q) taken
&om [14]. The factor 2 accounts for the two pion creation or annihilation mechanisms as found in [17]. As already
noted in [12] these extra terxns are ignored in the approach of [11].

Our claixn here is that the static approximation, which justifies the approaches of [11,12], is inaccurate, particularly

FIG. 1. Standard K+ self-energy dia-
grams due to the pion cloud.

(a) (b) (c)
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for the imaginary part of II(k).
Indeed, the imaginary part of bII,i i from Eq. (4) is given by

dq dqImbll, i~, (k) = — ImbD(q) 3 Imt (k, q; k, q)
0

Note that the range of the q integration goes &om 0 to oo. This will be very diferent in the exact case, which we
analyze below, implying, as we shaB see, that the static approximation is not good.

B. Exact calculation of XmBII for the standard mechanism

Now let us find the exact expression for Imbll(k). This requires a knowledge of the analytical structure of
tP(k, q; k, q). We assume that this amplitude can be written in the following way:

t (k, q; k, q) = t(s) + t(u), (6)

where s = (k+ q), u = (k —q) are the usual Mandelstam variables (t= 0 in our case), which automatically satisfies
crossing symmetry. This is the case for the model that we will use. The function t(x) has the right analytical properties
and develops an imaginary part for z ) zp ——(m~ + rn ) . It also satisfies the subtracted dispersion relation [18, 19]

dx Im t(z)t(s) = P(s) + (s —xp)
m (s —x+ i~)(zp —x) '

where P(x) is a real polynomial.
Using this forin of t &om Eq. (6) in h'll of Eq. (2) and the symmetry of the integrand under q ~ —q we obtain

d4q
811(k) = i3 bD(q)t(u) .

The analytical structure of b'D(q)t(u) in the variable qP is shown in Fig. 3. It has cuts and poles in the second and
fourth quadrants from hD(q) and two simple poles in qp = k 6 E(x) p ie, with E(z) = [(k —q) + z] ~ . This
particular structure suggests a Wick rotation, as indicated in Fig. 3, in order to perform the q integral. Since the
integral vanishes at the circles of infinite radius, we have

OO COO

i dq = i dq —2vr Res(q = k —E(x)) 8(k —E(x)).
—OO —4OO

The integral over the imaginary axis is real, and the only source of the imaginary part comes &om the residue at the
pole. Thus,

Im h'II(k) = — —8(k —E(x)) 3Im hD(q) ~~o i,
o'dsq dx p Imt(z)

d Q 0
It:o —x(~o) &

8(k —E(xp)) 61mt(u)lmbD(q).
(2n-) s

0 27
(10)

Note that t appears at the end with argument u rather
than a. By comparing Eq. (10) with the static expres-
sion of Eq. (5) we find a main substantial difFerence in
the fact that the q integral goes &om 0 to oo in the
static formula, while here it is restricted to the interval
[O, k —E(xp)]. Hence, even if we make Imt(u) static
in Eq. (10) in order to take it out of the qP integral,
the pion excess number bN(q) will not be generated be-
cause the range [0, oo] in the q integratioii is needed in
Eq. (All). Note that the range of q is also restricted be-
cause E(xp) ( kp. Then the whole phase space allowed is
finite, as corresponds to the reaction channels accounted
for by ImII(k). Under these circumstances one should
not expect the static approximation to provide realistic
results.

The pathologies generated by the intuitive use of the
particle number are general in decay processes or in the

I

evaluation of imaginary parts of amplitudes, i.e., in cases
where conservation of energy and momentum is at stake.
This occurs because the relevant magnitude is ImD(q),
which provides the probability of finding a pion with ino-
mentum q and energy q . The probability of finding a
pion of momentum g is an integral property obtained

r &+

FIG. 2. K+ scattering with a pion, annihilating two pions
from the ground. state or creating two pious from the ground
state.
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q" plane

k'+ &(*}—'~

culations with different values of p have shown that ImbII
behaves quadratically in density. In Fig. 4 we present the
imaginary part of the K+ self-energy calculated for nu-
clear matter at normal density po. The dot-dashed line
is the result of the static approximation using q fixed to
zero. The dashed line displays the exact result calculated
as explained in Sec. II B. The leading part of the optical
potential comes &om the IA. For comparison, it is dis-
played in the figure with a crossed solid line. We observe
that the static result is about twice the exact one, and
also that in any case both of them are very small com-
pared to the IA. Then this mechanism is not enough to
account for the experimental results. For comparison we
also show there the results of the total MEC contribution
when considering the new mechanisms, which we discuss
below.

FIG. 3. The complex plane q with the cuts and poles
of D(q)t(u). The adequate Wick rotation for performing its
integration in q is shown.

when one integrates over the energy of the pion 6.om 0
to oo. However, in decay processes the range of energies
allowed is limited because of energy and momentum con-
servation, and the particle number cannot be factored
out. A spectacular example of the failure of the static
approximation has been shown in [20] in connection with
the mesonic A decay in nuclei. The argument goes as
follows: The A —+ mN decay is forbidden in nuclei be-
cause the nucleon momentum, kN 100 MeV/c is be-
low the Fermi momentum k~ 270 MeV/c (because of
surface effects the decay is still possible but appreciably
reduced, by about four orders of magnitude in heavy nu-
clei). However, since the occupation number for states
below the Fermi momentum is not 1 but about 0.85, it
was implicitly argued in [21] that the A mesonic decay in
nuclei should saturate at values about 15% of the &ee A
width (up to a moderate effect of pion absorption in the
nucleus). The argument, however intuitive, suffers &orn
the same defects of the static approximation discussed
here, and it was found in [20] that the actual results for
the mesonic width are about three orders of magnitude
smaller than the results of the intuitive argument based
on the nucleon distribution in nuclei.

