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The AN —+ gN and gN ~ gN partial-wave T matrices for the eight lowest partial waves have
been obtained in a three-coupled-channel model with unitarity manifestly imposed. The two physical
channels are AN and gN, and the third channel, vr7rN, is an effective, but unphysical two-body
channel which represents all remaining processes. The 7tN elastic phase shifts and the weighted
data base of the mN ~ gN total and differential cross sections are chosen as the input for the
fitting procedure. A model containing a single resonance in each of the three partial waves that
dominates the g production at lower energies is compared with previous analyses, based on similar
assumptions. A multiresonance coupled-channel model is introduced which significantly improves
the agreement with all input data. Our results are compared with a complementary multiresonance
coupled-channel analysis that is constrained with elastic and continuum production channels. The
inclusion of the fourth Pqq resonance in the 1440—2200 MeV region further improves the agreement
between the analysis and the data.
PACS number(s): 25.40.Ve, 13.75.Gx, 14.40.Aq, 24.10.Eq

I. INTRODUCTION

The cross section for g-meson production by pions

7r P M rln

has a large peak at an energy close to the g production
threshold, see Figs. 1(a) and 1(b). The maximum value,
oqot(7r p ~ rln) = 2.8 mb, is 6% of crtot, (vr p —+ all) [1].
This large peak is usually associated with the Sqq(1535)
isobar known from AN elastic scattering and photopro-
duction. Recently, Hohler [2] has drawn attention to a
peculiar feature of this Sqq resonance, namely, that the
speed plot analysis of S-wave vrN scattering has a sharp
spike at the opening of the g channel and no clear, in-
dependent indication of a resonance in the energy region
around 1535 MeV. This suggests a strong interplay be-
tween the cusp associated with the opening of the g chan-
nel and the excitation of the Sjq resonance.

Some time ago Bhalerao and Liu [3] analyzed the then
available AN —+ gN data in a coupled-channel, single-
resonance separable interaction model in which the reac-
tion proceeds via the formation of L and ¹ isobars and
concluded that the S-wave gN interaction is attractive.
They found the value of the S-wave scattering length of
a„~ = (0.27 + i 0.22) fm. Arima et al. [4] obtained
a„~ = (0.98 + i0.37) fm, while Wilkin, based on an
S-wave threshold enhancement calculation, quotes the
value of a„~ = (0.55 + 0.20+ i0.30) fm [5]. The large
spread in these values of the fundamental a„~ parameter
illustrates the need for better understanding of the gN
system at low energies. The first step to do this is to
obtain a reliable set of vrN ~ gN T matrices.

The indication of strong and attractive gN interaction

has led to a speculation about the existence of a new type
of nuclear matter, namely, quasibound rl-mesic nuclei [6].
The properties of this new matter are determined by the
gN interaction at low energies.

Good data on g production in 7r p interaction are miss-
ing. The dominant contribution to the surprisingly big
rl production channel is coming from the Sqq(1535) reso-
nance, the contribution of the Pqq(1440) and Dqs(1520)
resonances is important, but not completely clarified.
The role of other resonances, even in these partial waves,
is not at all discussed because of the single-resonance
character of the model. Recently, accurate g photopro-
duction data have been obtained by TAPS at MAMI [7]
up to E~ = 790 MeV. These data indicate that the Dq3
resonance contribution is small.

The objective of this paper is to furnish a set of
AN + gN partial-wave T matrices that describe the
available data in a straightforward way. It is essential
to get reliable information on mN ~ gN on-shell T ma-
trices to be able to calculate the higher-order processes
where the q production vertex is a part of the higher-
order diagram, for instance in p p ~ p p g. Several publi-
cations, dealing with higher-order processes, have either
used the dominant Sqq partial wave [8—10] or have in-
cluded other partial waves [3, ll] for obtaining the el-
ementary vrN —+ gN amplitudes. It is clear from Figs.
1(a) and 1(b), where a comparison of different model pre-
dictions with experimental data is given, that only one S-
wave resonance is not sufFIcient, the Sqj (1535) resonance
accounts only for the part of the g production total cross
section, for the energy range of the Sqq(1535) dominance.
A single-resonance model for the S wave only is, there-
fore, incapable of describing all of g production data, but
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d is based on

in e gure
'

pp
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it ma suffice for the region of the Sir(1535) dominance,
h' h corresponds to p less than 85 e t". o

stage, we have tested a simple single-resonance mode
all three dominant partial waves: Sii,S P and D13 wi
out any background terms added. The model describes
the large near-threshold peak, but it fails miserably in

'th d t bove T = 800 MeV. The recent
single-resonance model by Bennhold and Tanabe (BT)

b the dominant peak pretty well on the gross scale,
but significantly fails in giving details like the exac pea

e Fi . 1~b~»~. The reason for the failure
is that the BT analysis relies on the data o e .

um calibrationh h fI' f m a serious beam momen u
13 but witherror [14]. We have also used data of Ref. [1 ], u wi

caution, as ela ora e in eb t d in detail later in the text. T e
comparison e ween
and in the expanded scale in Fig. 1(b). ansi ering a
the model of BT [12] used erroneous data of Ref. [13]
and has an energy dependent form factor which is not
incluue in our s uu d study the agreement between t e predic-
t of our single-resonance model and t e mo elons o OU

is satisfactory. Of course, both single-resonanc
miserably fail to fit the data above 800 MeV.

