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Variational calculations of the A-separation energy of the 1~~0 hypernucleus
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Variational Monte Carlo calculations have been made for the AO hypernucleus using realistic
two- and three-baryon interactions. A two-pion exchange potential with spin- and space-exchange
components is used for the AN potential. Three-body two-pion exchange and strongly repulsive
dispersive ANN interactions are also included. The trial wave function is constructed from pair-
and triplet-correlation operators acting on a single-particle determinant. These operators consist
of central, spin, isospin, tensor, and three-baryon potential components. A cluster Monte Carlo
method is developed for noncentral correlations and is used with up to four-baryon clusters in our
calculations. The three-baryon ANN force is discussed.

PACS number(s): 21.80.+a, 21.10.Dr, 13.75.Ev, 2?.20.+n

I. INTRODUCTION

In this paper we initiate a variational Monte Carlo
study of hypernuclei using realistic two- and three-baryon
interactions involving a A and nucleons. In the past,
variational calculations of the s-shell hypernuclei [1,2], a
few p-shell hypernuclei using appropriate models [3], and
A binding to nuclear matter [2,4) were performed using
mostly simplified and central nucleon-nucleon (NN) in-
teractions. The aims of these calculations have largely
been to deduce information about the A-nucleon (AN)
and A-nucleon-nucleon (ANN) interactions. In addition,
as a result of these studies, one could also explore the
structure of hypernuclei.

The reason for using simplified NN interactions is the
hope that the uncertainties in the NN interaction will
largely cancel out in these calculations. This is because
the A-separation energies B~, which are the main exper-
imental input in these calculations, are the differences of
the energies of hypernuclei and their ceres, i.e., —B~ ——

&E — E, where &E is the total energy of the hyper-
nucleus and E is the ground-state energy of the core
nucleus. However, interactions generate strong NN cor-
relations in the nuclear wave function. A realistic NN
interaction will generate central, spin, spin-isospin, ten-
sor and other two-nucleon correlations [5,6]. In addition,
there are significant three-nucleon correlations. In a hy-
pernucleus, because of the operator dependence, these
correlations may interact in a complicated manner with
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the AN and ANN correlations. This whole group of cor-
relations then interacts with the two- and three-body op-
erators of the two- and three-baryon interactions. This
can result in important contributions to the A-binding
energy compared to the use of only central NN correla-
tions generated by purely central NN interactions.

In this study, we use realistic two- and three-nucleon
interactions and wave functions to see their effects on
hypernuclei. There is another important aspect of the
present study, the development of a methodology and
variational program for hypernuclei. For the p-shell hy-
pernuclei, we adopt the cluster Monte Carlo (CMC) tech-
nique developed in Ref. [7] by Pieper, Wiringa, and Pand-
haripande which we refer to as PWP. As a erst step, we
study &O. Generalization to &0 will be straightforward.
Further development of the one-body part of the nuclear
wave functions will be needed for other p-shell hypernu-
clei. We intend to cover a wide range of hypernuclei in
order to have reliable information on three-baryon forces,
because in this study we find that the role of the three-
body ANN interaction is greatly altered from that found
in some previous studies.

There are a few calculations of hypernuclei in which
realistic NN forces have been used. One such calcula-
tion is by Carlson [8] in which he explicitly considers the
AN ~ ZN channel in AHe and 4&He using the Nijmegen
interaction. This study shows that the Nijmegen inter-
action underbinds the four-body hypernuclei and that
the 6ve-body hypernucleus is unbound relative to a sep-
arated o. and A particle. Also, it does not reproduce the
spin splitting in the four-body hypernuclei. To resolve
the classical overbinding [1,9,10] problem of AHe, Bando
and Shimodaya [11], and Shinmura et al. [12] have also
performed calculations with acid soft core and Hamada-
Johnston NN potentials by calculating effective interac-
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tions using a G-matrix approach. All these calculations
of the A-seperation energies B~ are confined to 8-shell

hyper nuclei.
Since no experimental data for &0 exist, we generate

"pseudoexperimental" or semiempirical data for this sys-
tem. This is done in Sec. II where we also brieBy discuss
the experimental status of A-seperation energy data. In
Sec. III we review the A and nucleon two- and three-
body potentials. Section IV deals with the variational
wave function. In Sec. V we describe the techniques of
our calculations for &0. In Sec. VI we present our results,
and Sec. VII contains our conclusions.

