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Light front dynamics of one boson exchange models of the two-nucleon system
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A general procedure for constructing front form, one boson exchange models for the two-nucleon
system is developed. The procedure entails the construction of a mass-square operator which when
used in conjunction with a free spin operator leads to an exactly Poincare invariant model. An
exchange model involving vr, g, p, u, b, and o mesons is constructed, and calculations of nucleon-
nucleon phase shifts and deuteron properties are carried out. A comparison with the Bonn B
potential, and a 6t to a recent nucleon-nucleon phase shift analysis are presented.

PACS number(s): 13.75.Cs, 21.30.+y, 21.45.+v, 24.10.Jv

I. INTKODU CTION

Meson-exchange models for the nucleon-nucleon inter-
action originated with Yukawa's basic hypothesis that the
nuclear force is mediated by the exchange of a massive
particle [1]. Yukawa's idea of a scalar meson field inter-
acting with a nucleon was extended to vector Gelds by
Proca [2]; and to pseudoscalar, pseudovector, and tensor
fields by Kemmer [3]. The combination of vector and
pseudoscalar Gelds was considered in the early 1940's by
Mgller and Rosenfeld [4], and by Schwinger [5]. Thus the
basic Geld theory that is needed to describe the interac-
tion between mesons and nucleons has been in existence
for some time now.

As is well known the pion was the first meson to be
detected experimentally [6]. The early 1960s saw the dis-
covery of the heavy mesons; in particular, the p meson
[7] and the u meson [8], both of which are vector mesons.
Models based on the exchange of these and other mesons
have been constructed and analyzed for some time now.
The review article on the Bonn meson-exchange model
by Machleidt et al. [9], as well as the general review
by Machleidt [10], give extensive references on meson-
exchange models for the nucleon-nucleon interaction. A
somewhat more recent overview has been presented by
Hohnde [11].

The one-boson-exchange (OBE) model we will study
here involves the same mesons as the OBE models
given in Refs. [9,10], i.e. the m(0, 1), g(0, 0), p(1, 1),
~(1,0), b(0+, 1), and o (0+, 0) mesons. The quantities
in parentheses are (J+, I); where 2, P, and I are the
corresponding meson's spin, parity, and isospin, respec-
tively. The 0. meson is viewed here as a Gctitious meson
which is introduced to take account of processes that are
not treated explicitly in the OBE model. This includes,
for example, contributions &om 2' exchange which are
not accounted for by the exchange of the p meson, as well
as mp exchange. It should be noted that the p and cu are
two- and three-pion resonances, respectively.

The basic building blocks for a mesog. -exchange model
are the various meson-baryon vertices. The speciGcation
of these vertices involves the form of the coupling, which
is usually given in terms of an interaction Lagrangian

density; the values of the coupling constants and meson
masses; and some model for the meson-baryon form fac-
tors [9—ll]. The form factor at a meson-baryon vertex
takes into account the effects of the vertex's extension.

Various approaches exist for relating these vertices to
the observables of a hadronic system. Manifestly covari-
ant treatments are based. on the use of the Bethe-Salpeter
equation [12], or on one of its three-dimensional reduc-
tions. The three-dimensional reductions that are most
widely used are due to Blankenbecler-Sugar [13], and to
Gross [14]. Tjon and his collaborators [15] have employed
both the Bethe-Salpeter equation and the Blankenbecler-
Sugar equation. The most recent application of the Gross
equation to the two-nucleon system is given in Ref. [16].

Holinde and his collaborators have made extensive use
of time-ordered perturbation theory in developing the
Bonn meson-exchange model for the nucleon-nucleon in-
teraction [9—11]. Johnson's method of folded diagrams
[17] has been used to eliminate the energy dependence of
the amplitudes obtained &om time-ordered perturbation
theory. This leads to instantaneous interactions which
can be conveniently used in calculating the properties of
system with more than two nucleons.

The purpose of the present work is to introduce a
framework for developing meson-exchange models within
the context of the front form of relativistic quantum ine-
chanics. Relativistic quantum mechanics arises when it is
required that the state vectors of a quantum-mechanical
system transform according to a unitary representation
of the Poincare group. The subgroup of continuous trans-
formations, the so-called proper subgroup, involves 10
generators; the 4 components P„(p = 0, 1,2, 3) of the
four-momentum operator, and the 6 independent com-
ponents J„„=—J„„ofthe angular momentum tensor.
These 10 operators must satisfy a set of commutation
relations [see (2.5)], which is usually referred to as the
Poincare algebra. Several subsets of these generators
have the property that they satisfy a closed subset of
these commutation relations, and are therefore associ-
ated with a subgroup of the proper Poincare transfor-
mations. Some of these subgroups are associated with
three-dimensional hypersurfaces in Minkowski space that
do not contain timelike directions. Each form of rela-
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tivistic quantum mechanics is associated with such a hy-
persurface and its corresponding subgroup [18]. These
subgroups are called kinematic subgroups [19] or stabil-
ity groups [20]. The most obvious form, i.e. , the instant
form, is based on the hypersurface t =const, while the
light &ont form is based on the null plane ct + z = 0. In
each form of relativistic quantum mechanics the subset
of generators associated with the form's hypersurface is
chosen to be noninteracting, while the remaining gener-
ators contain interactions.

In the instant form the three-momentum P and the an-
gular momentum J are noninteracting, while the Hamil-
tonian H;„,t and K, the generator of rotationless boosts,
contain interactions. A rotationless boost is a Lorentz
transformation which relates two inertial &ames moving
relative to each other with the corresponding spatial axes
parallel. The instant form is like nonrelativistic quantum
mechanics in that the state vectors are speci6ed on the
t =const hypersurfaces, however the nonrelativistic boost
operators, which generate Galilean transformations, do
not contain interactions.

In light front dynamics the operators P = [(H;„,t +
es P)/~2, P~], Js = es. J, Ks = es K, and B =
[K~—(es xJ)]/~2 are noninteracting; while H—:(H;„,t-
es . P)/~2 and S = [K& + (es x J)]/~2 are dynamical
operators. Here e3 is a unit vector along the three-axis,
and i indicates spatial components transverse to this
axis.

An important advantage of the &ont form over the
instant form is that the three noninteracting operators
K3 Bz, and B2 generate a subset of boosts, called the
front form boosts, which form a subgroup of the stabil-
ity group of the null plane [21]. As a consequence of
this there is a clean separation of a system's variables
into internal and external variables [20]. The dynamical
content of a model is expressed in terms of the internal
variables, while the external variables are associated with
the kinematics.