To obtain a better description of the input data we
propose a multiresonance coupled-channel model wit a
smooth background added in a unitary way [15] simi ar
as in the Karlsruhe-Helsinki partial-wave analysis (KH
PWA) of vrN elastic scattering [16]. A data base consist-

of 7rN KH PWA of Ref. [16], with the addition of to-lng 0 7t 0
tal and difI'erential mN ~ gN cross sections
has been chosen in order to perform the fitting procedure
of the AN elastic partial waves up to = e
with the additional weighting factors based on the anal-
yses o e aaf the data reliability by Clajus and Nefkens 14.
Results for the obtained resonance parameters s ig y

able mN ~ gN partial-wave T matrices an a e sat the same
time predict the T matrices for the gN elastic process.
Manley and Salesky (MS) [24] have used a multichannel
and multiresonance K-matrix approacc to the cou led-
channe ine as ic m scl t' N cattering with the main ine astic
channel being the continuum production. The g produc-
tion process is on y a e1 added in two partial waves, the

d E . The only purpose for including the g production
channel is to maintain unitarity when the o serv
f fl t b attributed to any other process. e

so-called "g production channel" has to account or a
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missing inelasticity within the partial wave and cannot
be related just to g production. Therefore, the predic-
tion for the two g production partial-wave T matrices
Sqq and Fq~, which come &om the MS model [24, 25],
should be used with care. As the complete study of the
g production process requires all partial waves we have
made a multiresonance three-coupled-channel fit with the
gN channel explicitly included and used as a constraint.
The multiresonance MS model [24, 25] is complementary
to ours in the sense that our results for the resonance
branching ratios for the vr N channel can be compared
to the continuum production branching ratios in the MS
model, and they should (but only roughly) correspond.

II. FORMULATION OF THE MODEL

A. The three-coupled-channel formalism

The AN ~ gN process is given by the invariant am-
plitude

A(W, cos 8*)+ g'~ B(W, cos 8*)

with the standard on-shell partial-wave decomposition of
A and B:

A(W, cos 8*) = (E,* + m)(E& + m)(W —m)P&'(cos8*)

+ (E,* —m) (E.~
—m) (W + m) P,'+~(cos 8*)

—) r,
l=1

(E,* + m) (E& + m) (W —m) P&'+z (cos 8*) + (E,* —m) (E&. —m) (W + m) P&'(cos 8*)

(2)

B(W, cos 8*) = —) r, + (E,* +m) (E& +. m) P&'(cos 8*) — (E,* —m) (E& —m) P&'+z (cos 8*)

+) T)
l=l

(E,* + m)(E~ + m)P, '+, (cos 8*) — (E,* —m)(E~ —m)P, '(cos 8*)

R' is the total c.m. energy, 0* is the c.m. scattering
angle, q* and q„' are the initial pion and final g c.m.
momenta, E,*. and E& are the initial and final nucleon c.m.
energies, Pt'(z) are derivatives of Legendre polynomials,
T~+ are the mN -+ gN T matrices, and m is the nucleon
mass.

The AN ~ gN TI+ ~- matrices are matrix elements of
the three-channel partial-wave r + matrix which is given
as

(r."r» r" )r~L r~L r~~ r~~
rl7r rltl 7r 2

)
where various channels are denoted by the index vr for
vr1V, g for re%, and 7r for all other channels (vrE, pN,
vnrlV, . . .). The third channel is effectively described as
a two-body process m N with vr being a quasiparticle
with a different mass chosen for each partial wave. We
have fixed the channel masses, for each partial wave in-
dependently.

B. Single-resonance model

The simplest possible model to represent the AN ver-
tex, and which is directly comparable to earlier analyses

I

[3, 11, 12, 26], has been constructed. Only one resonance
without any background terms is used to describe each
of the three important partial waves S11, P11, and D13.

The elastic T matrix for each resonance is defined as

r."(w)(2 2 3M~~ W T» (W) /2
'

The partial widths are given by

2L+1
for q~ (r."(w) = r."(M")x ~

2gc JLf- q-oq-9 +Op

(4)
and q is the c.m. momentum of the channel meson c: vr,

77) or 7C

g(W~ —(m + m, )~) (W~ —(m —m, ) )q, =q, (W) = 2'

for m, = m, m„, m ~. qo, = q, (M ) is the c.m. mo-
mentum of the channel meson c at the resonance mass

The exception is P11 because its mass is below q thresh-
old. For that case we use
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0 below qN threshold,r -~w~ = 3
100 (4~&o) above re threshold.

This definition of partial widths gives the correct thresh-
old behavior for the T matrix. The total widths are given

Used parameters
1535
150
0.40
0.42
1440
250
0.60

Qa

1520
120
0.55

0.0015

PDG parameters
m = 1520 to 1555

I = 100 to 250
x = 0.35 to 0.55
x„=0.30 to 0.50
m = 1430 to 1470

I = 250 to 450
x = 0.60 to 0.70

x„=0
m = 1515 to 1530

I' = 110 to 135
x = 050 to 060x„0.001

Resonance
Sg g (1535)

r,"., (W) = I'."(W) + r„"(W) + r.", (W).