II. A-SEPAB.ATION ENKR.C IES

If we combine the results of previous experiments sum-
marized in Ref. [13], the in-flight reaction (K, a ),
[14—16] and the associated production [17] (7r+, K+), we
have now almost 30 well-established hypernuclei with a
wide range of baryon numbers A & 81 and orbital angu-
lar momentum Z~ & 3. The hypernuclei that are relevant
for the empirical determination of the B~ value of &0

We use here three approaches for the empirical B~
value of &O. In the first approach [18] microscopic cal-
culations of B~ of the above hypernuclei were carried
out with phenomenological two- and. three-body A% and
ANN interactions that were previously obtained from
studies of Ap scattering, the 8-shell hypernuclei, &Be
as a representative of p-shell hypernuclei in the 2o. + A
model, and the A binding to nuclear matter [2—4]. The A-
separation energies B~ are obtained from a Schrodinger
equation with a A-nucleus potential U~ and an effective
mass m& which are obtained in the local-density approx-
imation using the Fermi hypernetted chain technique for
the A binding to nuclear matter. Such a procedure gives
a good account of the B~ data of the above hypernuclei
for E~ & 3. Using this procedure, we calculate the di6'er-
ence, LB~, of the A-separation energies of &0 and &0.
This gives LB~ ——0.30 MeV.

In the second approach, we use the purely phenomeno-
logical technique adopted by Millener et al. [19]. Here we
use a Woods-Saxon A-nucleus potential whose parame-
ters were fitted to the B~ data of the above-mentioned
hypernuclei,

&o~
U~(r) = (2.1)

U~(r) = Ap(r) + Bp i (r), (2.2)

where p(r) represents the nucleon density. These are
taken from Ref. [22]. We choose s and p orbits in gO
and the p and f orbits in s&Y to fix the parameters A

where Vop = —28.0 MeV, c = (1.128+ 0.439A 2~s)A'~s,
and a = 0.6 fm give a very good account of the B~ data.
This procedure gives LB~——0.40 MeV.

In the third approach, we consider a density-dependent
A-nucleus potential [19—21] of the form

III. HAMII TONIAN

In an A-baryon hypernucleus, we will consider the first
A —1 baryons to be nucleons. We will use 4' to refer to the
full wave function of the hypernucleus and 4~ to refer
to the ground. -state wave function of the A —1 nucleons.
The full Hamiltonian H can be written as

(3 1)

where H~ is the nucleon Hamiltonian:

A —1 2 A —i A —1

H~= —) V', +) v,, + ) Vk
i=1 i(j i&j&k

(3.2)

and.

A —1 A —i
H~= — V'~ +) v~ +) V~~

2m+ i=1 i(j
(3.3)

is the part of the full Hamiltonian due to the A particle.
The A-separation energy, B~, of a hypernucleus is then

given by

(@iv IHiv
I
@zv)

(@xl@z)
(~IHI~)

(+I+)
(3.4)

Our goal is to calculate Bg using a variational principle
for the two components of Eq. (3.4). In this section we
brieHy describe the two- and three-body baryon interac-
tions that we have used. in this study.

A. A1V patential

Two-pion exchange (TPE) is a dominant part of the
AK potential that in turn is mainly determined by the
strong tensor one-pion-exchange (OPE) component act-
ing twice. Moreover, there is the K-exchange interaction
that primarily contributes to the AK-exchange potential.
The tensor part of the A% interaction is very weak be-
cause the shorter range K and K* exchanges that are

and B. The experimental binding energies are ].2.5+0.35
and 2.5+0.5 MeV in &0 and 16.0+1.0 and 2.5+1.0 MeV
in &Y. Fitting these energies results in a reasonable fit
to all binding energies from &C to &Y for E~ & 3. The
resulting AB~ is 0.76 MeV.