The interesting expression for Imbll(k) of Eq. (10) in-
dicates that one needs only ImD(q) and Imt(u) to ob-
tain ImSII(k) and only in a reduced range of q and q.
Although one can, in principle, evaluate ImhII(k) &om
Eq. (2), it is a highly inefficient and dangerous method
because of the strong cancelations and the large ranges
of q involved in the integrations. For the real part of bII
we do not find finite ranges of integration.

III. NEW MECHANISMS FROM THE
PION CLOUD

0.0

—0.2
gnatat

total, MEC

—0.4
E

—0.6

—0.8E

—1.0

The imaginary part of bII of Fig. 1 is related to Imba
and Imt~ by Eq. (10). This means that the reactive
channels of the K+ self-energy are due simultaneously
to the reaction channels of the pion in nuclear matter
and the reaction channels of t~ . For the kaon kinetic
energies, which will be considered in this work, the only
open channels in t~ are the elastic one or the charge
exchange, K++; ~ K m~, and thus Imt~ is due only to
the process K~ ~ Kvr. Hence, Imt~ is related through
the optical theorem to ~t~~~ ImDolmD~ as it is given
diagrammatically in Fig. 5. Then, using the optical the-
orem in Eq. (10), we obtain the identity shown diagram-
matically in Fig. 6. This allows us to understand the
processes to which ImbII is due; these are KN ~ KvrN
and KN —+ KvrL, where the interaction K¹is renormal-
ized in the medium. The incoming K+ has to produce a
kaon, a &ee pion, and a nuclear excitation, so it is clear
why the kinetic energy of the K+ must be larger than
the pion mass as shown in Fig. 4.

Looking again at Fig. 6, one realizes that not only one
pion, but also the other pion, and also both pions si-

C. Results of calculations for ImbII

—1..2 I I I I I I I I I I I ~

0 100 200
YK

I I I I I I I I I I I ~ I ~

300 400 500
[Mev]

coo

For explicit calculations we use the K+vr amplitude
&om Ref. [12], which is summarized in Appendix B. Cal-

FIG. 4. Imaginary part of the K+ self-energy for normal
nuclear matter versus kinetic energy of the incoming kaon.
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FIG. 5. The optical theo-
rem for the Km' amplitude is di-
agrammatically shown.

Im t(s) Im t(u)
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multaneously must be modified by the nuclear medium.
(The same applies to the intermediate kaon, but we will
see that the kaon modification in the medium is negligible
as compared to pion modification. )

The imaginary part of the kaon self-energy due to the
pion cloud is given by the diagram of Fig. 7, except that
its linear part in density is to be subtracted to eliminate
self-energy parts, which are already included in the IA.
Let II(k) be the K+ self-energy of the diagram of Fig. 7.
Then the pionic cloud or MEC contribution to the K+
self-energy, II, is given by

BlmII(k) )
Dp

—[ImII(k)]p p,

but [Imll(k)]~ —p
——0 if the kaon is on-shell because a &ee

kaon is stable under strong interactions.
The K+ self-energy associated to the diagram of Fig. 7

is given by

d4 d4 '
II(k) = —— D(q')D(q)D~(k') ) tIc+;~xiii, (k', q'; k, q)t J(l —xx+; ('k, '—q; k', q')

2 2m4 2m 4 k' =Ic—q —q'
ill

(12)

Its ixnaginary part is easily evaluated by means of Cutkosky rules [18]: In all intermediate states cut by the dotted
line substitute,

11(k) ~ 2i8(kP)lm ll(k),
D(q) m 2i8(qP)ImD(q),

DJx. (q) + 2i8(q )Ixn Dic(q),

and take complex conjugate of the amplitude above the dotted line. Thus, by taking the imaginary part corresponding
to cutting the three meson propagators as shown by the horizontal line of Fig. 7, one obtains

4 4
ImII(k) = 2 8(q )8(q )8(k )ImD(q')ImD(q)lmD~(k') ) ]tjr (k', q'; k, —q)]

CX

(14)

Im

7r

Im

K

q' 5 iq

7r /
/ r

7C

(a)

FIG. 6. Feynman diagram, of which the imaginary part is
related, through the optical theorem, to the imaginary part
of the standard diagram of Fig. 1.

FIG. 7. Diagram containing all the contributions to the
imaginary part of the K+ self-energy up to second order in
&z
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where o. runs over the indices i, j, l in K+~' ~ K'sr~.
By expanding the pion propagators above in powers of the density, D = Do+ D(i) + bD (D(i) being of order p, and

hD the remaining terms of higher orders), and using the syxnmetry q ++ q' (which holds due to the crossing symmetry
of the amplitudes), we obtain

d4 d4 '
ImfI(k) = 2 0(q )8(q )0(k )ImDxr(k')

x ) it@ (k', q' k q) I (ImDO(q')1m[DO(q) + 2D(i)(q) + 2hD(q)]

+ ImD(i) (q')ImD(i) (q) + O(p )), (15)

where the terms in hD D(i) and hD hD, of at least order ps, have been neglected. The term with ImDO(q')ImDO(q)
and the term with 2ImDo(q')ImD(i)(q) have to be subtracted because they are of zeroth and first order in density,
respectively, and the terms with 2ImDO(q')Imh'D(q) and ImD(i)(q')ImD(i)(q) must be kept, since they are quadratic
in density.