The inelastic T matrix is given by

T..., (W) = T~i(W)Tg i(W), ci, c2 ——vr, q) vr',

(7)
Pgy(1440)

Dys(1520)
and the T matrix is defined in such a way as to give a
unitary S matrix:

S = s+ 2ir, StS = SSt = s.

TABLE I. Resonance parameters of the single-resonance
model.

Reliable branching ratios of various resonances to the g
channel unfortunately are not available except for S1~.
As can be seen &om Table I, all values used in our calcula-

x„=0, i.e., I'„= 0 is used below, I'„= 100(~) above the
re threshold (see text).

(a)

0.4

0.2

0.0'

0.4—

0.2—

-0.2

0.8
S

, ~ Mix i
, !Ill

-i~vr»~~Tgf ~ ~'

P
11

0.6

0.4

0.2

0.0-

0.00

-0.10

-0.20

-0.30 — p
o.4o—

0.30—

0.20—

0.10—

0.00 —-:-':

blliuXW lai .
~ wfgv v&Tt

500 1000 1500 2000 2500

0.6—

0.2—

0.0—

0.3—

0.2—

0.1—

0.0—

-0.2—

-03—

0.6—

0.5—

0.4—

0.3—

0.2—

0.1—

0.0

500 1000 1500 2000 2500

, , &LLLxx
I

I I I I I I ~ I I I ~ ~ I

FIG. 2. The vr N elastic partial waves.
The full circles are the result of the single-
channel vrN elastic PWA given in Ref. [16].
The used PWA does not give the error analy-
ses for the partial-wave T matrices in [16], so
the error bars given in the figure are defined
in the text and reBect the statistical weight
of the data set used in the minimization pro-
cedure. The dotted line is the approximation
that only one resonance has a strong branch-
ing ratio to the g production channel; the
results are from [12]. The dash-dotted line
is the result of this calculation, and is based
on similar assumptions. The full line is the
result of the three-coupled-channel multireso-
nance model presented here with the number
of resonances given by the PDG [1], namely
three in the Pqq partial wave. The dashed
line is the four Pqq resonance model. The
full and the dashed lines are practically in-
distinguishable for all elastic partial waves.
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tionion are within range of the accepted values [1]. However
t e agreement of the elastic m% partial-wave T matrix
values with the Karlsruhe-Helsinki phase shift analysis
(KH) [16] is not entirely satisfactory for the lower energy
range T. ( 7OO M V
corn letel mp e e y misses all higher-energy partial waves in the

model and the dotted line is the BT s 1

mo e o Ref. [12] which has an additional energy de-
pendent form factor. The BT model

'
1 ed to lower

energies. The dots are the clast KH N 1-ic m partial-wave
analysis [16]. As the KH PWA does not give the error
analysis for the partial-wave T matrices in [16], and the
errors are essential to de6ne the statistical wei ht of the
analysis, we have identi6ed the errors of the used data in
the standard y2 analysis as

= 0.005+
~

0.01+ 0.0015

GeV.

vV; 1s the total c.m. ener W 1s t e total energy
at vr nucleon threshold ~TJ is h
the T m

„I 1s t e maximal value of
t e T matrix in the chosen energy . Thrange. e energy
range extends up to 2.5 GeV of th t lo e ota c m. energy.

he statistical weight in the y f t'unc 1on 1s e ned in a
standard way as well:

JL
(gJL)2'

The intro ucetroduced energy dependence of the statistical
weig t is inspired by the energy dependence of the error

doeoes not exceed the value of 0.02 in the units of Ref. [16 .
energy, u

The total cross sections for the d te q pro uc 1on are com-
pared with the single-resonance model (dash-dotted line)
of this article, and the BT single-resonance model of Ref.
[12] (dotted line) in Figs. 1(a) and 1(b). The e
a a a or t e g production differential cross sections

are compared with both models in Figs. 3(a)—3(d). The
full and dashed lines in Figs. 1—3 will be explained later

e fa1lure of the single-resonance model to describe
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the experimental facts is not unexpected. Even at the
lower energies, background terms which are not included
in the single-resonance model are of some importance,
and their omission can account for the observed discrep-
ancy with the input. The comparison of the parameter-
free single-resonance model of this work (dash-dotted
line), with the similar BT model [12] (dotted line), shows
a fair likeness in the energy range where the latter analy-
sis has been given. The differences between the two mod-
els are attributed to the difFerent input data base and to
the additional energy dependent form factor used in [12].
However, as is seen in Figs. 1—3, both models show rea-
sonable agreement with the input data for the important
vrN elastic partial waves Sql, Pqq, and D13 at lower en-
ergies. Our analysis predicts strong deviations from the
6tted 7t N elastic partial waves at higher energies, for the
Sq 1 partial wave in particular, so it is to be expected that
the results of [12] suffer from a similar disease for higher

energies. Similar statements can be and are valid for the
total and differential cross sections of 71 production (Figs.
1 and 3). The phenomenon observed is consistent with
the fact that the single-resonance model covers only the
energy range of the first peak in 0'q t(7r p —L gn).