If we combine the results of the above three approaches
and at the same time bear in mind that the experimental
uncertainty in the B~ value of &0 is +0.35 MeV, we may
reliably fix the empirical B~ value of &0 as 13.0 + 0.4
MeV. We shall make use of this value in our calculations.
Other approaches, such as relativistic mean-field theories
or the local-density approximation using a Skyrme inter-
action, can also be employed in the empirical determina-
tion of the B~ value of &0. But, since these approaches
are consistent with the approaches that we have adopted
above, we do not feel that their inclusion will acct our
results.
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responsible for this are of opposite sign and nearly can-
cel each other. (In the case of the KN interaction the
a-exchange and p-exchange tensor components do not
cancel so completely, because their masses are quite dif-
ferent. )

We use an Urbana-type [23] potential with spin- and
space-exchange components and a TPE tail which is con-
sistent with Ap scattering below the Z threshold,

N

N

N

v~~(r) = vp(r) (1 —e + eP ) + vT—(r) a ~ cr1v, (3.5) N N

vp(r) = v, (r) —OT (r), (3.6)

FIG. 1. Terms contributing to V&~~ and Vz~~.

R"
v (r) =

1+exp( )

where T (r) is the OPE tensor potential

(3.7)
and ANN correlations introduced in the next section, the
AN spin-spin potential will have a nonzero contribution
even in a closed-shell system such as &O.

(3.8)

v, = 6.33MeV, vq
——6.1MeV, e = 0.3,

W = 2137MeV, R = 0.5fm, a = 0.2fm.

(3.9)

These parameters are consistent with the low-energy
Ap scattering data that essentially determine the spin-
average potential 6. The parameter e for the space-
exchange strength is fairly well determined from the A
single-particle scattering data [18]. For a detailed ac-
count of the determination of the other parameters see
Ref. [2]. We point out that because of the noncentral AK

I

x = pr, @=0.7 fm is the pion mass, and the cutoB
parameter c = 2.0 fm . P~ is the space-exchange op-
erator and e is the corresponding exchange parameter.
The v—:(v, + 3v&)/4 and v = v, —v& are, respectively,
the spin-average and spin-dependent strengths, where v,
and vq denote the singlet and triplet state depths, re-
spectively. (Note that following the convention of Ref.
[2], the Hamiltonian effectively contains +v„—v, +v
—v„and —vq. ) Finally, v, (r) is a short range Woods-
Saxon repulsive potential. The various parameters are

B. AN N p otent ial

(3.iO)

where Wp is the strength of the potential and T (r;A)
is given by Eq. (3.8). Vg~~ consists of two parts corre-
sponding to p- and s-wave mA interactions [24]

V~~w ——TV„+ H» (3.11)

where

When a AN potential that fits the Ap scattering is
used, the B~ for hypernuclei with A & 5 are almost
a factor of 2 too large. This is an old result that has
been con6rmed by various analyses. In the present work
we also And that the use of a realistic NN interaction
does not alleviate this overbinding problem. As in the
previous studies, to resolve the overbinding problem, we
incorporate a three-body ANN interaction.

We consider here two types of ANN potentials that
arise from projecting out Z, A, etc. , degrees of freedom
from a coupled channel formalism. These are the disper-
sive and the TPE ANN potentials designated as V&~~
and Vz~~, respectively (see Fig. 1). VA~& is expected
to be repulsive, and, following Ref. [2], we assume the
phenomenological form

(3.12)

(rl r2) (~1 rlA) (~2 ' r2A) (prlA + 1)(Pr2A + 1)Im(rlA)1 jr (r2A)

(pr1Ar2A)
(3.13)

(3.i4)

(x, a) = wa+ ax, (3.i5)
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~;~ = (~; . ~~)& (r'~) + S,AT (r'A)

Vijk = Vi k+Vijk

V;,.A,
= ) UOT (r,, )T (r, r, ),.