A disadvantage of the light &ont form is that the
transverse components of the angular momentum, i.e.,
J~ = [es x (B —S)]/v 2, contain interactions. This
causes difBculties in the treatment of angular momentum
and three-rotations. It is possible to express the inter-
acting light &ont generators H and S in terms of a mass
operator M, a relative angular momentum or spin oper-
ator + [see (2.16) and (2.17)], and the kinematic gener-
ators [20]. It does not violate the commutation rules of
the Poincare algebra to choose M to be interacting and
+ to be noninteracting [21—24]. Such a free spin model-
circumvents the difFiculty of dealing with an interacting
angular-momentum operator, and is the type of model
we will consider here.

In general light &ont models obtained &om manifestly
covariant models, such as the covariant harmonic oscil-
lator [25], and from quantum field theory involve inter-
acting spin operators + [20]. Starting with the work of
Karmanov [26,27], the author has developed a formalism
[28—32] for dealing with interacting &'s. The standard
picture of light &ont dynamics employs the null plane
ct + z = 0; whereas the author's formalism, called the
new picture, employs a set of null planes ( x = 0, where

( is a lightlike four-vector. Numerical calculations carried
out within the &amework of the new picture have shown
how to extract &om a two-particle interaction obtained
&om a quantum field theory, an interaction which leads
to an exactly Poincare invariant, &ont form, &ee-spin
model [31,32]. Such a procedure is applied here to OBE
models, and is used to calculate nucleon-nucleon phase
shifts for nucleon laboratory kinetic energies below 300
MeV, as well as some deuteron properties.

The outline of this paper is as follows. Those aspects of
relativistic quantum mechanics that are necessary for an
understanding of the &ont form are reviewed and sum-
marized in Sec. II. Section III discusses the Melosh ro-
tation [33], and how it can be used to construct two-
particle basis states which lead to a simple representation
for the noninteracting, two-particle spin operator. The
method for obtaining a &ont form, OBE model for the
nucleon-nucleon interaction is presented in Sec. IV. Rel-
ative three-momentum variables are introduced, and a
method for ensuring the Poincare invariance of the OBE
model is given. The partial-wave matrix elements of the
OBE, nucleon-nucleon potential are derived in Sec. V.
The numerical calculations are presented in Sec. VI, and
a discussion of the results and suggestions for future
work are given in Sec. VII. Throughout units in which
h = c = 1 are used.

II. GENERAL BACKGROUND

(a', b') . (a, b) = (a'a, a'b + b') = (a",b") . (2.1)

The elements (a, b) of the Poincare group consist of the
Lorentz transformations a and spacetime translations b

that appear in the inhomogeneous Lorentz transforma-
tions x' = ax + b. In the passive interpretation x and
x' refer to the spacetime coordinates of the same event
in two diferent inertial &ames, i.e., the x &arne and x'
&arne, respectively.

The proper subgroup of the Poincare group involves

only continuous transformations. This subgroup is a ten-
parameter group; four parameters are associated with
translations in four-dimensional spacetime, while the
other six are associated with "rotations" in spacetime.
Three of these six can be associated with true rotations
in three-dimensional space, while the other three can be
associated with rotationless boosts. In what follows the
expression Poincare group refers only to the subgroup of
continuous transformations.

In a relativistic quantum-mechanical model formulated
on a Hilbert space there exists a set of operators U(a, b)
which form a unitary representation of the Poincare
group. If ~4') and ~4') are states associated with the
x &arne and x' &arne, respectively, they are related by
[4') = e' U(a, b)~4'), where the factor e' appears be-
cause states are only defined to within a phase. If ~O) and
[4) are two difFerent states, clearly ~(O'~4")

~

= ~(4'[4')
~

i.e., probabilities are invariant.
If the transformations x' = ax + b and x" = a'x' + b'

are combined, then x" = a"x + b" with a" = a'a and
b" = a'b+ b'. Accordingly the law of combination for the
Poincare group is
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Clearly the group is non-Abelian. In order for the U's to
represent the group, they must satisfy the rule

P, B,K3, J3 (stability group generators) (2.10)

U(a', b')U(a, b) = U(a", b") .

For the infinitesimal transformation

~- = y~- + ~- ( ~- = —-~)

(2.2)

(2.3)

induce transformations on the light &ont hypersurface
ct + z = 0. Accordingly these generators are taken to be
noninteracting in light &ont dynamics. As H plays the
role of a Hamiltonian in light &ont dynamics, it contains
an interaction. It follows from (2.5b), (2.6) and (2.8) that

U(a, b) = 1+ ie„P"—'s„„J"— (J""= J")—.P (2.4)

The multiplication rule (2.2) implies that the 10 Hermi-
tian generators (P„,J„„)satisfy the commutation rules

[PB,P„] =0, (2.5a)

[J~- P~l = &(g-~P~ —g~~P-) (2.sb)
[J,J,~] = '(g ~J, +y J r —g, l J i —rj ~J,) .

(2.5c)

These commutation rules, which define the so-called
Poincare algebra, are valid for any choice of the com-
ponents (P~, J~„) and the corresponding metric (g&„).

In light &ont dynamics it is convenient to work with
the metric

0 0 0 1
0 —1 0 0
0 0 —1 0
1 0 0 0

(2.6)

where g~ is the metric tensor, and the epsilons are the
infinitesimals; the corresponding unitary operator can be
written in the form

[S„P']= ib—,H, r, s = 1, 2, (2.11)

so Si and S2 must also be interacting. Equation (2.9a)
implies that the transverse components of J contain in-
teractions. The new picture [28—32] is a way of dealing
with this peculiar feature of light &ont dynamics.

An attractive feature of light &ont dynamics is that
it allows for a clean separation of matrix elements into
an externa/ factor and an internal factor. It is always
possible [20] to construct states ~p, n) such that P, B
and K3 have the representations

(P ~IP =J(P ~l (2.12)

p 0
(p ~IB- = —ip'Z„. (p ~l

p 0
(P, a[K3 ———iP (P, ai,

|9p

(2.13a)

(2.13b)

[P, 0] = [B,0] = [K3,0] = 0, (2.i4)

then

where o, is a set of quantum numbers that specifies the
internal properties of the system. It is straightforward to
show that if 0 is any operator that satisfies

which goes with the components
(p, n[O~p~, n') = (2') 2p h (P —p~) 0(n, n'), (2.is)

p ct+ z i g 3 ct —z)(x) =
~

x =,x =xx =yx
v&

'

= (X,X~, Z3) = (X, Z ) . (2.7)

A convenient notation for the light &ont components of
the four-momentum and the angular-momentum tensor
is given by [34]

M =P„P"=2P II —Pi, (2.i6)

where the factor (2vr)32 is arbitrary.
The most important operators associated with the in-

ternal structure of a system are the mass operator M and
spin operator +. The mass operator is defined by

P=(P, Pi), H=P,
B = (Bi,B2, 0) = (Jis, JQ3 0),
K3 —Jps, J3 = Ji2, S = (Si, S2, 0) = (Jip, J2p, 0)