Let us mention that in the described single-resonance
formalism it is not possible to extrapolate the model to
include more than one resonance per partial wave in a
straightforward manner without directly violating the 8
matrix unitarity.

C. A unitary multiresonance model

In order to fft the 7rN elastic amplitudes of Ref. [16]
better than in the single-resonance model we have intro-
duced a manifestly unitary model that enables including
more than one resonance and background term per par-
tial wave. It is constructed following the commonly ac-
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cepted method developed in [15], and originally used in
mK elastic partial-wave analysis (PWA) [16].~

As the mg meson is a pseudoscalar, isospin zero t' l
it mixes by isospin violation with the 7t . We have chosen
t e following three coupled channels to t th d

e vr, gN, and a third, an efFective two-body channel
labeled w N which iinclusively contains and represents
all remaining, even three-body channels (mA, pK, 7r7rN,
etc.). The objective of the procedure is to simultaneously
ac ieve a good representation of the input 7tN elastic T
matrices, and the experimental g production data (total
and differential cross sections) by the values coming out
o the model.

We distinguish three basic steps of the presented anal-
ysis.

Step 1: Formalism. The multichannel T matrix taken
over from [15] is given as

i, Qia+ QQ2 + q )

Th ' lThe simple recipe for the modification of the S matrix,
which consists of directl addy adding extra resonances and a
smooth background is manifestly nonunitary

where 8 = W and is tq
' +e meson momentum for any

of the three channels given as
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g(W2 —(m+ m )2) (W2 —(m —m )2)
q =q W

The mass parameter m 2 for the vr N channel is fixed
prior to minimization to the mass value at which the
partial wave inelasticities show the opening of the first
inelastic channel:

Partial wave
m 2 (MeV)

Sii
450

RI.
380

&is
370

Dg3
380

Dg5
400

Fg5
370

%7
650

GI.7

450

are &ee parameters and are determined by the fitting
procedure. For the Qi and Q2 parameters we choose
the values

Qi =Q2 =m,
Qi, = Q2, = m„,

Q i~~ ——Q2~ 2 ——400 Me V.
(14)

G, is a dressed propagator for partial wave JL and
particles i and j:

~JL

k, l =1

The bare propagator

GOJL( )
i i2

si
(16)

(17)

The imaginary part of 4JL(s) is the effective phase-space
factor for the channel a:

Im@ (s) = J (s) p (s) —= F (s) (18)

The real part of 4 (s) is calculated using a subtracted
dispersion relation

g, JL( FJL(sI)
ds,s' —s s' —s, (19)

where s = (m+ m )
The advantage of this approach is that it manifestly

maintains the S matrix unitarity for any number of res-
onance and/or background terms. The disadvantage is
that the connection of the parameters p; and s,. with
the conventional resonance parameters M,- and I'; is
not direct [15], but has to be calculated.

Step 2: Data base and fitting procedure. The input
parameters for the fitting procedure are s; and p, which
determine the bare propagator and self-energy term for
the particle propagator, see Eqs. (14), (15), and (16), re-

has a pole at the real value s, . The sign e; = +1 must be
chosen to be positive for poles above the elastic thresh-
old which correspond to resonances. The nonresonant
background is described by a function that consists of
two terms of the form (16) with pole positions below
mN threshold. For that case signs of terms are oppo-
site. The positive sign corresponds to the repulsive and
the negative sign to the attractive potential. Z&& is the
self-energy term for the particle propagator:

I

spectively. The parameters Qi and Q2 which occur in
the form factor given in Eq. (10) have been fixed to the
mass of the channel a meson. The ones subtracted disper-
sion relation given in Eq. (19) is solved numerically with
the subtraction constant so ——s and C (so) = 0. The
stability of the solution has been tested by calculating
and reproducing the initial imaginary part, see Eq. (18).
The numerical integration has been performed using the
adapted Gaussian quadrature method with no significant
dependence on the number of points. We should men-
tion that the dispersion relation has been calculated only
once, and tabulated for further use to save the CPU be-
cause the parameters which form the integrand are not
varied in the minimization procedure.

Data base: As the input data to the minimization pro-
cedure we have used (1) the KH partial-wave mN anal-
ysis 16], (2) total cross sections for the mN ~ rlN pro-
cess [13, 17—23, 28], (3) differential cross sections for the
7rN -+ qN process [13, 17—20, 22, 23, 28]. We have fit-
ted the nN elastic T matrices for eight I = 1/2 partial
waves: Sll, Pll) Pl3, Dl3, Dl5, Fl5) Fl7) and Gl7 us-
ing the phase shift analysis KH [16] at 90 energies from
threshold to 2.5 GeV of the total c.m. energy. We have
also tested the use of (CMU-LBL) AN elastic partial wave
analyses [15] without any notable difFerences. At the in-
ception of this work the only PWA that covered the high
energy was KH [16]. Since then the VPI group [27] has
extended its analysis approximately to 2.1 GeV. We do
not anticipate that the use of VPI PWA would introduce
any substantial changes into the conclusions coming out
of the present analysis. Anyhow, a new analysis based
on the VPI PWA is planned to be the subject of a fu-
ture research. Finally, let us comment that we should
have used the total set of experimental data for 7t N elas-
tic processes instead of limiting the input to the model
dependent information coming from PWA's. However,
we have assumed that existing PWA's represent the data
adequately enough so we can avoid an enormous CPU
time consumption.