By subtracting the terms constant and linear in p we obtain the contributions to ImIIM . Those contributions
are diagrams dl, d2, d3, and d4 depicted in Fig. 8, and their explicit expressions are given by

(d2+ d3+ d4) .

d'q d4q'
ImIIMEC(k) = 2 0(q )0(q )0(k )ImDxr(k')

x) ltd (k', q'; k, —q)l (21mDO(q')ImhD(q) (dl)
CX

+IxnD(i) (q') IxnD(i) (q) } (16)

Now we consider the first terxn, diagram dl. If we look at the diagram of Fig. 5(b) we can write the amplitude for
this process following the same rules used so far, and by means of Cutkosky rules, we obtain

4
3Imt(s') = —2 ) ltd (k', q'; k) p)l 0(q )0(k )IxnDO(q')ImDxr(k') (17)

with s' = (k + p) . If we substitute this into Eq. (16) we find

ImII" (k) = —6 Imt(u) ImhD(q) = ImhII(k)
dg

(2~)s
0 2~ (18)

which is the same result as Eq. (10). At first sight, the upper limit in the q integration in Eq. (17) is diferent than
in Eq. (10), but the condition Imt(u) g 0 makes qo smaller than ko —E(xo), and we regain the saxne limit. It is
interesting to note that in spite of renormalizing the only existing pion line in Eq. (10) one obtains the same result
here as where we have renormalized either of the two pions in Fig. 6(b). The reason is that the use of a crossing
symmetric amplitude and the equal contribution of the terms Imt(s) and Imt(u) of Eq. (6) in Eq. (10) accounts for
that. This can be better visualized if we make use of a model K+vr scattering consisting of a resonant K' pole (as
in the p-wave amplitude of the model we use). If in Figs. 5(b) and 5(c) we renormalize and fold the external pion,
we obtain two diagrams, as in Fig. 6(b), where in one case one pion is renormalized and in the other case the other
pion is renormalized. Hence, we conclude that ImII" (k) is exactly the same contribution obtained earlier in Eq. (10).
However, we now get new contributions &om the terms d2, d3, d4, which renormalize the two pions simultaneously.

The second term in ImII comes &om ImD(y}ImD(y). It contains new reaction channels, namely, the K+
decaying into Kphph, KphLh, and K LhLh. These have not been considered before. To evaluate them we need

lt~ (k, —q; k', q')l2 with the t-matrix off shell for both q and q'. Given the small contribution from the p-wave
part, the only one with an angular dependence in q', we substitute ltd l

by an angular average into Eq. (17), and
hence we find for u ) (m + mxc)

(k' q' » —q)l.'. = —31mt (u)

2 j (" ~), 0(ko')ImDxr(k')0(q )ImDO(q')

which after the evaluation of the denominator gives

) lt (k', q'; k, —q) l
„=— 3Imt(u) = f(u),

gc.m.

with u = (k —q)2 and q, the K+xr c.m. moxnentum for K+ and x on shell. The function f(u) for any value of
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u, in the model that we use, is explicitly written in Appendix B, where some approximations are made, which are
consistent with the model itself. Now we use f(u) to calculate the new channels. By expanding the first medium
correction to the pion propagator into ph and Lh components as D~»~

——Dp~z~ + D~&~, one obtains

IinII (k) = ImhII(k) (d1)
4 4

+2 8(q )8(q )8(k )ImD~(k') f((k —q) )(ImD~&il(q') ImD&z&(q) (d2)

(d3)
(d4) .

Diagrams d2, d3, and d4 are genuine alternative channels and correspond, respectively, to the processes K ~ K ph ph,
K m KphLh, and K + KLhLh. Those processes have the following thresholds: T~ ) 222 MeV ) m for diagram
dl, T~ ) 0 for diagram d2, T~ ) 181 MeV ) m for diagram d3, and T~ ) 392 MeV ) 2m for diagram d4.

We do not evaluate the contribution of diagram d4 because its threshold is close to the highest energies we consider,
and we expect it to be small. We have done the calculations up to second order in density for the processes K ~
K phph. Higher orders have been considered for K + K7r ph, K + Kx Lh, and K —+ KphLh. But despite that,
we have found that their behavior is quadratic in density, so higher order corrections are negligible. Results for ImII"»
and ImII" compare well with exact quadratic functions.

On the other hand, in ImII" so far we have considered only the second order terms coming &om the iterated ph or
Ah excitations as in Fig. 1(d). Now it is easy to include the diagrams of the same order in the density corresponding to
a simultaneous excitation of two particles —two holes by the pion (related to the second order pion proper self-energy),
this contribution is given by diagram d5, shown in Fig. 9. Its contribution to the imaginary part of the K+ self-energy
is given by the same expression as ImII of Eq. (18), where instead of ImbD we are considering ImhD", which is
the modification of the pion propagator due to the 2p2h channel of pion absorption:

dq dqlmll (k) = —6
(2m)s o 2m

Imt(u) Imb'D" (q)

ImbD" (q) = Do(q) ImII ~ "(q), (22)

where Im112P2" is the pion self-energy due to the 2p2h channel of pion absorption. For this we take the model of [16],
which in lowest order in density contains the same input as here, but we have simplified it and rewritten the second
order part of it as in Ref. [22], which gives rise to about the same results for pionic atoms. Since this self-energy is
for pions on-shell, we modify it by multiplying by the ratio of phase space for 2p2h excitation for the ofF-shell and
on-shell situations and by the pion-nucleon squared form factor F (q) (given in Appendix A)

I II "()=—4 I C F()phase(m, 0)

phase(qo, q) 0 2 4Mqo —q2

phase(m, 0) 4Mm

ImCp ——0.096m„

where the phase-space ratio has been taken at p = 0.
Only the p-wave part of the pionic optical potential has
been written, since the 8-wave part contribution is much
smaller than this for the relevant values of q involved.