(2.8)

while the components of the spin operator are given by
[20,23]

MJ„=e„,(S,P —K3P' —B,H) —J3P",

Jl = (S2 —B2)/v 2, J2 ——(Bi —Si)/'v 2

Ki ——(Si + Bi)/~2, K2 ——(Sg + B2)/v 2 .
(2.9a)

(2.9b)

It follows from (2.3) and (2.4) that the generators

The light front components P" are related to the more
conventional components as in (2.7). The component P3
is called H, since it is a Hamiltonian in that it generates
translations in the light front "time" x = (ct + z)/~2.
The transverse components of the angular momentum J
and rotationless boost operator K are related to the light
front components J~„by

r, s, = 1, 2, (2.17a)

P — P + J3,
Bg ~ B

(2.17b)

where e„, is a two-dimensional Levi-Civita symbol. The
operators M and + . + are Casimir operators, and as
such, commute with all of the generators of the group; Jq
is noninteracting and commutes with all of the stability
group generators, while gj and Jq commute with all of
the stability group generators except J3. The matrix
elements of M and + have the structure (2.15), and
the eigenvalues of M2 and & + are invariants. The
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commutation rules of M and the components of X are the four-vectors, e.g. , x = ct T. he front form boost is
given by

[M, g] =0,
[&,&s] = is s A'.

(2.18)
(2.19)

In constructing Poincare invariant light &ont models
the generators P, Ks and B are defined by (2.12) and
(2.13). The matrix elements of M and + are assumed
to be of the form (2.15); and their internal parts, i.e,
M(n, n') and +(n, n'), are constructed so that M and
+ satisfy (2.18) and (2.19). The generators H, S, and Js
are obtained by solving (2.16) and (2.17). The resulting
set of 10 generators will satisfy the commutation rules
(2.5).

As pointed out in Sec. I, it is mathematically consistent
to choose M to be interacting and + to be noninteract-
ing, however when M and Q are derived from a quantum
Geld theory they both contain interactions. The new pic-
ture provides one way of dealing with the complications
due to an interacting J'. In Sec. IV we will follow an
alternative approach; we will use an approximation tech-
nique that leads to an M that satisfies (2.18) when + is
noninteracting, i.e. , we will construct a free spin mode-l.

x —+ 2A Zap& xJ —+ 2A+xyp + xfpJ0 / O 0 / 0 (3.6)

where here x, A and x&& are the p = 0 light &ont
components defined by (2.7). It is worth noting that the
first three light &ont components (x,x, x~) transform
among themselves under &ont form boosts.

%'e will assume that under a three-rotation r the rest
&arne states transform according to

U(r) lh, ) = ) lb,')D~~", „l (v ), (3.7)

rs(a, A) = I (aA)als(A), (3.8)

which when combined with (3.2) and (3.7) leads to the
transformation law

U(a)lp;h;)s ——) lap;, h';)gD~~", „~ [rs(a, A;)]. (3.9)

with D&"l the standard matrix representation of SU(2)
for the spin 8;.

For each type of boost we deGne a R'igner rotation by

III. THE SPIN OPERATOR
FOR TWO FREE PARTICLES It follows &om (3.5) and (3.6) that the Wigner rotations

have the following properties:

The two-particle basis states that we will work with
are of the form

r, (r, A) =r, (3.10)

lplhi) pqhz)s ——lpihi)s 3 lpqha)s) g = f, c, (3.1)

lp'h') a = U[4(A')] Ih')

A, = p, /m, , (p,
' = m,'),

(3.2)

(3.3)

where ts(A;) is a I,orentz boost whose inverse takes us
&om the arbitrary &arne in which we are working, the x
frame, to a rest &arne of particle i, according to

where the subscript g distinguishes the front form (f)
and canonical form (c) of the states [21]. Here pi and pq
are the on-mass-shell four-momenta of the particles, and
hq and hq are the z components of the spins of the par-
ticles. In this section we will suppress all other quantum
numbers. The single-particle states that appear in (3.1)
are defined in terms of rest frame states lh;) by

ry(r, A) g r unless r = rs,

ry(ly, A) = 1.

(3.11)

(3.12)

ry, (A) = l~ '(A)t, (A), (3.13)

which from (3.4) relates the two rest &ames according to

xfA —rfc(A)xcA ~ (3.14)

Equations (3.10) and (3.11) show that the canonical basis
states transform more simply under three-rotations than
the front forin states, while (3.12) shows that the &ont
form states transform simply under &ont form boosts.

In order to simplify the description of three-rotations
in the &ont form of relativistic quantum mechanics it is
convenient to introduce the Melosh rotation [33]

xgp = I '(A)x. (3.4)
Equations (3.2), (3.7), and (3.13) imply that the single-
particle basis states are related by

For each choice of A and g we have a di8'erent rest &arne,
which is the reason for the subscripts on the left-hand
side of (3.4). The canonical boost (g = c) is given by

lp'h'). = ).Ip'h';) sDp. ,'p,', [&~.(A')]. (3.15)

x =A x +A. xg,
(3.5)

For the two-particle states (3.1) we introduce the four-
vectors

( o Ax=xq+
l x,z+ '

lA,A'+ 1&

where x, A, and x~& are the usual time components of

P P& +P&

and deGne a two-particle c.m. frame by

(3.16)

(3.17)
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2:h = xgh ——1~ (A)x . (3.18) the form

Following Keister and Polyzou [21] we also define a
Melosh rotated, two-particle, rest kame state by

( p2~ + W'(q) l
W(q), (3.26)

lpihhi, p2hh2)M = ).lpihhi, p2hhz)y
h1h2

x Dh', h, [rf~(~i&)]Dh,'hI [rf~(~»)).

where here light front components [see (2.7)] have been
given. The invariant mass of the two free particles, W(q),
is given by

(s.19) W(q) = si(q) + s2(q). (3.27)

[&i(q) q) = (pih) = p» = I
g

'(A) pi

[s2(q), —q] = (p",&) = p2A —~Z '(A) p2

where

(3.2Oa)

(3.2ob)

At this point it is convenient to introduce a relative
three-momentum variable q through the relations

We will now show that the spin operator for two &ee
particles has a simple representation in the basis provided
by the states (3.25). Since in terms of the light front
components (2.7) the total c.m. four-momentum is given
by

(3.28)

s;(q) = (q2+ m,')'~2. (3.21) it follows from (2.5a), (2.8), (2.9a), and (2.16)—(2.18) that

Clearly q is the three-momentum of particle 1 in the c.m.
frame defined by (3.18) and (3.6). We also introduce the
notation

+lqhih2) = Jlqhih2). (3.29)

lqhlh2) = lpihhi, p2Ah2)M. (3.22)

It follows from (3.9), (3.19), (3.20), and the identity

ry(r, A)rg, (A) = ry (rA)r, (3.23)

that the states (3.22) rotate according to

U(r)lqhihz) = ) lrq, hih2)Dh", h (r)Dh, 'h (r). (3.24)

We see that our Melosh transformed, rest frame states
behave simply under three-rotations.