(3.19)

(3.20)

Here X,A is the one-pion-exchange operator, and S,g is
the tensor operator. The component TV, is quite weak
and, as in previous studies, we neglect it here; we feel
that its eÃect should be studied in future work.

There are theoretical as well as phenomenological es-
timates for Cp; but for Wo the estimates are purely phe-
nomenological. For example, for Wo 0.02, the reduc-
tion in the A binding to nuclear matter (using central
correlations) is approximately in accord with the sup-
pression obtained in coupled channel (AN ~ EN) re-
action matrix calculations. For Cp theoretical estimates
give 1—2 MeV; however, the phenomenological values may
not lie in this region as the results depend sensitively on
the cutoff parameter c that appears in Eq. (3.8). In the
present study, we have obtained results as a function of
the values of these parameters.

C. Taro- and three-nucleon potentials

CPC

+ijk = )~+o
CgC

(3.21)

where the square brackets represent the commutator
[A, B] = AB —BA. The constants Ao and Uo have the
values —0.0333 and 0.0038 in Urbana model VII [26],
which we use here.

IV. THE VARIATIONAL %TAVE FUNCTIONS

We assume that a good variational wave function for
a hypernucleus with a closed-shell nuclear core and a A
particle can be written as

For the nuclear part of the Hamiltonian, we use %N
and %%% potentials that have been previously used to
study various nuclei, including 0 [7]. The NN poten-
tial contains the first six terms of the Argonne vi4 [25]
potential and a Coulomb term:

(1+ U;,~+ U;~g)

A —1

A —1

x S (1+U;, ) i4&),

(1+ UA)

(4.1)
6

v, , = Qv" (r,, )O",, + vco i(r*, )O,,'"
p=l

where the operators are

(3.17)

A —1

f'("' ) f (')& ( )&Ic'" ') (42)

x (~; ~, ), S... S,, (~, r, ),
Oc."' = -(1+r, ,)(1+r, ,).

Here Uijk represents a three-baryon correlatj. on operator
that has the same structure as V jk,

(4.3)

We shall also refer to these operators by the abbreviations
c, v, o, o7, t, and tw. In PWP it was found that the 7 (.
p (. 14 terms of Argonne v14 and the corresponding p =
7,8 correlation operators gave a net contribution of only
—0.45 MeV/nucleon. We assume that the presence of a
A will not significantly modify this result and hence we
can safely omit all potential and correlation operators for
p & 7 when computing BA( A0).

The ANN potential is of the Urbana type, which con-
sists of dispersive and two-pion-exchange terms:

Uij~ ——b~ Vij (4 4)

The Vjk diQ'ers from Vjk through the range c of the
cutoff functions of Y(r) and T (r). 'The parameter b is
referred to as e in PWP; we use b here to avoid confusion
with the e of the space-exchange potential in Eq. (3.5).
The parameters b, bA, c, and c~ are determined variation-
ally. The label IT stands for independent triplet product
of 1+U;jk. Thus,

(1~U~r, +U;,A) =1+) U;, ~. +
IT i(j ~&j

i'& j'&k'gi, j
U', AU;, r, + ) U, , r, +

i(j(k i &j&k
. I . I Ii &j &k gi j,k

UjkUi -k (4.5)

The neglected terms are of the type UijkUi . k. This re-
striction makes the three-body correlations much simpler
to use. As is discussed in PWP, the Uijk and Uij~ should
ideally act last as in Eq. (4.1). However, this requires

considerably more computer time. The improvement in
the energy of ' 0 obtained by this was found to be only
—0.19(7) MeV/nucleon. In the present work we ignore
this correction and compute the energies of both '&0 and
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0 with the three-baryon correlations acting first.
Each operator in the two-baryon interaction can induce

the corresponding correlation. The f and the f, are
central correlations that are primarily generated by the
repulsive cores in the two-baryon interactions. For Uij
and UiA, we make the following choice:

The f, , fi, and f, have been obtained by minimizing
the two-body cluster energy for the A binding to nuclear
matter with the asymptotic condition f, (r ) dA) = 1.