One could also think about efFects &om the renormal-
ization of the intermediate kaon propagator. The im-
pulse approximation t~~ p &om Appendix C provides
the dominant part of the kaon self-energy. From Fig. 4
one can see that —Imll(k)/m21c 0.04 is much smaller
than —ImII (k)/m 2, and thus the corrections from this
source can be estimated reasonably smaller than those
obtained &om pion renormalization.

The contributions of all MEC diagrams to the imag-
inary part of the K+ self energy are approximately
quadratic in density. In Fig. 10(a) the contribution of
each of the diagrams d1, d2, d3, and d5 at density pp
are shown for difFerent kinetic energies of the kaon. Also

the total of the MEC contributions, d1 + d2 + d3 + d5,
is shown. For comparison the exact result for the stan-
dard calculation, ImbII=ImII", is depicted with dashed
line. By itself it is much smaller than the total MEC
contributions coming &om diagrams d1, d2, d3, and d5.
The diagram d2 is the most important MEC correction
for low energies, but for higher energies the most rele-
vant is d3, it being more than half the total MEC efFect
for T~ ——450 MeV. The contribution of diagram d5 is
negligible as seen in the figure. If we had considered
the ImCp parameter of the pionic atoms optical poten-
tial of Eq. (23) to be up to four times larger, such as
it is in certain parametrizations found in the literature,
its contribution would still be negligible as compared to
the total MEC result. In Fig. 4 we display the total
MEC value together with the value of the IA. We see
that the contribution due to the pionic cloud is sizable
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the work of [12] by

Po
————(m +mR)(ai+2as),

K

'"T -"
l

m ]j $D
/

/
vr / r

/

where a~y is the scattering length in the isospin I channel.
Then we can consider a simplified model, which con-

sists of taking a purely constant value for ~t~~~, with

Po given by the scattering lengths. In particular, the
quantity f(u) [Eq. (B14)], relevant for ImIIMEC, is now
a constant. In the model of Ref. [12], Po is constrained
by on-shell data at threshold, which are taken &om the
analysis of Ref. [24]. This simplified model saves a lot of
computing time because certain integrals in Eq. (21) can
be done trivially due to the constancy of f (u).

IV. REAL PART OF THE
K+ OPTICAL POTENTIAL

/
vr / r
r ~ 7l

d3

/
/ r

d4

Now, let us pay attention to the calculation of the real
part of the K+ self-energy due to the pionic cloud in the
nucleus. We go back to Eq. (2) for b'II(k) and substitute
the isoscalar averaged t matrix of Eq. (6) with its disper-
sion relation of Eq. (7). Then, we consider separately the
contributions to bII coming &om the analytical part of t

FIG. 8. Diagrams d1, d2, d3, and d4. They contribute to
ImII up to second order in density.

0.0

in relation to the dominant term, which comes Rom the
IA. We have checked that these curves are fairly stable
under a reasonable inodification of the LLEE (Lorentz-
Lorenz-Ericson-Ericson) parameter g'.

The self-energy IIMEC(r) in finite nuclei is obtained
by substituting p by p(r) in the nuclear matter results.
This is shown in Ref. [16] to be practical and accurate
for the s-wave part, which gives practically the whole
contribution here. The results shown in this section and
in Sec. V complement and correct our preliminary results
exposed in Ref. [23].

We have observed that the resonant part of the t~
matrix does not contribute signi6cantly to the imaginary
part of the kaon-nucleus optical potential. Its contribu-
tion is smaller than I'%%uo for T~ ( 550 MeV/c. In other
words, ImII is, in very good approximation, propor-
tional to the parameter Po. This paraxneter is given in
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FIG. 9. Diagram d5. It contributes to ImII in the
second order in density.

FIG. 10. (a) Imaginary part of the K'+ self-energy for nor-
mal nuclear matter versus kinetic energy of the incoming kaon
from the different mechanisms considered. (b) Real part of
the K+ self-energy for normal nuclear matter versus kinetic
energy of the incoming kaon.
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(that is, P) and from its dispersive part (related to Imt):

g4 d I t

&0
(24)

where use has been made of crossing symmetry to cancel the factor 1/2. P(s) is a real polynomial in qP, and, by
doing a Wick rotation for q as depicted in Fig. 3, it can be proved that the first part [that going with P(s)] is real.
By doing the same Wick rotation, one can see that the second part [going with Imt(z)] is complex, its imaginary part
being given by Eq. (10). This second part is linear in Imt(z) because of the optical theorem Imt(z) oc it(z) [2. So, the
Grst part is of order t, and the second one is of order t . We are keeping the leading order contribution to both RebII
and ImbII; this is order t for RebII and order t for ImbII. Within the same approximation, one should neglect, for
the real part, the contribution of the diagrams d2, d3, and d5. Note that to order itiz there would be more diagrams
besides these, which do not contribute, or contribute little, to the imaginary part, for instance, d4.

With this approach of keeping the dominant order in t and considering the incoming K+ on shell:

Rebll(k) = —3 Imb'D(q) P(s)
d q

ImbD(q) —+ Pp(xxxic + q —q )
q dg Ap 2 02 2

(2~)s p vr 2
(26)

where we have used
O!p

P(z) = —+ Pp z,
2

(27)

which, in the model of [12], is the dominant contribution to P(z) and comes from the s wave, the p-wave contribution
being neglected. ap, Pp are given in Table I. In this approximation RebII is independent of the K kinetic energy.
Equation (26) is the estixnation we are going to use for the real part of the K+ self-energy. Observe that for RebII
we have the pion four-momentum without any phase-space restriction. But also notice that the relevant results are
coming from the q values such that ImbD(q) is large, and this happens for sxnall values of q and q because in the
limit of q large (q ~ oo or q -+ oo) the pion self-energy, which makes D(q) different than Dp(q), goes to zero. For
the purpose of evaluating RebII, we split it in different parts as follows:

RebII= o.p px + 2Pp (p2 + Ps),
dq dsq bN(q)

7r (2~)s 2u)(q)
'

CLg d q bN(q)
7r

imbD(q)(xxxXC —q )=, (xxxXX
—q ) I

27l 2(d q
dg

ImbD(q) q
02

(28)

By doing the numerical evaluation using the pion self-
energy of Appendix A, the results are pi ——0.02 fm
p2 ———0.04 fm, and p3 ———0.006 fm evaluated at
p = pp. Notice that RebII is independent of the energy
of the K+; then

Rebll(k; r) = RebII(r) = Rebll(p = «) ~

i p(r) i
&«)

E«) (29)

TABLE I. DifFerent parametrizations for the K-vr t matrix, and the results of the real part of the
K+ optical potential due to the pionic cloud for normal nuclear matter for each parametrization.

I
II

III
IV

O!p

18.7
11.4

—11.0
—2.8

Po

(fm )
—2.2
—1.0

0.0
—0.6

Po

(fm)
—8.1
—8.1
—8.1
—8.1

RebIIsraa(p = po)

(fm 2)
0.54

—0.22
0.00

RebII(p = pp)
= ReB

(fm )
0.58

—0.22
0.00
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For the parametrizations I and III of Ref. [12], we obtain
the values of Rebil(p = po):—ReB shown in Table I and
Fig. 10(b). Rebll, s., t has been obtained by taking the
static approximation qo = 0 in Eq. (26), which amounts
to taking ps ——0 in Eq. (28). Noting that ps/p2 0.15,
we see that this static approximation is not bad in this
case. We see that different off-shell extrapolations pro-
vide very different results for the real part of the MEC
self-energy of kaons, making it possible to obtain differ-
ent signs for it: RebII ) 0 for parametrization I and
RebII & 0 for parametrization III. Parametrization IV is
obtained by imposing Re611=0, which gives np = —2.8
and Po

———0.61 fm . Note that o.o, Po are related in
order to reproduce the scattering lengths; see Appendix
B.

In Fig. 10(b) the real parts calculated at order t are
displayed with labels I, III, and IV, depending on the
parametrization used. Result I is of the same order as
the impulse approximation (IA), but III is smaller and
has a difFerent sign. We also present the result of doing
the calculation in the spirit of Ref. [12], that is, in the
static approximation and keeping the whole Ret [includ-
ing P(x) and the part related to Imt]. In this case we use
paraxnetrization I; the result is labeled IgK. We see that
IgK is quite different &om I; this means that the term
coming &om Imt is not small, but we should not calcu-
late one of those contributions, but rather all of them
that are of the same order in t. Given the large sensi-
tivity of the real part to the uncertainties of the off-shell
extrapolation for the t matrix, we think that the compu-
tation of the real part is presently beyond the scope of
the microscopical approach.

V. RESULTS: K+-NUCLEUS CROSS SECTION

In Fig. 11(a) we show the results for && for K+ with
energy T~ ——450 MeV scattered by C. The result with
the impulse approximation is compared to those includ-
ing pion cloud efFects, using parametrizations I and III;
the result, using parametrization IV, which is not shown
[Re(IIMEC) = 0], is in between. We find that the in-
clusion of MEC effects provides some improvement in
comparison with the experimental data. In Fig. 11(b)
the same is compared for the Ca nucleus. The effect
of the pion cloud is very similar to the case of C. In
both cases the Coulomb interaction is neglected. Here we
show the results in order to see the size and shape of the
MEC effects in the differential cross section. Some other
theoretical corrections, as discussed later, should also be
included for a proper comparison with experiment.

The total cross section of K+ scattered by C vs ki-
netic energy of the K+ is shown in Fig. 12(a). The exper-
imental data shown by a cross are &om Ref. [8]; the data
shown by a diamond are from Ref. [4], with only the sta-
tistical errors included; the systematic errors, not shown,
are larger. The dashed line labeled IA corresponds to
the impulse approximation. The dotted and solid lines
include MEC effects using parametrizations I, III, and
IV. Note that ImII, as computed in Sec. III, does
not depend on the parametrization.

For low energies the resulting cross section including
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FIG. 11. (a) Differential cross section of a K+ with kinetic
energy of 450 MeV scattered by a C nucleus. The dashed
line depicts the results using IA. Long-dashed (dot-dashed)
line includes IA plus the optical potential coming from the
pionic cloud using parametrization I (III). The experimental
data are from Ref. [5]. (b) Same as (a) for Ca. The experi-
mental data are from Ref. [6].

MEC depends a lot on the real part of the optical poten-
tial and hence on the parametrization used, but it is less
dependent for higher energies. Given that the real part
is not at all under control from the model, we take here-
after as a reference the line labeled IV, which amounts
to neglecting the MEC effects for the real part of the op-
tical potential. Figure 12(a) shows that the inclusion of
MEC efFects in the imaginary part significantly improves
on the impulse approximation, bringing the cross section
closer to the experimental one, and showing that MEC
effects are large enough to require consideration in this
process.

We have used the phase shifts of Amdt and co-workers
[25] The calculated K+ nucleus total cross section would
have been larger if we had used Martin's [26] phase shifts
rather than those of Amdt and co-workers [25] for the
KN scattering amplitudes as shown in Ref. [2]. The
analysis of [25] is more recent than the one in [26]. On
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the other hand, a recent reanalysis [27] of the KN data
seems to favor Martin's phase shifts.