The rest frame states can be boosted to de6ne the
states

This shows that the action of the spin operator + on a
rest kame state is equivalent to the action of the angu-
lar momentum operator J. The unitary boost operator
U[ly(A)] is generated by the stability group generators
8 and Ks, so it commutes with +, and therefore (3.25)
and (3.29) imply that

&[pqhlh2) = U[ty(A)]Jlqhihz) .

Equation (3.24) shows that the rest frame states rotate
just as they do in nonrelativistic quantum mechanics,
therefore the two-particle angular-momentum operator J
has the same representation as in nonrelativistic quantum
mechanics, i.e.,

lpqh h2)—:U[l f(A)]lqhih2)

= ) . Ipih'„p2hz)y where

(qhihzl J = ) &h h h h (q)(qhih2l, (3.31)

h1h2

Dh' h, [rf(~»))Dh~ h, [rf~(~»)l ~

+(q) = Ii Ia I2 (iV'~ x q) + Si I2 + Ii Ca S2,
(3.25)

(3.32)

where the second form follows from (3.22), (3.19), (3.1),
(3.9), and (3.12). It should be noted that the unit four-
vector A defined by (3.16) and (3.17) can be expressed in

I

with I; and S; the unit matrix and spin matrix vector for
particle i, respectively. It now follows from (3.30) that
the two-particle spin operator has the simple representa-
tion

(Pqhih2l&lp'q'hih2) = (2~)'2p'b'(P —p')(»)' &h h, h'h'(q)b'(q —q'). (3.33)

In obtaining (3.33) we have assumed that our two-particle states are normalized according to

(pqhih2lp~q'hih2) = t(pihi p2h2lpihi p2h2)
= (2m) 2pib (pl pi)bh~hl (27I ) 2p2b (p2 pz)bh2h~

= (2m. ) 2p b (p- p )(2m)
,2E, (q)s&(q),

W(q)
b (q —q)bh h bh h1 1 2 (3.34)
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It is worth notirig in passing that the matrix ele-
ments (3.33) have the anticipated structure given by
(2.15), with the set of internal quantum numbers n =
(q, hi, h2).

In Sec. IV we will construct an effective two-nucleon
interaction that commutes with the spin operator defined
by (3.32) and (3.33). This will guarantee that we have a
Poincare invariant model.

H =Hp+Kg, (4 2)

where Hp is the free Hamiltonian, then according to
(2.16) our inass-square operator has the decomposition

that q is a relative three-momentum variable defined by
(3.20).

If we write the quantum Beld theory Hamiltonian for
our meson exchange model in the form

IV. THE TWO-NUCLEON INTERACTION
where

M =Mp+V, (4.3)

We will construct our effective two-particle interaction
using the formalism described in Refs. [31,32]. This for-
malism is an extension to light &ont dynamics of proce-
dures developed by Okubo [35], and Glockle and Miiller
[36]. In this formalism the Fock space of a quantum field
theory is divided into two orthogonal subspaces with pro-
jection operators g and A. The g subspace is spanned by
a limited number of states, in our case only lNN) states.
The formalism leads to an effective operator in the g sub-
space.

We can take for our g-subspace basis states the front
form states denoted by [see (3.1)—(3.3)]

Mp = 2P Hp —P~, (4.4)

and

V = 2P Hg ——2HgP (4.5)

V=Vj+V2, (4.6)

For a field theory quantized on the null plane (ct+ z = 0),
whose interaction Lagrangian is of the type assumed in
meson-exchange models [9—11],the interaction V has the
structure

with

lpl21hi) p212h2)y = lpqzihii2h2) y = lpn) f (4.1a)
where Vj and V2 are first order and second order in the
meson-nucleon coupling constants, respectively [37].

If we let M„= gMp g+ Vz be the effective mass-square
operator in the g subspace, then we can write

il hl i2 h2) ~ (4.1b)

Here we have added the nucleons' isospin quantum num-
bers, iq and i2, to those considered in Sec. III. We recall
that p stands for the first three light &ont components
[see (2.7)] of the total four-momentuxn p = pi + p2, and

I

,(p~lM,'lp'~'),

= (2ir) 2p b (p —p ) [W'(q) h + Vf (n, n')], (4.7)

where W(q) is given by (3.27), and to second order in
the coupling constants Vy(o. , n') is defined by [31,32]

f (po. lV„lp o'') y
= (2~)'2p'&'(p —p') Vt (o. , o.')

1 A A—t(p~l +
2

i ~, ( ) M, + IV,(,) M, ilp~)f. (4.8)

To evaluate the one-boson-exchange potentials directly from (4.8) is a rather tedious process, but fortunately it has
been shown in Ref. [32] that they can be determined by using a slight variation of the standard Feynman diagram
rules. The potentials can be obtained by first drawing the relevant one-boson-exchange Feynman diagrams, and then
determining the four-momentum of the virtual meson in each diagram by assuming that the total four-momentum is
conserved either at the vertex on the "right" or at the vertex on the "left", but not necessarily at both vertices. The
potentials are obtained by adding together the two resulting Feynman amplitudes and dividing by 2. The result for
the OBE potential involving the exchange of 6 = vr, g, p, ~, b, and o mesons is given by

Vf(a, a') = ) Vt (n, n'),
b

(4 9)

Vb( )) 2g f [(
) )2]y [(

) )2] (Pi) i) (Pl) i) (P2) 2) (P2) 2) (1 ~ 2)
2 p$ p]- fAb

(4.10a)

(4.10b)

Vt'(~ ~') = ~Pbfb[(pi ——p')']fbÃp2 —p2)']
~(» hi)1'b(» —pl)u(pl hl)~(» h2)l'b(pl —»)~(p2 h2)

2[(pi —p', ) ' —mb']
(4.11a)
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h~ = ~i . 72, h„= 1,

g(l —Ab)I'b(q) = Ab+. p5)
2m '

(4.11b)

(4.llc)

Vf (~) ~ ) gb~bfb[(pi pl) ]fb[(p2 p2)

u(p„h, )I'„(p, —p', )u(p'„h', )b,""(p, —p', )u(p, h )I' (p', —p, )u(p'„h', )

= ~i ~2, b = 1,

I'„(q) = p„+ (Kb/2m~)io. „q",
Aq" (q) = —g"" + (q"q /mb).