The P~ represents a bound-state wave function of a A
particle of mass m~ moving in a Woods-Saxon potential
that is bound to a nucleus of mass (A —1)m:

and

U;, = ) Pru„(r;, )0,",
p=2

(4 6)
1+exp

(4.i 5)

m

U;~ = ) u„(r;~)O",A. .

p=2
(4.7)

6

8,, = ) nv„(r;j)0$, . (4.s)

The notation S g in Eq. (4.1) represents a symmetrized
product of the noncommuting operators UijUjk. . . . Pre-
vious studies [6,7] on few-body nuclei and ~sO demon-
strate that it is probably sufhcient to use 2 & p (. 6 in
Eq. (4.6). The pair-correlation functions f and u„are
generated by minimizing the two-body cluster energy us-
ing a quenched potential:

The parameters V~, B~, and a~ are determined varia-
tionally. The Slater determinant A 4 ) consists of
orbitals of nucleons of mass m bound to a hypernucleus
of mass (A —2)m+ mA moving in a Woods-Saxon wine-
bottle potential

(4.i6)

with V„B„a„o.„and p, as variational parameters. The
coordinates of all the one-body orbitals are measured
from the center of mass of the whole system, thus making
4J and 4 translationally invariant, i.e. ,

The two-body cluster contribution has been minimized
for infinite nuclear matter at Fermi momentum k~, with
the boundary conditions f, (r ) d) = 1, and u„(r ) d) =
0, for p = 7, o, and 07, and u„(r ) di) = 0, for p = t and
tv with their first derivatives zero at r = d or dq.

For the Uig we consider

ri=r, —R,

A —1mP, , r;+mArA
m(A —1) + mA

(4.17)

(4.is)

U'A = u (r'~)~~. ~, + uJ. (r;~)I'. (4.9) V. THE CLUSTER EXPANSION

A —f.
CF A (4»)

In the present study, we have omitted the second, i.e. , the
exchange correlation term in Eq. (4.9). Inclusion of this
term increases the computation effort by several fold and
preliminary results indicate that it gives a small contri-
bution. This will be the subject of a future publication.
The spin correlation is

We brieHy outline the general framework for the cluster
expansion of PWP to calculate the expectation values of
various operators. These expectation values are needed
in the evaluation of the energy using the variational wave
function (4.1). We demonstrate the cluster expansion for
the two-body NN and AN potentials:

where f, and fi are the solutions of Schrodinger equa-
tions with quenched AN potentials in singlet and triplet
states, respectively:

The N and D can be expanded as a sum of n-body con-
tributions

A+ vs(t)(rAN) fa(i) = 0 ~

2@AN
(4.11)

A —1 A —1 A —1 A —1

) nij + ) niA + ) nijk + ) nijA +
i(j i=1 i(j(k i(j

The potentials v, ~&~
are quenched in the two-pion and

spin-exchange parts of the central and spin channels: (5.2)

8.(r) = v (r) —(n, e+ s n v )T (r),

8, (r) = v, (r) —(n2 e —
4 n v )T (r) .

(4.12)

(4.13)

A —1

D=i+) d, , +) dA+

f. +3K
C (4.i4)

The spin-averaged correlation function f is given by

n, w = ((1 +. U,A) v,~(1 +. U,A)), (5.4)

The expressions for the purely nuclear nij, d;j, nijk,
etc. , may be found in PWP. The contributions of clusters
containing a A are similar, e.g. ,
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d,~ = ((1 + U;~) (1 + U,~)) —1, (5.5) by expressing

-...= ( (1+U.',.)(1+U.', )~ (1+ U.'.)(1+U,'.)

x [v,, + v;~+ vj.]P'[(1+U,~)(1+ Uj~)]

x(1+Uj)(l+ U,'~) ) —n;~ —n;~ —nj~, (5.6)

A —1 A —1—=) c+) c,.+
i(j i=1

(5.S)

The various cij and ci~, etc. , are obtained from the equa-
tion

where P and P' are permutation operators. In these
expressions

A —1 A.—1

) c,, +) c'+
i(j i=1

D, (5.9)

(+.101+. )
(~~I~. )

' (5.7) by equating terms with the same i j, i A, ijk, i jA, etc.
Thus,

where @' denotes the 4' of Eq. (4.2) without the anti-
symmetrization operator.