These theoretical uncertainties in the K+-nucleus cross
sections partially cancel if a quotient of cross sections is
taken. The same is true for systematic errors in the ex-
perimental measurements of the total K+-nucleus cross
sections. Then, the magnitude usually calculated and
compared with experiment in most of the research work
is the ratio over the K+ deuterium total cross section:~(x+ x)R[A] =

(&&2) (~+,H&
for a nucleus of mass number A.

In particular for C the following ratio R is de6ned:

~(K+ "C)R=
60.(K+ zH) '

where the factor 6 in the denominator is included to em-
phasize the closeness of the ratio to unity.

One should notice that for magnitude R, it being a
quotient of cross sections, the possible uncertainties be-

casue of the use of different phase shifts partially cancel,
and they are not relevant. So we present in Fig. 12(b)
the same results as in Fig. 12(a) but for the ratio R,
which has less error than the total cross section. The
dashed line corresponds to the IA calculation, and the
other lines include IA+MEC, using for MEC e8'ects the
parametrizations I, III, and IV, as labeled.

So far we have calculated MEC efFects on the total
K+-nucleus cross section for C. We have shown that
these efFects are large enough as compared to the IA ap-
proximation, and, then, they need to be considered.

However, for doing a meaningful comparison of the-
oretical calculations with experiments, a more realistic
K+-nucleus standard optical potential (than the crude tp
impulse approximation used in Figs. 11 and 12) should
be considered. There are corrections over this tp, which
should be included such as the ofF-shell range, binding
energy, etc. Also, there are nucleon-nucleon correlations,
which contribute to the optical potential in second order.
These correlation efFects are approximately p by nature,
which is the same form as the MEC contributions to the
optical potential.

Both kinds of corrections to the optical potential (and
their effect on the K+-nucleus cross sections) have been
calculated and/or estimated in the works of Siegel, Kauf-
mann, and Gibbs [1,2]. As result of their studies, they
provide a band of uncertainty for the conventional cal-
culation; the boundaries of the band are determined by
varying the parameters in the theoretical model.

We show in Fig. 13, with dashed lines, the band of
theoretical calculations for R with the conventional mi-
croscopic optical potential of Ref. [2, for p ( 500 MeV/c.
The results quoted are Rom Ref. [6].

The solid-line band in Fig. 13 shows the effect of adding
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FIG. 12. (a) Total cross section for K+ scattered by C
cr K+ Cvs kinetic energy of the Jt+. (b) The ratio R =
6cr(K+ ~H)

vs the laboratory momentum of the K+. The dashed line
corresponds to IA. The solid line (IV) includes IA plus the
imaginary part of the optical potential coming from the pio-
nic cloud. Dotted lines includes IA plus the imaginary and
real parts of the optical potential coming from the pionic cloud
for two different parametrizations (I and III) of the ta am-
plitude. The experimental data are crosses from Ref. [8], di-
amonds from Ref. [4], and squares from Ref. [6].

FIG. 13. The ratio of cross sections R =
&

+ ~
&

plotted~(K+ ~~C~

against the laboratory momentum of the incoming K+. The
experimental data are crosses from Ref. [8], diamonds from
Ref. [4], and squares from Ref. [6]. The two dashed lines
define the band of uncertainties of the theoretical results for
R obtained with the conventional optical potential of Ref. [2].
The two solid lines define the band of uncertainties of the
theoretical results for R when the corrections due to MEC
calculated here are added to the results obtained with the
conventional optical potential of Ref. [2].
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our MEC correction to the multiple scattering calculation
of Ref. [2]. This correction is obtained by taking

~~MEC ++ ( C)
60.(2H)

where b,o E
( C) = 0 +

( C) — ( C), and
o (2H) has been obtained directly from the Amdt phase
shifts by taking 0(2H) = a„+o„.In calculating the
MEC correction, we have taken only its contribution to
the imaginary part of the optical potential, while no cor-
rection has been done to the real part. We observe that
the addition of the MEC correction to the conventional
optical calculation of Siegel et al. [2] provides a significa-
tive agreement of the calculation with the experiment for
a large range of energies.

VI. CONCLUSIONS

Let us summarize the results of our calculation. We
have computed the pionic cloud contribution to the K+-
nucleus self-energy at lowest order in tJr (see Secs. III
and IV). Our result is well described for Trc ( 2.5 fm
by

should also be considered. Our evaluation of the imag-
inary part was, however, very precise within the model
of Ref. [12] used here. However, there are also approxi-
mations in Imt~ of Ref. [12], since the parameter Po' is
tied to the threshold Kvr amplitudes only. Other mod-
els for the amplitude would also provide different results
for Im II E, although the restricted phase space for
Im II E and the on-shell constraints in the amplitude
make this magnitude more stable.

The comparison of our results using ReII E = 0 with
the data is very good. On the other hand, we also have
observed that the direct relation of II E to the distribu-
tion of excess pions in the nucleus, as has been formerly
assumed, is a consequence of a dangerous static approx-
imation, which should be avoided. In the present case
it induced an error of a factor of 2 but in other cases it
can induce errors of several orders of magnitude. We also
found that in any case this contribution was only a small
part of the total MEC corrections tied to the interaction
of kaons with the nuclear pions. These findings should
also serve as a warning for other calculations directly re-
lating the pion excess number to the modification of nu-
clear magnitudes Rom the interaction of particles with
the meson cloud.
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with k~ ——3.0 x 10 fm, k2 ——2.0 x 10 fm ) and
Tp = 1.0 fm . The constant kz is related to the diagram
d2, and k2 to the rest of the calculated MEC diagrams
dq, d3, d5, which contribute to ImB above a threshold of
around To, as stated by the step function 8(T~ —To). Po
is related to the K+vr scattering lengths. For the model
of Refs. [12, 24], one obtains Po

———8.1 fm. The K+-
nucleus data for C are well reproduced for all energies
by ReB=O, Po = —8.1 fm, as can be seen in Fig. 13, when
conventional nuclear corrections, taken &om Ref. [2], are
included together with the MEC effects.