(4.12a)

(4.12b)

(4.12c)

(4.12d)

The functions fb(q ) are form factors which take into
account the extensions of the vertices. The front form
Dirac spinors u(p, h) are normalized according to [32]

u. (p,~, h,;) = [s(q) + m~]'~' +hi
(—1) .(,)+ Xb,

u(p, h)u(p, h') = 2m~bbb . (4.13) i = 1, 2, (4.19a)

As (4.11c) shows, following Gross et al. [16], we have
allowed for a mixture of pseudoscalar and pseudovector
coupling for both the 7t and g mesons. It is straightfor-
ward to show that the second term on the right-hand side
of (4.12d) does not contribute in (4.12a). It was included
in (4.12d) so as not to create the impression that it was
simply ignored.

We now subject our basis states (4.1) to the Melosh
rotations given by (3.25), and denote the potential matrix
elements in the rotated basis by

V(n, n') = ) V (n, n'),
b

(pa~V„]p'a') = (2vr) 2p b (p —p')V (n, o.').

(4.14)

(4.15)

The Melosh rotated matrix elements are distinguished
by the lack of the subscript f that appears in (4.9). The
states ~pn) = ~pqiihii2h2) are defined by (3.25) with the
isospin quantum numbers added. According to (3.3) and
(3.20) the A,~ that appear in (3.25) are given by

with

X1/2 0
0

X—1/2 (4.19b)

and

s(q) = (q + m )'~ . (4.20)

It follows from (4.15) and (4.17) that the Melosh ro-
tated potential matrix elements, V (n, n'), are obtained
from the original matrix elements, VP(n, n'), by simply
making the replacements

u(p;, h, )-+ S[lg(A)]u, (p;~, h;),
(4.21)

u(p! h';)~ S[ix(A')]u. (p';~ h').

When this is done we encounter various matrices such as
the unit matrix or the Feynman slash quantity yfi sand-
wiched between S [ly(A)] and S[ly(A')]. These products
can be worked out by using the identities [32]

A,~ = p;~/mN = l& '(A)(p, /m~). S '[lg(A)]S[ly(A')] = exp (2os(), (4.22)

It is shown in Ref. [32] that

) u(p;, h,')Db(, ~b [rf (A Q)] = S[lg(A')]u, (p,~, h;),
h'i

S '[lg(A)] yfiS[ly(A)] =Pi~ = s(q)po —q. p. (4.23)

Here ns is a standard Dirac matrix, and ( is defined by

(4.17) ( = In[a(q)/s(q')]. (4.24)

where the matrix S[ly(A)] satisfies

S (a)p"S(a) = a"„p", (4.18)

with a = ly(A), the light front boost defined by (3.4) and
(3.6). The canonical spinor u, [32] in (4.17) is equal to
the one given by Eq. (3.7) of Bjorken and Drell [38], mul-
tiplied by +2m~ so as to give the normalization (4.13).
With the help of (3.20), we find that

x~ = l~ '(A) ly(A')zA . (4.25)

The &ont form boosts form a subgroup, and in particular

The invariant denominators that appear in the poten-
tials, i.e. , (p, —p', ) —

mb&, can be worked out in any con-
venient kame, such as the c.m. frame associated with
the final state, the xA frame. According to (3.18) this
kame is related to the c.m. frame of the initial state, the
x~ frame by
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it can be shown that [32]

I
y (A) l y (A') = l y (0),

0 = (0") = (e~/~2, 0~, e ~/~2),

(4.26a)

(4.26b)

where in (4.26b) the components are light front com-

ponents. The components of pq~ and @2~ are given by
(3.20), the components of pi&, and pzz, are obtained from
(3.20) by making the replacement q ~ q'.

If the above procedures are applied to the scalar meson
exchange potential (4.10), it is found that after Melosh
rotation this potential is given in the spin space of the
two nucleons by

2$
V'(~ ~') = ' fs[(» —&i)']fs[(p2 —p2)'], „, , +,

2

l (s+ s')'
l Ix(e+ m~)(s + m~) (1 —

vari . xcri x )(1 —cr2 xcr2 . x )4ee'

(s2 s12)
+ [(0'i ' uteri x —

cubi xcli u)(1 —0'2 xcT2 ' x )4ce'

—(cr2 u(r2 ~ x' —a'2 ~ xcr2 ~ u) (1 —cri xo i ~ x )]

(e —s') 2

cTy UcTy ' x —0'] ' xo'] U cT2 UcT2 x —p2 xc72 u
4cd (4.27)

Here s = e'(q), e' = e(q'), u = (0, 0, 1), and

X =
lqX e'+ m~

(4.28)

The momentum transfers are given by

I

(5'i 6)' = -(q —q')' + (s' —~")
I s ~ )

( ()2q llq ll
(4.29a)

I

(S 2 —p2)' = —(q —q')' —(s' —s")
I s s' j

l

+(s —s')'
pl

(4.29b)

We see that this potential does not commute with the
free, two-particle spin operator defined by (3.32) and
(3.33). In the context of light front dynamics, this is
not surprising. Light &ont angular-momentum opera-
tors are expected to contain interactions. The new pic-
ture formalism [28—32] shows that the interaction in the
angular-momentum operator can by rigorously taken into

I

account by allowing the unit vector u that appears above
to become a variable. We note that the above poten-
tial is a rotationally invariant function of q, q', o z, F2,
and u. This is true in general; which makes it possible
to carry out a partial-wave analysis of the momentum-
space integral equations, and thereby obtain partial-wave
S-matrix elements. Using results obtained in this way as
a basis for comparison, a couple of difFerent approxima-
tions which lead to potentials that commute with the
free, two-particle spin operator have been investigated
[31,32]. One approximation entails averaging over the
direction of u, while in the other approximation the u-
dependent terms are simply dropped. It has been found
that slight readjustments of the parameters in the form
factors bring the approximate results into good agree-
ment with the new picture results. Here we will take the
simplest approach, and drop the u-dependent terms. It
should be noted that these terms vanish on shell, i.e.,
when s(q) = e(q ), as well as in the nonrelativistic limit,
i.e., when )q(/m~ &( 1, (q'[/mN (& 1. We also make the
approximation (a+ s')2/(4ss') = 1, since this is compen-
sated for by the form factors.