The expansions (5.2) and (5.3) for N and D are diver-
gent [7]. We obtain a convergent linked-cluster expansion

(5.10)

nij A cij (~jA+ diA) ciA(dij + djA) cj A(dij + diA) (cij+ ciA+ cjA)dijA
1+ dij + dig+ dj~+ dij

(5.11)

In the present work, we have used the CEA expansion
of PWP so that all clusters of a given spin, isospin, and
A content are averaged together.

VI. RESULTS

A. Variational parameters

V~ ———28.3 MeV, B~ ——3.2 fm, a~ ——0.5 fm, (6.1)

which gives an 8-wave separation energy of 15.0 MeV; for
the U'g

o.'27t- = o.~ = 1.0, d~ ——2.8 fm. (6.2)

In the presence of the AWK potential with C~ = 0.7
MeV, Wp = 0.015 MeV, we found that only two of the

We made detailed variational parameter searches for
two cases: (1) with no ANN potential and hence no U, j~
correlation, and (2) using a ANN potential with C„=0.7
MeV and lVp ——0.015 MeV. The rest of the Hamiltonian
was as described in Sec. III for both cases; in particular
the ANN potential and U;jI, correlation were used in
both cases.

For the case with no ANN potential, we found that the
optimal values of all of the nucleon correlation parame-
ters are the same as was found in PWP for 0, except
that the well depth, V„of the Woods-Saxon potential
changes from —49.1 MeV to —48.9 MeV to maintain the
same p-wave separation energy, 14.0 MeV, with the 17-
body instead of 16-body reduced mass. The reader is
referred to PWP for these parameter values. The opti-
mal parameters for correlation terms involving the A are,
for the A Woods-Saxon well,

above optimal values had to be changed. These are the
quenching parameters o. in the NN correlation and o.2
in the KA correlation. The variational energy is sensitive
to o. and we made several searches at other values of C„
to determine

o. = 0.94 —0.1C„, 0 & C„(.1.2 MeV.

The sensitivity to o.2 is weak and we used

o.2 ——0.95, 0.7 (. C„& 1.2 MeV.

(6.3)

(6.4)

In addition to these parameters we found for the U~~~

bg = —0.0013, c~ = 1.6 fm (6.5)

for all C„and Wp considered.

B. Variational energies

Tables I and II show various components of the &0
energy for the cases of no AN% potential and Cz ——0.7
MeV, TVp ——0.015, respectively. The cluster expansion
for terms involving the A is converging well and it ap-
pears that it is not necessary to extrapolate beyond the
four-body clusters for these terms. To get an accurate
total energy of the &0 nucleus, it would be necessary
to extrapolate the values of V~~~ as was done in PWP.
However since we are mainly interested in B~, we do not
do that here and instead subtract an unextrapolated 0
energy.

One important result shown in Table II is that the ex-
pectation of V& is substantial and negative. This arises
from the noncentral correlations in the wave function.
A purely 3astrow wave function (U,~

= U,jk ——U, ~
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TABLE I. Variational energies for t „=Wo ——0. All values are in MeV. Numbers in parentheses
are statistical errors in the last digit.

Clusters
Kinetic energy
AN potential

A energy
Nuclear kinetic
NN potential
NNN potential
Nuclear energy
Total energy

vp(r)(1 —e)
vp(r )~P

4 V cr T~ CT A 0 N
1 2

Vip

One-body
20.2(6)

2O.2(6)
317.(2)

317.(2)
337.(2)

Two-body
0.1(1)

—44.9(9)
—13.4(4)

O.34(3)
—57.9(11)
26O. (2)

—737.(4)

—468.(2)
—526.(3)

Three-body
1.1(5)

—3.7(3)
0.4(1)

—0.06(1)
—2.3(7)

—19.(3)
111.(2)
—59.8(8)

32.(2)
3o.(3)

Four-body
—0.7(3)

1.4(7)
0.7(3)

—0.05(2)
1.4(11)

11.(3)
4 (4)

35.8(8)
29.(3)
30.(1)

Total
20.7(9)

—47.3(12)
—12.2(5)

0.22(3)
—38.6(10)
556.(5)

—623.(5)
—23.9(8)
—oo.(2)

—128.5(18)

Includes nucleon kinetic energy from AN correlations.