The main conclusion of this paper is that the effects
of the mesonic cloud in K+-nucleus scattering are rele-
vant and of the right order of magnitude to account for
the discrepancies of the conventional optical potential [2]
with the data. However, there are uncertainties, partic-
ularly in the real part of the MEC, which do not allow
us to draw stronger conclusions about the actual size of
the corrections. The main reason is the sensitivity of the
results to the ofF-shell extrapolation of the KN scatter-
ing matrix for which there is not yet enough information.
F'Nuthermore, we also noted that there are other sources
of the real part, not linear in the KN t matrix, which

APPENDIX A: THE PION PROPAGATOR
AND THE NUMBER OF PIONS

We have taken

D(q) = [q' —q' —m ' —II (qo, q)] (Al)

where

II (q) =q

~(q) = ~~(q) + ~~(q)

~~(q) =
I I U~(q)
(f(q) i
qm

~~(q) =
I l

U~(q)
&f(q) &

qm )
A2

f(q) = f- F(q) = f (A2)

where 1 —g'a(q) is the Lorentz-Lorenz factor, with g'
the Landau-Migdal parameter, and U~, U~ the Lindhard
functions for ph and Lh excitation with the appropriate
normalization, are given explicitly in the Appendix of
[28]. U~(q) has an imaginary part coming from b, decay
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D(i),(q) =D
o( q)II = D(i) + D(i))

D(") (q) = D'o(q)11~(q) D( ) (q) = D'(q)ll~(q)

D(2) (q) = Do(q)q'~'(q) [g' + q'D. (q)] .

The propagator of a pion with four-momentum q (and
isospin A) should satisfy the Lehmann representation [18]

Q ~ Q
—& +16

(A3)

Our calculation of the pion propagator, described above,
preserves the appropriate analytical properties, and
therefore Eq. (A3) holds.

Another equation that is relevant in connection with
the present problem is the sum rule

into mN. We have taken the form factor static because
the relevant momenta involved in the process are well
below A, and the form factor does not play much of a
role. This was already investigated in [12]. Not having
qo dependence in E(q) simplifies the analytical structure
and allows us to make the formal developments of the
former sections. We take g' = 0.6, f~/4m = 0.08, and
A = 1250 MeV.

The leading order in density of II( is given by

—IIN + 11~, Iliv(q) = q'~~, II~(q) = q'n~(1) 2 (~) 2 (~)

where o.~ and o.& are the hnear part zn density of o.N
(~) (~)

and n~ of Eq. (A2) Hence, the leading orders in density
expansion for the pion propagator D(q) are

1
N(q) =n(q) + —) (at „at „)

1+ ) (aq, xa —,, —w)'
A

(A7)

~p ) p=o
(A8)

provides the excess number of pions per nucleon, count-
ing the three isospin states and also (a &at &) and

(a~ ~a ~ ~) as it comes from Eq. (A7). According
to the results of Ref. [17] on the contribution of the
pion cloud to Compton scattering, np(q) is equal to
2(a &at z) + 2 (az qa ~ q), then the results of pre-
vious papers on the pion number excess bn(q) and bn
are to be compared with bN(q)/2 and b'N /2.

These quantities can be computed using the relation-
ships

1 dqQ—N(q) = —2 (q) I [D(q) —Do(q)],3 Q 2'
1 dg—b'N(q) = —2~(q) Im[bD(q)],3 p 2K

where ur(q) = gm2 + q2 and

(A10)

(A11)

The linear term in p accounts for the number of pions per
free nucleon; then it is subtracted in Eq. (A8) to obtain
the "pion excess" bN(q).

According to Eq. (A6) the integral

d3
bN(q) =

dqQ
2q ImD(q, q) = 1.

Q

(A4) bD(q) = D(q) —Do(q) —p l

(BD(q) )
~p ) p=o

(A12)

n(q) = ) np(q) = ) (at„a~p), (A5)

where the symbol ( ) indicates the expectation value in
the nuclear ground state and azp the annihilation oper-
ator of a pion with momentum q and isospin A. Thus,

dsq
n(q) = (A6)

with n /A the total number of pious per nucleon. More
amenable to calculation are the quantities N(q) and
bN(q),

This equation expresses the equal time commutation rela-
tion of the pion fields. We check that Eq. (A4) is fulfilled
in our model at the level of 1 per 103, which is sufhcient
for our purposes.

A check of the model for pion propagation in the nu-
cleus is to calculate the number of pions it produces.
Although this quantity is not needed in our evaluation of
the pion cloud contribution to the K+-nucleus scatter-
ing, we show our results for it in order to compare with
earlier work. Let n~(q) be the pion number distribution
for a single class of pions and n(q) the total number of
pions, namely,

Equation (A10) can be derived by writing the pion prop-
agator in terms of the creation and annihilation operators
and making use of Eq. (A3).

In Fig. 14, we show bN(q) (solid line) for normal (p =
po ——0.17 fm ) nuclear matter. We have also calculated
bN(q) for difFerent values of the density, observing that
it behaves quadratically in density. If only ph excitations
are considered, one obtains the dotted line in Fig. 14. By
integrating it, a negative pion excess number is obtained,
as was already pointed out in [12]. If only Dh excitations
are considered, one obtains the result of the dashed line,
which represents a very small pion excess number. When
considering simultaneously both ph and Lh excitations,
the solid line of Fig. 14 is obtained. bN(q) is larger for
large q than before, and a positive excess number of pions
is found when integrating over d q, thus proving that
the interference of ph and Lh is essential to produce a
positive excess number.