The approximate potentials are given by

V (q, q') = —g&bs 2, (s+ m~)(s'+ m~)[1 —A(x, x') + B(x,x')], b = b, o,
A'[—(q —q')']
m2s+ (q —q')2 (4.30)

V (q, q') = —gobs 2, (s+ m~)(c'+ m~)
6'[—(q —q')']
m&~+ q —q' 2

l" I

x 1+ (1 —Aq) C(x)+ 1+ (1 —Ab) C(x') —D(x, x)I, 6 = x, q,
mpf mpf

(4»)
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V (q, q') =gbhb "2, (z+m~)(a'+m~)fb [-(q —q')']
mb2+ q —q' 2

x) 1+
2

2Kb
(2m~ —e' s ) +

I l
[8(a —mar)(s —mar) + mb]

) 2

m~ (2mN )
2

3+ 4rb+
l ~ [8(m~ —sa ) —mb] A(x, x )
«b
)( 2m~)

2

+ 1+ (a+a'+2m~)+
l l [8(a+m~)(a'+m~)+mb] B(x,x)

fA~ 2m~ p

+dTi. o2 (1+ rb) + Kb(1+ Kb) C(x)2 (a —a')
7Gp7

+ (1+ Kb) + rb(1+ rb) C(x ) —(1+ kb) D(x, x )
2 (s' —a) 2

fg pf

2

[m2b + (q —q') ][1 —A(x, x') + B(»,x')] y, b = p, (d,
(2mN p

(4.32)

where

A(x, x ) = CTi XCTi x + o'2 ' xcT2 x q

B(X,X') = Oi. XO2 XETi. X'O2 X',

C(x) = oi. xo2
D(x, x ) = dTi xcT2 x + cT2 xo'i x .

(4.33a)
(4.33b)
(4.33c)
(4.33d)

For our form factors we have chosen the same functions as those adopted by other workers [9—ll], i.e.,

2 2
] 2 Ab —mb

fb[—(q —q')'] = A, (,),b + (4.34)

It is interesting to note that the scalar and pseudoscalar meson-exchange potentials, (4.30) and (4.31), are identical
to those that have been used in the various OBE potentials developed in connection with the Bonn model [9,10].
The Bonn OBE potentials are given by Eqs. (E.32)—(E.34c) of Ref. [9]. The vector meson-exchange potential, (4.32),
differs, however, in the Kb2 terms; the so-caHed tensor-tensor terms. We have

V~.„„(q,q') —V (q, q') =gbbb . . , (a+ m~)(a'+ m~)b 2 6'[—(q —q')']
mb2+ q —q' 2

x "' ' '
(1 —3&(x,x')+a(x, x')+~, o2[C(x)+C(x')+D(x, x')]), b= p, ~.

2m~
(4.35)

This difFerence vanishes on shell, and is of order (n jc)» ofF shell. Numerical studies have indicated that this difFerence
is not important, and can be compensated for by slight readjustments in the form factors [39].

V. PARTIAL-WAVE ANALYSIS

The partial-wave matrix elements of the potentials (4.30)—(4.32) are defined by

V„; ' (q, q') = (—q)'+' f dqq dqq X,. (q)V' (q, q'g, „(q'),

where

PP,.(q):—) Y; '(q)lam, )(lsm)m. ljm) =—(qlf, (ais2)a; jm) (si ——s2 ———,'), (5.2)

and V~' (q, q') is the projection of Vb(q, q') onto the isospin channel t (= 0, 1). Here, and in what follows, we employ
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the notation of Messiah [40]. The arbitrary phase factor (—1)'+' has been put in so that the partial-wave matrix
elements encountered here have the same phases as those given by Eqs. (C.21), (E.43)—(E.45), and (E.50)—(E.52c) of
Ref. [9].

According to (4.30)—(4.32) we need to evaluate the expressions

X;,", (q, q') = f dqq dqq P, )(q) s, X(x, x')i1s., (q'), (X = I, X, B,C, D),
m&2+ q —q' 2

where I(x, x') = 1 and C(x, x') = C(x), as well as

Gi"(q, q') = f &12,&12, X.'(q)fs( —(q —q')')(1 —&(x "') + (" x')lD s ~ (2').

(5.3)

(5 4)

In working out these expressions we encounter, for example, the action of Iri . q on the state (5.2). It is convenient to
first consider its action on the recoupled state

l(lsi) g, s2., jm) = ). I(&»)gma) l»m&) (g»mgm2I jm).
mgmQ

The action of o i . q on (5.5) is determined by the simple identity

~i ' q(ql(t»)gm, ) = —(ql(2g —~, »)gm ).

The state (5.2) is related to the states (5.5) in the usual way, i.e.,

~t(ssss)s, ; jm) = ) ~(lss)g, ss, jsss)g(2s+1)(2g+ 1)(—1) +"+"+s
( . j,

g

(5 5)

(5.6)

(5.7)

where ( ) is a 6j symbol. For si ——s2 ——
2 the 6j symbols are given by simple closed form expressions [40].

Using these basic results it is straightforward to show that the matrix elements (5.3) can be expressed in terms of
the integrals

Q, (q, q') = 2~ dxPr (x)
fs'[—(q —q')'1

—1 ms2+ q —q' 2 '

where fb is given by (4.34). We find

I«, (q, q ) —bn Q, (q, q ),

(5.8)

(5.9)

A, ,". (q, q') = 2

, [jQ,' i(q q')+ (j+1)Q,'+i(q q')]2j+1
I

24&&,
'

(q, q') = b~~ [(I+ 1 —j)(l + 2+j)Q& i(q, q') + (t + j)(j+ 1 —l)Q& (+qi, q')],

(5.10a)

(5.10b)

B"'(q, q')

,"-i,,-i(q q')

B~+i ~+i(q, q')

B~~i ~+i(q, q') =—

(xx')'Q, (q, q'), s = 0, 1,
I 2

,).IQ,'-i(q q') + 4j(j+1)Q,'-+i(q q')12j+1 2

I 2

1),[4j(j+1)Q,'-i(q q') + Q,'+i(q q')12j+1 2

2(xx') V'j(j + 1) b

(2 +,), [Q,-i(q q') —Q, +i(q q')12j+1 2

(5.11a)

(5.lib)

(5.11c)

(5.11d)

C"'(q, q') = *'Q'(q, q'), C—"'(q, q') = x'Q,'(q, q'),
X2

C,+i,,~i(q q') = .2, 'Q~i( , q)q,2j+1

2x V j(j+ 1) b
C,~i,,+i(q q') = —

(2. 1) Q,+ (q iq'),

(5.12a)

(5.12b)
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D,," (q, q')

D"'(q, q')

1j,bD, 'i,,~i(q q )

2

,UQ,'-l(q q') + (~ +1)Q,'+l(q q')]2j+ 1

2

, [(~+1)Q,' i(q q')+~Q,'+i(q q')]2j+1

1Q, (q, q ),2j+1

(5.13a)

(5.13b)

(5.13c)

~i, , s (,)
4»'Qi (i + 1)Qs(, )

(2 +1)

In the above equations it is assumed that Q& (q, q') = 0 if l ( 0.
It follows from a comparison of (5.3) and (5.4) that G&&~' (q, q') can be obtained from the formulas for

I&'&,
'

(q, q'), A&&~' (q, q'), and B&'&,
'

(q, q') by simply replacing the denominator, m&2 —Az, in (5.8) by 1. In Sec. VI
we will use these partial-wave results to determine the nucleon-nucleon partial-wave amplitudes that arise from the
potentials (4.30)—(4.32) .