The data for the second, gN channel, are the AN —+

gN differential cross sections at 81 energies and total gN
production cross sections at 67 energies [13, 17—23, 28].
The statistical weights of the gN data, used in the min-
imization procedure, have been based on the analysis of
the world data give in Ref. [14]. In some cases the pub-
lished statistical weight had to be modified. Problems
of consistency among different measurements have been
extensively discussed in [14], and the discrepancy for the
lower energies of g production differential cross section
of data of Ref. [13] has been claimed. It has been argued
in Ref. [14] the data of Ref. [13] are systematically too
low, and that it is due to an error in the beam momen-
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turn calibration which makes the data at lower energies
essentially unusable even if one tries to correct them by
a momentum shift. The direct reason for that is a strong
momentum dependence of the lab ~ c.m. transformation
3acobian. However, at higher energies, it is safe just to
perform a 4%%uo momentum shift downward. Therefore, the
systematic error, in addition to the published, statistical
one, has been added to the questionable data sets reduc-
ing their statistical impact. The statistical weight of all
differential cross sections of Ref. [13] has been reduced by
the factor of 2. Iri addition, the statistical weight at low-
est energies of TV = 1511MeV, 1542 MeV, and 1571 MeV
has been even more reduced so that their importance in
the analysis is practically eliminated.

A systematic error of 0.01 mb/sr has been added to alt
g production difI'erential cross sections. We have decided
to do so because of the fact that the quoted errors in
all measurements have been of statistical origin only, so
most of the errors have been unrealistically low.

The data taken at the energy of 1507 MeV in Ref. [19]
as well tend to be too low when the total cross section
is calculated [14] and compared to the "world trend. "
Therefore, the additional systematic error of 0.04 mb/sr
has been added to these data.

For similar general reasons the systematic error of 0.02
mb/sr has beeri added to all the data of Ref. [28].

All "two-star" cross sections, as given in Ref. [14], are
taken with the increased. statistical factor of 10, while
the statistical factor of the remaining cross section data
is kept to be 1.

The direct consequence of our choice of the data base
statistical weights is seen in Fig. 3(a): Ref. [12] re-
produces the data set of Ref. [13] at lower energies (W
= 1511, 1546, and 1571 MeV) while our result tends to
reproduce other sets much better. Additional, precise
measurements for that process are needed in order to
eliminate the present uncertainties.

Fitting procedure: We have fitted the eight above-
listed lowest I = 1/2 partial waves in the following man-
ner.

(a) The number of resonances and the shape of the
background is determined by the choice of bare propa-
gator and self-energy term parameters. We have decided
to start from the number of resonances in each partial
wave as given in [1, 16]; the background is represented
by two resonant functions with the constraint that the
pole position is far outside the physical region. Only one
resonance in the Pq3 and Eqs partial waves has been used
in our analysis, higher (uncertain) resonances have been
dropped. The existence of the second Pq3 resonance has
been recently suggested, and it was used in the MS aN
analyses [24, 25].

(b) In general, we need up to two background terms.
They have been numerically represented as tails of res-
onances having their pole positions far outside the ana-
lyzed energy range. 2

More than one background term was needed in order to ob-
tain some nontrivial, but smooth energy dependent behavior
of the background terms.

(c) Error analysis for resonance parameters has been
done on the basis of MINUIT, imposing the confidence
level of 70% [29].

We have used a standard MINUIT program using as
much as 132 parameters in the final run.

The minimization has been complicated, and a lot of
technical tricks had to be used to avoid occurrence of
local minima which are hard to handle for a minimization
with such a number of parameters.

The result of the fitting procedure gives us a full three-
channel T matrix, with submatrices describing the AN ~
gN and gN ~ qN processes.

Step 3: Resonance parameters. The pole positions,
resonance masses, and widths have to be obtained nu-
merically from the full partial-wave T matrix, following
directly the technique developed in [15]. For the conve-
nience of the reader we shall briefIy reproduce the essen-
tial steps, angular momentum indexes are suppressed.

The poles of the T matrix given in Eq. (10) are found
solving the following equation:

detG = 0. (20)

The eigenvector of the matrix H = G has been found
at the pole position Sp ~, .