The distribution b'N(q) has an identical shape to the
one from [14]. For p = po the integral of Eq. (A9) gives
0.67, half of it coming from the integral of the strict pion
number, bn(q), according to [17]. This gives us 0.33
pion per nucleon in nuclear matter at p = pQ. Since

f dsq bN(q) is proportional to p2, and in a finite nucleus
such as i2C the magnitude & f dsr p2(r) is around a fac-
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K ~ (1+ (K„R)'~
(K„) ( 1 + (KR)2

)
xp = (mrs + m ) and k(x), K(x) the c.m. momentum
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(87)

FIG. 14. bN(q) vs q shown for normal nuclear matter.

tor of 2 smaller than in nuclear matter, then we obtain
0.17 pion per nucleon in the C nucleus, on the upper
edge of the band of values obtained by other authors [14,
15].

APPENDIX B:THE K+m AMPLITUDE

As discussed before we need only the isoscalar Km am-
plitude, which we take Rom [12]. This amplitude incor-
porates analytical properties, unitarity, crossing symme-
try tp(k', q', k, q) = t (k', —q;k, —q'), and on-shell con-
strains and keeps up to linear terms in s and u for for-
ward scattering. Its justification and uncertainties are
clearly discussed in [12], and we refer the reader to this
paper. The model contains an 8-wave part and a p-wave
part. The p-wave part is accounted for by means of an
I = 1/2 resonance, K'(892). After the implementation
of the crossing symmetry, the two pieces give rise to the
following isoscalar amplitude:

t (k, q; k, q) = t( "l(k, q; k, q) + t~ "l(k, q; k, q),
(Bl)

t~ "l(k, q; k, q) = no + Po(s + u) + iPo [k(s) + k(u)],
(82)

t~ '~&(k, q; k, q) = T„.(s)8(s —xp) + T„,(u)t))(u —xp),
(83)

with

with

t(p, s)( 2 +POZI Z + Zp

, +Pox —Pokl(z), z & zo

,l( ) —
0, x&xo (89)

k, (z) =
m~+m~ (810)

Coming back to Eqs. (19) and (20), we discussed that, in
the general case for u ) (m + m~)

and the parameters Po = —8.1 fm, M„=895.7 MeV,
I"„=52.9 MeV, R=4.3 (GeV/c), and K„given by
Eq. (87) for x = M„.Three different parametrizations
I, II, and III, with values for ap, Pp, given in Table I are
taken &om [12]. These parameters are constrained by
the relationship np + 2(m2 + m~)PO ———11.0, which fol-
lows &om Eq. (82) on shell and at threshold. Notice that
parametrization II does not fulfill this requirement, so we
will not use it.

Note that K(x) is the relativistic c.m. momentum,
while k(x) involves a nonrelativistic approximation. The
choice of k(x) for the s-wave part is done in [12] to avoid
extra singularities and is consistent with some threshold
approximations involved in the derivation of Eq. (82).

Since T„,(x) is zero below the pion threshold, there are
no problems in separating the real and imaginary parts.
However, the imaginary part in the 8-wave term gives rise
to a real part below pion threshold when extrapolated
analytically. Thus,

t~ "l(k, q; k, q) = t ~ "&(s) + t ~o"l (u)

with

) ) It~+., ~;., (k', q';k, —q)~.'„=— "31m t(u)
l i,j

k(u), 8vru M„I'(K(u))tI)(u —xp)
IC( )

0~ ™
X0(u) M0 —u —iMI'(X(u)),

(811)

(812)

with u = (k —q)s. However, the threshold approximations involved in the s-wave part in [12] require that all factors
in the s-wave part in Eq. (812) be calculated at pion threshold. We have checked that this induces differences of
about 5'%%up in the evaluation of the diagram of Fig. 1(a) with respect to the results, keeping the u dependent factors.
Observe that Eq. (812) provides the analytical continuation of the left hand side of Eq. (Bll) for u & (m + m~)

Note that, if the factor ~u is kept, we run into problems if the line q excites a ph, as in diagrams dl, d2, d3 of Fig. 8,
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since u can become negative, and this leads to the absurd conclusion that ]t2) is purely imaginary. The threshold
approximations done in [12] are aimed at avoiding such pathologies.

Thus, taking into account this average, we can rewrite Eq. (14) in the form

4 4 I

ImfI(k) = 2 8(q )8(q' )8(k —q —q' )f(u)lmD(q)lmD(q')ImDIt (k —q —q'),
(2vr)4 (2z-)4

(B13)

8zu M I'(K(u))8(u —xp)
s*(~)™M;"—~ —*M„rye(~)) (B14)

For the 8 wave this is equivalent to considering the on-
shell values for the t~ matrix when calculating )t]2 but
evaluating at the threshold.

I

with M the nucleon mass, where fI are the K+Ã spin-
non8ip-isospin amplitudes and p„(r),p„(r)the neutron
and proton densities.

We consider 8, p, and d waves. For the p wave we
substitute

APPENDIX C: THE IMPULSE
AP PROXIMATION

M
q q'p(r) + — Vp(r) '7,

S
(C2)

Our K+ self-energy in the impulse approximation is
given by

rr (a) = — I (fo + f—,)p (r) + f&p, (r) )],
(Cl)

as is customarily done in pionic atoms [29], and for the
d wave, which is almost negligible in the range that we
study, we take only the forward value in Eq. (Cl).

The K+N phase shifts are taken from [25]. The kaon
self-energy in the impulse approximation is shown in
Figs. 4 and 10(b) for nuclear matter density.
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