VI. NUMERICAL RESULTS

In order to obtain the nucleon-nucleon phase parameters we must solve the integral equations

jl2 ai & II

T&'&, (q, k; s) = Vit' (q k) + ) . 2, , „, '( „Tt'„&,(q", k;s), (6 1)

where the invariant mass-square of the nucleon-nucleon scattering process is given by

s = W (k) = 4s (k) = 4(k + mdiv),

and the partial-wave potentials are given by

v«, '(q, q') = ) vt&,
'

(q, q'),
b

(6.2)

(6.3)

as well as (4.30)—(4.32) and (5.1). In order to solve the singular integral equations numerically, we have first converted
them to nonsingular integral equations using Kowalski's method [41].

The partial-wave S-matrix elements are related to the on-shell (q = k) T-matrix elements by

(6.4)

For the uncoupled states

while for the coupled states we have

S' = exp(2ib, ), (6.5)

cos(2e, )exp(2ibz i)
i sin(2s~)exp[i(h~ i + 8~+i)]

i sin(2s~)exp[i(h~ i + h~+i)]
cos(2s, )exp(2ib;+i)

(6.6)

which is the usual Stapp parametrization [42].
As pointed out at the end of Sec. IV, the only difference between our OBE potentials and those used in the OBE

version of the Bonn model [9,10] occur in the so-called tensor-tensor term of the vector meson exchange potentials. The
difFerence is given by (4.35). In order to see if this difFerence leads to dramatic difFerences in parameters obtained by
fitting to the properties of the two-nucleon system, we have carried out a calculation using our version of Machleidt s

potential B, given in Appendix A of Ref. [10]. The parameters given by Machleidt [10] for his potential are reproduced
here in Table I, under the heading Model MB. Our potential diR'ers only in the tensor-tensor part of the p-meson-
exchange potential, since m = 0. We have adjusted the parameters in boldface under the heading Mode/ I in Table I
so as to produce a least-squares fit of our phase parameters to Machleidt's. Machleidt's phase parameters and ours
are labeled MB and I, respectively, in Table II. We see that the agreement between the two sets of phase parameters
is quite good, and that there are no dramatic difFerences between Machleidt's potential parameters and those of our
model I.

We have also adjusted our potential parameters so as to give a least-squares fit to the VZ40 phase-shift analysis of
the two-nucleon data [43]. The resulting potential parameters are given under the heading Model II in Table I, and a
comparison of the resulting phase parameters and those of VZ40 are given in Table III. We see that a reasonable fit
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TABLE I. OBE parameters for three models. All masses are in MeV, and ng ——1 except for
Ap AQJ 2o

Meson

o, t = O, t = 1

g2 /4n.

mar

A

g„/4vr
A„
mn
A„
gp/4vr

Kp

mp
Ap
g2 /4m.

K~

m4p

A

g~ /4vr

m$
Ag

g /4vr

m (7

A

Model MB
14.4
1
138.03
1700
3
1
548.8
1500.0
0.9
6.1
769
1850
24.5
0.0
782.6
1850
2.488
983
2000
18.3773,8.9437
720,550
2000,1900

Model I
14.4
1
138.03
1691.9
2.9075
1
548.8
1317.1
o.s05a5
6.1
769
2014.9
24.423
0.0
782.6
1848.8
2.6aas
983
2105.9
18.225, 8.8810
720)550
1919.9, 1891.1

Model II
14.5
1
138.03
1680.2
3.2915
1
548.8
1602.4
0.96247
6.09
769
1sas.s
24.611
0.0
782.6
1868.5
2.8079
983
2019.7
18.168, 8.9381
713.3, 549.5
1975.3, 1929.2

to VZ40 is obtained with our model II version of Machleidt's potential B.
We have also calculated the deuteron's binding energy (—sg), percentage D state (P~), and asymptotic normaliza-

tion constants (Az and AD). The deuteron s wave function and binding energy are obtained by solving the equation
oo / /2

4~(q) = [(2m~ + s'g) —W (q)j ),V&&,
' '

(q, q')@I (q'), l = 0, 2.
ll 02 0

TABLE II. Neutron-proton phase parameters, in degrees, at various laboratory kinetic energies
in MeV, for two one-boson-exchange potentials.

State
1g

Pp

1P

P

D1

D

D

P2

Potential
I

MB
I

MB
I

MB
I

MB
I

MB
I

MB
I

MB
I

MB
I

MB
I

MB
I

MB
I

MB

25
50.72
50.72
9.36
9.34

—7.18
—7.21
—5.33
—5.33
80.32
80.32
—2.99
—2.99

1.76
1.76
0.68
0.68
3.88
3.88
2.63
2.62
0.11
0.11

—0.86
—0.86

50
39.99
39.98
12.26
12.24

—11.13
—11.15
—8.78
—8.77
62.16
62.16
—6.88
—6.86

1.99
2.00
1.57
1.58
9.29
9.29
6.17
6.14
0.34
0.34

—1.82
—1.82

100
25.18
25.19
9.79
9.80

—16.31
—16.31
—13.48
—13.47

41.97
41.99

—13.03
—12.98

2.19
2.24
3.31
3.34

17.67
17.67
11.78
11.73
0.77
0.77

—2.85
—2.84

150
14.32
14.38
4.50
4.57

—20.27
—20.21
—17.19
—17.18

28.88
28.94

—17.36
—17.28

2.48
2.58
4.89
4.94

22.58
22.57
15.04
14.99
1.05
1.04

—3.06
—3.05

200
5.55
5.66

—1.16
—1.02

—23.65
—23.47
—20.50
—20.49

18.91
19.04

—20.39
—20.28

2.86
3.03
6.14
6.21

24.97
24.94
16.67
16.65
1.12
1.10

—2.86
—2.85

300
—8.43
—8.18

—11.78
—11.48
—29.19
—28.70
—26.40
—26.38

3.79
4.07

—23.78
23.72
3.70
4.03
7.42
7.49

25.43
25.36
17.37
17.40
0.58
0.52

—2.00
—2.02
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TABLE III. Neutron-proton phase parameters, in degrees, at various laboratory kinetic energies
in MeV, for potential II and the VZ40 solutions of Amdt and Roper [43].