) H;, (sp (.)y; = 0. (21)

We have defined quantities

(22)

which define the coupling of resonance i to the channel
c. We consider the width to be an energy dependent
quantity involving the phase-space factors

Near the resonance we parametrize the T matrix as

D(s) = r —s —c) y, C,(s). (25)

The real constants r and c are chosen so that D(s~, ~, ) =
0. The resonance mass, width, and the branching ratios
are defined as

ReD(M )=0,
ImD(M2)

MReD'(M2) '

y,E,(M2) I'

P yE(M2)

(26)

T~g ——(B~g —b~g)/2i + ) B~, F, rI,D rIdFd B~s
cd

(24)

where B g is a background S matrix and the generalized
Breit-Wigner denominator is
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TABLE II. Resonance parameters of the multiresonance model with three P11 resonances. The results of elastic AN analyses
[1, 16, 15] are given in the first column. The results of the partial-wave analysis of this work, as well as results of the PWA of
Ref. [24] are given in columns 2—10. NF indicates not found.

States

+el
mass/width )

38
11(1535/120)

61
ii(1650/160)

9Si 1 (2ooo/95)
51

11(1440/135)
12

11(1710/120)
9» (2ioo/2oo)
14

P13(i72o/19o)
P13

54
13(152G/114)

8
13(1700/110)

6
D»(2oso/265)

38
15(1675/120)

7
D15(2100/310)

65
15(1660/128)

4
+15(2000/95)

4
+»(1990/35)

14
G»(2ioo/39o)

Mass
(MeV)
1543(6)
1668(17)
1703(27)
1426(25)
i724(3S)
2175(89)
1711(26)

1S23(i6)
1795(39)
1988(62)
1683(18)
2237(64)
16?4(12)

NF
2202(67)

This
Width
(MeV)
155(16)
209(32)
267(53)
287(53)
116(47)

659(207)
235(50)

i4i(30)
158(46)

922(191)
i41(22)

764(137)
i26(20)

NF
807(140)

publication

(%%u')

34(o)
95(6)
S2(23)
61(9)
s(s)
9(4)
18(4)

48(5)
6(8)
i2(3)
31(6)
s(4)
69(4)

NF
19(5)

(%)
63(7)
5(5)
2(3)
0(0)
89(7)
so(3)
o 4(1)

0.1(0.2)
13(?)
?(3)

0.1(0.2)
0.3(1)
1(0.4)

NF
o.i(i)

(%)
3(3)

0 1(1)
46(21)
39(9)
6(5)
2(2)

82(4)

s2(s)
si(11)
81(3)
69(6)
92(4)
30(4)

NF
81(5)

Mass
(MeV)
1534(7)
1659(9)

1928(59)
1462(10)
1717(28)
1885(30)
1717(31)
1879(17)
1524(4)

1737(44)
1804(55)
1676(2)

1684(4)
1903(87)
2086(28)
2127(9)

Manle
Width
(MeV)
isi(21)
173(12)

414(157)
391(34)
478(226)
113(44)

383(179)
498(78)
124(8)

249(218)
447(40)
1S9(7)

i3o(s)
494(308)
535(115)
547(48)

y et al.
X7r

(%%uo)

51(5)
89(7)
10(10)
69(3)
9(4)
is(6)
13(s)
26(6)
59(3)
1(2)

23(3)
47(2)

70(3)
8(5)
6(2)
22(1)

(%)
43(6)
3(5)
o(3)

o4(2)

(%%uo)

6(3)
8(3)

90(10)
31(3)

55(11)
83(8)
s?(s)
74(6)
41(3)
99(2)
77(3)
s3(2)

30(3)
o2(s)

78(1)

Missing inelasticity is going to KA channel.

where D is the derivative of the generalized Breit-Wigner
denominator (25). The obtained resonance parameter
values are given in Tables II and III.

III. RESULTS OF THE UNITARY
MULTIRESONANCE MODEL WITH

THREE Py y RESONANCES
We have obtained the partial-wave T matrices for xN

elastic scattering [see Figs. 2(a) and 2(b)], 7rN

[see Figs. 4(a) and 4(b)] and qN elastic scattering [see
Figs. 5(a) and 5(b)], on the basis of our fit to the 7rN elas-
tic and AN ~ gN data. The agreement with the input
AN elastic KH PWA T matrices is given in Fig. 2, while
the agreement with the input AN ~ gN differential cross
sections is given in Fig. 3. The full, dash-dotted, and
dotted lines systematically denote the results of our mul-
tiresonance, and the two single-resonance models, this
publication, and BT, respectively. The T matrix for gN

TABLE III. Resonance parameters of the multiresonance model with four P11 resonances. NF indicates not found.

States
I/2 I,2J

+el
mass/width)

38
11(1535/120)

61
S11(1650/180)

9S» (2ooo/95)
51

(144O/135)
12

Pll(1710/120)
P11

9
Pll(21GG/200)

14
13(1720/190)

P13
54

D13(i52o/ii4)
8

13(1700/110)
6

13(2080/265)
38

D15(1675/120)
7

D»(2100/310)
65

i5(1660/128)
4

+»(2000/95)
+17(1990/35)

14
Gii(2190/390)

Mass
(MeV)
1543(6)
1668(16)
170S(27)
1420(18)
17S4(32)
1750(28)
2215(?0)
1711(26)

1527(18)
1797(48)
2013(76)
1683(19)
2237(65)
1674(12)

NF
2198(69)

Thi
Width
(MeV)
155(16)
208(31)
271(S3)
246(60)
180(58)
111(36)