U;~~ = 0) gives (VA~~) = 0.9 MeV; including U, ~ (with
n = 0.94), U;~A, and U;A (with n2~ ——1.0), but no U,~A,
results in (V&~~) = —4.2 MeV. Including U;~A also but
still keeping n = 0.94, n2~ ——1.0, gives (V&~~) = —7.9
MeV, while lowering o. to the optimal value of 0.87 and
n2 to 0.95 reduces this to —5.0 MeV (this loss of bind-
ing is offset by changes in the expectation values of other
parts of the Hamiltonian). These results can be under-
stood as follows: By using the relation

cr Acr B = A. B+icr (A x B), (6.6)

the (Xi~, X2A) appearing in VA~~ can be expressed in
terms of the operators crq rqp cr2. r2A, erq . rjA cr2 rqg,
cry r2~ cr2. r2~, and cry. cr2 and hence is a generalization of
the tensor operator S~2. However the expectation value
of S~2 in a Jastrow wave function for a closed-shell nu-
clear system is zero, while the expectation value of S&2
is nonzero. Hence the S&2 operator in Uq2 completely
changes (Vgi2). Of course the U;~A further enhances its
contribution.

The 0 energy that corresponds to the present calcu-
lation (U;zk acts first, use of only the first six operators
in Argonne vi4, and no extrapolation) is —101.0(9) MeV.
We emphasize that, because of the above approximations,

this energy is to be used only in comparison with the A0
energies. The resulting B~(iA70) are 27.5(2.0) MeV for
no VA~~ and 13.5(1.8) MeV for Cz ——0.7, Wo ——0.015,
which are to be compated with the empirical value of
13.0(4) found in Sec. II. Thus even with realistic NW
potentials and correlations, &0 is very overbound if no
Vp~~ is used. However a reasonable Vg~~ results in a
B~ consistent with the empirical value.

To study the dependence of B~ on the strength of the
Vp~~, we made a number of calculations with different
values of C„and Wp. In each case the NN quenching
parameter was chosen according to Eq. (6.3). To mini-
mize statistical errors, we made correlated difference cal-
culations using the C„= 0.7, PVp ——0.015 random walk.
Table III presents the resulting changes, bB~, in B~. All
of these values of Bg and bB~ are well Gt by the formula

B~ ——27.3 —8.9 C„+11.2 C„—870. TVp, (6.7)

the statistical error of BA is + 1.6 MeV. The quadratic
dependence on C„comes from U;~~, the contribution of
the dispersive term in U,~p (and also in U, ~A,, ) is very
small. When comparable calculations of other hypernu-
clei are available, Eq. (6.7) and the empirical value of
B~(i&70) = 13.0(4) can be used to uniquely determine

TABLE II. Variational energies for C„= 0.7 MeV Wo ——0.015 MeV. All values are in MeV.
Numbers in parentheses are statistical errors in the last digit.

Clusters
A kinetic energy
AN potential

ANN potential

A energy
Nuclear kinetic
NN potential
NNN potential
Nuclear energy
Total energy

(r)(1 —~)
vp(r)~P

—Vo-T~CTA ' O N
1 2

D
+AN N2'
VAN N

Vij

One-body
17.1(5)

17.1(5)
3oo.(2)

309.(2)
326.(2)

Two-body
o.l(1)

—3O.5(7)
—12.5(3)

0.26(2)

—51.7(10)
22O. (2)

—6S2.(3)

—453.(2)
—505.(2)

Three-body
2.4(5)

—2.0(2)
0.5(l)