State
1g

3P

'Pg

Pg

Dg

1D

D

P

3Q

Potential
II

VZ40
II

VZ40
II

VZ40
II

VZ40
II

VZ40
II

VZ40
II

VZ40
II

VZ40
II

VZ40
II

VZ40
II

VZ40
II

VZ40

25
50.38
49.17
9.18
8.18

—7.31
—5.73
—5.38
—4.79
80.03
79.94
—2.99
—2.48

1.74
2.02
0.69
0.66
3.92
3.78
2.59
2.60
0.11
0.09

—0.87
—0.73

50
39.49
39.40
11.84
11~ 11

—11.41
—9.00
—8.88
—7.98
61.76
62.84
—6.85
—6.04

1.95
2.61
1.60
1.61
9.37
9.00
6.05
5.97
0.34
0.33

—1.83
—1.56

100
24.45
25.59
9.06
9.55

—16.92
—14.39
—13.68
—12.86

41.45
43.43

—12.84
—11.98

2 ~ 13
3.33
3.41
3.52

17.83
16.87
11.51
11.32
0.77
0.82

—2.84
—2.50

150
13.42
14.68
3.58
4.67

—21.20
—18.90
—17.47
—17.27

28.29
30.60

—16.90
—16.19

2.41
3.38
5.07
5.33

22.74
21.34
14.68
14.62
1.03
1.12

—3.03
—2.79

200
4.50
5.87

—2.21
—1.14

—24.87
—22.49
—20.86
—21.43

18.29
20.80

—19.57
—19.16

2.78
3.45
6.40
7.00

25.09
23.53
16.28
16.50
1.08
1.20

—2.80
—2.74

300
—9.71
—7.06

—12.98
—12.68
—30.98
—27.46
—26.90
—28.82

3.16
4.84

—22.00
—22.84

3.61
4.36
7.77
9.93

25.41
23.99
16.98
17.72
0.46
0.88

—1.90
—2.17

The Grst factor on the right-hand side of this equation has a simple pole in q, at q = —p, where p is determined by

W(ip) = 2m~+ ay.

The residues of this pole are proportional to the asymptotic normalization parameters; more precisely we have

1 dqq y1,1,0A = . ,], g, V„,' ' (p, q)4 (q), I=0, 2,

(6.8)

(6.9)

where we have assumed that the components of the wave
function satisfy the normalization condition

I

two-nucleon system are properly accounted for by our
models.

(6.10)

The deuteron and low-energy parameters for Mach-
leidt's potential and our two potentials are given in Ta-
ble IV. We see that the low energy properties of the

VII. DISCUSSION

It is worthwhile at this point to "rederive" the nucleon-
nucleon potential given by (4.30)—(4.33) so as to summa-

TABLE IV. Deuteron and low-energy parameters. Scattering lengths and effective ranges are
denoted by a and r, respectively, with the subscript referring to spin singlet (s) and spin triplet (t).
The experimental values are from Table 4.2 of Ref. [10].

Parameter
—sg (MeV)
Po(%%uo)

As (GeV'~ )
Ao/As
a. (fm)
r. (fm)
ag (fm)
r, (fm)

Model MB
2.225
4.99
0.3936
0.0264
—23.75
2.71
5.424
1.761

Model I
2.220
4.97
0.3931
0.0264
—23.64
2.66
5.429
1.769

Model II
2.221
4.81
0.3940
0.0264
—23.71
2.68
5.438
1.782

Experiment
2.224 575

0.3930+0.0004
0.0256+0.0004
—23.748+0.010
2.75+0.05
5.419+0.007
1.754+0.008
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rize the procedure that was followed. The first step is
to "derive" the second-order, nucleon-nucleon potentials
in the forms given by (4.10)—(4.12). These forms are ob-
tained by drawing the relevant one-boson-exchange Feyn-
man diagrams and determining the four-momentum of
the virtual meson in each diagram by assuming that the
total four-momentum is conserved either at the vertex on
the "right" or at the vertex on the "left," but not neces-
sarily at both vertices. The potentials (4.10)—(4.12) are
obtained by adding together the two resulting Feynman
amplitudes and dividing by 2.

The next step is to express the potentials in terms
of the relative three-momentum variables q and q' de-
fined by (3.20). This transformation involves the initial-
and final-state light front spinors, u(p', , h';) and u(p, , 6;),
respectively; various matrices such as the unit matrix
or Feynman slash quantities that appear between these
spinors; and the invariant denominators (p; —p',.) —m&.

The light &ont spinors are replaced by the canonical
spinors (4.19) according to the rule (4.21). This leads to
the various matrices sandwiched between S [tf (A)] and

S[tf (A')]. These combinations can be expressed in terms
of q and q' by using identities such as (4.22) and (4.23).
The invariant denominators can be worked out in the
c.m. &arne of the Anal state, the x~ frame. In this frame
pi ——[s(q), q] and p2 ——[c(q), —q]. The Anal-state c.m.
frame is related to the initial-state c.m. frame by (4.25)
and (4.26). In the initial-state c.m. frame pi = [c(q'), q']
and pz

——[e(q'), —q']. After transforming these initial-
state momenta to the final-state c.m. &arne it is trivial
to work out the invariant denominators.

Upon carrying out the above procedure it is found that
the resulting potential is not kinematically rotationally
invariant. It can be made so by simply dropping all of
the u-dependent terms. This leads to a Poincare invari-
ant, free spin model -of the two-nucleon system. Another
proced. ure for obtaining free spin models, which is dis-
cussed in Refs. [31,32], is to average over the direction of
u. This procedure is a natural first approximation to a
complete, new picture treatment of the interacting spin
operator. It is easy to see &om (4.27)—(4.29) that aver-

aging over the direction of u does not lead to expressions
for the OBE potentials that are as "simple" as (4.30)—
(4.33). In spite of this, the averaging procedure is worth
pursuing as it is important to determine the sensitivity
of results to the approximation adopted.

It will be of interest to go beyond the one-boson-
exchange framework so as to include processes such as
2' exchange and vrp exchange. This will entail going to
higher order in the author's &ont form extension [31,32]
of the Okubo-Glockle-Miiller formalism [35,36]. It will
be of particular interest to see if the fourth-order con-
tributions can be obtained &om simple variations of the
Feynman rules, as was found for the second-order contri-
butions.

Another extension of the &ont form NN model pre-
sented here that will be worth considering is a treat-
ment of coupled NN, NL, and possibly LL, channels.
There is no difhculty in principle in constructing exactly
Poincare invariant, &ont form, coupled-channel models
[21]. Such a model is a relatively straightforward way
to account for inelasticity in NN scattering. A cou-
pled channel model has been constructed [44] using the
method of folded diagrams [17], and has been found to
give a good account of the nucleon-nucleon phase shifts
up to laboratory kinetic energies of about 325 MeV.

An advantage of a front form model of the NN sys-
tem is that there exists a consistent impulse approxima-
tion [21] for calculating the electromagnetic form factors
of the deuteron. This approximation has been used to
calculate the form factors that arise &om purely phe-
nomenological &ont form potentials [24]. It will be of
interest to carry out such calculations using the meson
exchange model developed here. All of the above possi-
bilities are presently under investigation, and will be the
subject of future publications.
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