449(175)
235(51)

142(30)
240(62)

1153(228)
142(23)

755(138)
125(20)

NF
808(143)

(%)
34(9)
94(8)
51(22)
s6(7)
7(16)
11(26)
ll(7)
is(4)

46(6)
4(5)
8(2)
31(6)
s(4)
70(4)

NF
io(s)

s publication

('%%u)

63(7)
6(5)
1(3)
0(0)

15(11)
4(o)
86(6)
1(2)

0.2(0.2)
11(6)
8(4)

0.1(0.1)
0.2(1)

0.4(0.4)

o.i(i)

(%%uo)

3(3)
0.2(3)
48(21)
44(7)
7s(2s)
ss(22)
3(4)

81(5)

s4(6)
85(9)
84(3)
69(6)
o2(4)
30(4)

NF
si(s)

Mass
(MeV)
1534(7)
1659(9)
1928(59)
1462(10)
1717(28)
1885(30)

1717(31)
1879(17)
1524(4)
1737(44)
1804(55)
1676(2)

1684(4)
1903(87)
2086(28)
2i27(O)

y et al.
X7r

(%)
51(5)
89(7)
10(10)
69(3)
9(4)
is(6)

i3(s)
26(6)
59(3)
1(2)

23(3)
47(2)

?0(3)
8(5)
6(2)
22(1)

Manle
Width
(MeV)
151(21)
173(12)

414(157)
391(34)

478(226)
113(44)

383(179)
498(78)
124(8)

249(218)
447(40)
iso(7)

139(8)
494(308)
535(115)
547(48)

('%%uo)

43(6)
3(s)
0(3)

94(2)

(%%uo)

6(3)
8(3)

90(10)
31(3)

55(11)
s3(s)

87(5)
74(6)
41(3)
99(2)
77(3)
53(2)

30(3)
92(5)

78(1)

Missing inelasticity is going to KA channel.
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elastic scattering is a prediction. All observables, obtain-
able on the basis of our results for the partial-wave
matrix o e vr gf th N —+ N and gN elastic reactions, wit
the exception o e vrf th N ~ gN di8'erential cross sections,
which are inpu a a,h h t d ta are henceforth a prediction. Our
T matrices can be used as input g pto roduction calcu-
lations in reactions such as p p m p p g.

As can be seen, single-resonance models give a reason-
able agreement only in the region of
can be used for higher-order calculations, only for a lim-
ited energy range where one resonance p per artial wave
dominates. However, the analysis presented in this work,
which is based on more than one resonance per par ia
wave, can be used over the full energy range.

The results of the multiresonance model for the AN in-
teraction yb MS &~24& can be used as a consistency c ec
The parameters of both models, for the same number o
resonances per partial wave ( those given by the PDG [1])
are listed in Table II. We may call these analysis com-
plementary because the inelastic part of the mN partia
waves is constrained by two complementary processes: g
production in our case,d i se and continuum production in the

case of Ref. [24]. Therefore, the vr part of our analy-
sis should roughly correspond to the mr part of another
analysis, and the parameters of the g production partia
waves explicitly included in other analysis should corre-
spond to our 6ndings. Of course, masses and widths of
resonances should correspond to the values given by the
KH and GMU-LBL AN elastic analyses, which are gen-
erally accepted by the Particle Data Group (PDG) [1].

As can be seen from Figs. 1—3, the multiresonance
model, based on the standard number of resonances, de-

well. Of course, the g production cross sections are as
well correctly described in the full energy range. The
structure of the 7rN elastic partial waves [16] is not en-
tire y repro uce . el d d The tendency of smoothing elastic
partia waves, as ashas been already indicated previously,
exists when the inelastic channels are explicitly include

inelastic processes imposes some restrictions on the elas-
tic channel, forcing partial waves to have less structure

Comparing the available analyses we conclude the fol-

(a)
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coupled-channel multiresonance model pre-
sented here, with the number of resonances
given by the PDG [1], namely three in the
Pii partial wave. The long-dashed line rep-
resents the increase to four resonances in the
Pqq partial wave. DifFerences between long-
dashed and full lines are quite notable in this
figure.
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lowing.
(1) The masses and AN elastic branching ratios gener-

ally agree for all three PWA's, with the exception of the
Pqq. This problem is discussed later.

(2) All partial waves except the Pqq show reasonable
agreement in both multichannel models.

(3) The two higher Pqq partial-wave resonances of MS
and our analyses do not agree. The branching ratio for

q production in our model is about 90%. The MS model
[24] predicts almost a 60% branching ratio to the 7r7r

channel, leaving no freedom for any Aux going to the
g production channel. The disagreement is obvious, and
we shall oKer a natural explanation.

IV. RESULTS OF THE UNITARY
MULTIRESONANCE MODEL WITH

FOUR Pz x RESONANCES

Inspection of the resonance parameters of Ref. [24]
reveals the following (see Table II): the total width of

(b)
0.06

0.02—
0.04—

0.00

0.02—

the Pqq(~44o&~ss) is difFerent from the ones of KH [16],
CMU-LBL [15], and Amdt et al. [27]; the total width
of the Pqq(&7&o&&2o) is difFerent from the ones of KH [16],
CMU-LBL [15], and Amdt et al. [27]; the mass of the
Pj q(zzoz&2oo) is much lower than the ones of KH [16] and
CMU-LBL [15]; the mass of the Dqq(zzso&2ss) is shifted
from 2080 to 1804 MeV. Therefore, we suspect that a
part of the physics in the vicinity of the 1800 MeV mass
region is not entirely taken into account.