—0.06(l)
14.1(4)
—6.5(3)

8.4(6)
—7.(2)
s5.(2)

—50.2(6)
28. (2)
36.(2)

Four-body
—1.0(4)

0.6(5)
—0.2(4)

0.00(2)
—o.l(1)

1.5(2)
0.9(9)

—12.(2)
10.(3)
27.9 (6)
27.(2)
38.(2)

Total
18.6(6)

—40.9(8)
—12.2(4)

0.20(2)
14.0(4)
—5.0(3)

—25.3(7)
52O. (4)

—587.(4)
—22.3(7)
—90.(2)

—114.5(16)

Includes nucleon kinetic energy from A correlations.
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Cp
0.7
0.7
0.7
0.9
0.9
0.9
1.0
1.0

~o
0.01
0.017
0.02
0.01
0.015
0.02
0.015
0.02

0.87
0.87
0.87
0.85
0.85
0.85
0.84
0.84

bBA (MeV)
+4.4 + 0.3
—1.7 + 0.1
—4.4 + 0.3
+6.3 + 0.7
+1.9 + 0.5
—2.4 + 0.5
+2.8 + 0.8
—1.5 + 0.7

TABLE III. DifFerences R~(C~, Wo) —BA(C„= 0.7,
Wo ——0.015). The NK quenching parameter, o., is also given.

the A significantly reduces the binding of the nucleons.
The density profile of the A for the two cases is also

shown in Fig. 2, along with the density corresponding
to the one-body part of @, i.e. , ~PA(r)~ /4'. In both
cases the Jastrow part of 4, i.e. , Ilf, (r;~), significantly
increases the A density at the origin. This is presumably
because f, is small for r;A —+ 0 and hence pushes the A
away from the high nuclear density around r = 1.4 fm.
Because this density is larger for V~~N ——0, the central
A density is also larger in this case.

VII. CONCLUSIONS

the values of C„and Wo (or to show that a difFerent
Hamiltonian is needed if no fit can be found).

C. Densities and polarization of 0 core

0.20 ———— No U

0.15

F

n. 0.10

0.05

2
r (fm)

FIG. 2. One-body densities for the nucleons and A in AO,
and for O. The short-dashed curve is the density corre-
sponding to just PA.

Figure 2 shows point nucleon and A densities for the
calculations of Tables I and II. The density of 0 is
also shown. For the case with no V~~~, the nuclear
correlation parameters were not changed from those used
in O. The resulting 0 density is, however, reduced
near the origin and somewhat more peaked at r = 1.4
fm. This is presumably due to the repulsive f~iv which
pushes the nucleons away from the A which is strongly
localized near the origin.

With V~~N, the N% quenching parameter was signif-
icantly reduced. This results in a slightly more repulsive
f, (n does not quench the central part of aviv) and so
the nuclear density is reduced for r & 2.2 fm. The nu-
clear kinetic and potential energies (see Tables I and II)
for the no Vg~~ case are separately larger in magnitude
due to the higher density. It is probably accidental that
the total nucleon energies for the two cases are so nearly
the same: —90(2) MeV. This value is ll MeV less than
the corresponding binding energy of 0, showing that

In this study, we have extended the cluster Monte
Carlo technique developed in PWP for 0 to &0. The
cluster contributions that involve the A seem to con-
verge well. It thus seems suKcient to include terms up
to four-body clusters in the calculation. These calcula-
tions have been performed for a number of sets of R'0
and |„which will be helpful in determining the parame-
ters of the three-body interaction V~~ by fitting the B~
values of &0 and other hypernuclei. The present calcu-
lations show that the use of noncentral NN, %AN, NA,
and NNA correlations completely change the expecta-
tion value of the three-baryon AN&' interaction found
with central wave functions, and thus have a strong ef-
fect on the choice of the parameters Wo and C„. With
such correlations, reasonable values of t „and Wo give
the correct BA( &0). We also find that the A significantly
changes the density profile and energy of the 16 nucleons
in &0; the ANN potential is particularly significant in
this regard.
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