We assume that there is another degree of freedom in
the Pqq partial zvave, in the form of another resonance

This possibility of having four instead of three reso-
nances in the Pqq channel leads to a fit which is shown
in the figures with dashed lines. The resonance parame-
ters are given in Table III. The T-matrix pole positions
for KH [16], CMU-LBL[15], MS [24], and our analyses
(three and four poles) are given in Fig. 6. As can be
seen in Fig. 6, the pole positions of the three resonances
are well established in the classical AN elastic PWA's and
are fairly close. The Pqi T-matrix pole positions for the
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CMU-LBL and our analyses give the exact T-matrix pole positions, while the poles for the remaining analyses have been
approximated by M —i I'/2.
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MS analysis [24] (given by full circles) are quite difFerent
from the recommended values. The three-pole version of
the Pi~ of our calculation is also quite compatible with
the KH and CMU-LBL pole positions. The four-pole ver-
sion of the Pii shows agreement for the lowest pole, the
next two poles are near in masses, but distinctly sepa-
rated in the complex energy plane, while the fourth pole
is somewhat lower than KH. In our analysis the fourth
resonance is strongly inelastic, going mainly to the g pro-
duction channel, therefore it is not to be expected that
either of the KH or MS analyses could determine it with
great precision.

V. CONCLUSIONS

(1) The addition of another resonance in the Pq q partial
wave definitely improves our fit to elastic and inelastic
data in all channels. Various quark models also predict
four and even five P11 resonances in the energy region of
1440—2200 MeV [30, 31].

(2) The changes in vrN elastic partial waves are neg-
ligible because all the resonances (with the exception of

the first one) are strongly inelastic.
(3) The changes in rI production and qN elastic channel

T matrices are clearly visible in all partial waves. As is
to be expected, the Pii is significantly changed, while
other partial waves do show some variation. However,
let us draw the reader's attention to the fact that Sii,
P] 1 and D13 partial waves are the dominant ones, while
the contribution of other channels is at least the order of
magnitude lower. So, even if the relative change in Figs.
4 and 5 is large for other partial waves, the change at the
absolute scale is comparably small.

(4) The inconsistency problem between the two inelas-
tic PWA's goes away. The two Pii resonances in the
vicinity of 1750 MeV are responsible for the continuum
production; this is to be compared with 1717 and 1885
resonances of Ref. [24], the third resonance at 2215 al-
most completely couples to the gN channel, with a very
small branching ratio to the continuum production.

(5) The MS PWA [24] could not easily see the addi-
tional fourth Pii resonance as it mostly couples to the g
production channel, and it is not, in their case, explicitly
included.
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FIG. 5. The partial-wave T matrix for
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TABLE IV. Resonance parameters of the multiresonance models with three P11 and four P11 resonances using the data of
Ref. [13j, for T ) 900 MeV shifted downward by 30 MeV. Brown data below 900 MeV are omitted from fitting procedure.
NF indicates not found.
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L12I,2J

(
+el
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9
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FIG. 6. The pole positions for all four partial-wave anal-
yses mentioned in this work. The notation is given explicitly
in the 6gure.

(6) The elastic rrN analyses [15, 16] have problems
of determining the number and parameters of the res-
onances going to inelastic channels. Some changes in the
resonances with a small elastic branching ratio should be
easy to obtain in the single-channel formalism.

(7) If the Brown data for T ) 900 MeV are shifted
to lower energies by 30 MeV and data below 900 MeV
are omitted then the resonance parameters for our solu-
tions containing 3 and 4 resonances in the Pqq are shown
in Table IV. The results are virtually identical (within
errors) with the solutions using all originally published
Brown data [13]. That indicates that our PWA is show-
ing robustness with respect to possible errors in input.

Of course, adding an extra P~~ resonance is only one
way of making our analysis compatible to MS PWA;
there might be other, equally good explanations of the
apparent disagreements when the inelastic branching ra-
tios are compared. One technical detail has to be kept in
mind: the background parts are represented by two res-
onances with poles kept far outside the range of interest.
Therefore, the background is also fitted. The proper way
should be to calculate the background in some model (for
instance a cloudy bag model ), to fix it, and then fit just
the resonant part [32]. The interference of background
and resonant parts might shift the resonance parameters
notably.

The T matrices obtained in this study are an es-
sential ingredient for calculating g production reactions
D(rr, NN) rl and D(rr, NN) rr The off. -mass-shell extrapo-
lation procedure for the g production amplitudes cannot
be determined in this formalism. We do hope to learn
something about these efFects from the higher-order pro-
cesses, assuming that the o8'-mass shell behavior of the
rl particle is similar as of the pions [33].

This work was partly supported by the EC Con-
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