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Application of an iterative-perturbative inversion potential model
to capture and bremsstrahlung reactions
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Two specific examples of electromagnetic transitions are used to demonstrate the ability of the
macroscopic potentials determined from an iterative-perturbative inversion to reproduce the results
of the microscopic resonating-group method (RGM). Phase shifts and bound state energies from a
single-configuration microscopic resonating-group method calculation for He + o. have been used to
construct a potential model for the He(o. ,p) Be electric-dipole capture reaction. With this potential
model the astrophysical S factor at zero energy deviates from the resonating-group method result by
just 3+0. A potential model for the o; + o. bremsstrahlung cross section, similarly constructed from
o. + n resonating-group phase shifts, gives good agreement with the RGM cross section.

PACS number(s): 21.60.Gx, 25.10.+s, 25.55.Ci

Recent extensions to the iterative-perturbative (IP)
method for phase shift to potential inversion allow lo-
cal potentials to be determined from a selection of phase
shift data as well as bound state energies [1—3]. Energy-
independent potentials can now be established for a wide
energy region, inclusive of the bound states, producing
potentials particularly suitable for low energy reaction
studies. In this work, we use calculations of electromag-
netic transitions, which are often stringent tests of any
nuclear models, as tools to assess the potential model. By
investigating how well the results from microscopic the-
ory can be reproduced, we hope to learn how the macro-
scopic potentials should be constrained to produce good
agreement with the microscopic theory. Similar moti-
vation lies behind previous comparisons of results from
microscopic theory and potential model [4, 5]. Two re-
actions are considered as examples: the sHe(n, p)~Be ra-
diative capture and o. + o, bremsstrahlung. The input
into the IP method are the phase shifts and binding en-
ergies from single-configuration microscopic resonating-
group method (RGM) calculations. The results based
upon the potential model are compared directly with the
RGM results. Given an optimum determination of the
local potential, the residual disagreement in the two sets
of predictions then provides an estimate of the neglected
antisymmetrization efFects.

The sHe(a, p) Be reaction has been thoroughly investi-
gated by RGM [6—8] and the agreement between the best
RGM results and. the experimental data is quite satisfac-
tory. Our present potential model between two-point nu-
clei resembles most closely the single-configuration RGM
ansatz, and for more detailed comparison of wave func-
tions we turn to the approximated RGM formalism (A-
RGM), see [5] for details. It suffices to note here that the
single-configuration RGM and A-RGM formalisms have
identical phase shifts and bound state energies. The best
RGM result is built upon successive incremental improve-

ment of the single-configuration RGM ansatz; therefore,
an accurate reproduction of the latter results is more than
an academic exercise, but indicates how the IP potential
might be able to account for experimental results. Fur-
ther comment on this point will be given later in the
text.

For the rest of this report, we shorten the cumbersome
description single-configuration RGM to just RGM. The
data of phase shifts and bound state energies from the
RGM calculation [6] are based on a nucleon-nucleon in-
teraction fine-tuned to reproduce the experimental bound
state energies of the 2 and 2 states. Details of the
IP inversion calculation are described in Ref. [1]. Parity
dependence was introduced by using separately (a) the
8- and d-wave phase shifts for the even-parity potential;

(b) the p- and f wave phase-shifts, the 2 and the-
bound state energies, for the odd-parity potential. Both
potentials took the form

V(R) = Vo(B) + I s V, (B).

The different geometries for Vo(B) and V, (B) obtained
for the even- and odd-parity potentials are presented in
Ref. [1]. In the present study, this parity-dependent po-
tential is labeled as IP.

The bound state energies for the 2 and
&

states
given by potential IP agree to the second decimal place
with the values from the RGM [6], —1.58 MeV and —1.15
MeV, respectively. Their radial functions are compared.
with the corresponding functions from A-RGM in Fig. 1.
The agreement is rather close, and potential IP clearly
gives functions containing the correct number of radial
nodes. With these radial functions the mean square radii
(B2) given by potential IP are, respectively, 15.01 and
16.42 fm, compared to 14.82 and 16.38 fm for the A-
RGM. Very good agreement with the RGM phase shifts
is obtained for / & 3 in the subthreshold energy range,
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(oj number of nodes as those from A-RGM.
As in Ref. [5], the astrophysical S factor is extracted

from o.
z with the equation [7]
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with E in unit of keV. Furthermore, the energy depen-
dence of the S factor is parametrized in the form [9]

S(E) = S(0) exp(aE+ bE ).
In Table II, we compare the values of the S factor at zero
energy S(0) and the parameters a and 6 from RGM, A-
RGM, and potential IP. The discrepancy between S(0)
from RGM and potential IP amounts to just 3%.

The f wave is not directly relevant to the capture cross
section. However, using the f-wave phase shifts to con-
strain the potential helps to stabilize the inversion and
consequently the capture cross section. More precisely,
excluding the f-wave phase shifts from the IP inversion
introd. uces an ambiguity problem. For example, two ad-
ditional odd-parity potentials solutions have been found

which reproduce both the bound state energies for the 2

I

4
R(fm)

FIG. 1. Comparison of the bound state functions from A-
RGM (solid line) and potential IP (dotted line). (a) (J, l) =
(-', 1) (b) (J, l) = (-', 1).

including the f-wave resonances. Minor disagreements
are noticeable only for the d-wave phase shifts. For the
scattering states of (J, l) = ( 2, 0), ( 2, 2), ( 2, 2), we dis-
play in Fig. 2 a comparison of s- and d-wave radial scat-
tering functions. These are the only relevant scatter-
ing states in an E1 transition to the two bound states.
We can conclude from the figure that the agreement for
the (J, /) = (-,0) state is very good for R ) 3.6 fm,
and for the other two states it is for R ) 4.8 fm. Fur-
ther comment on this will be given later. Figure 2 also
demonstrates that potential IP is sufFiciently deep to give
the radial functions of these scattering states the correct
number of nodes.

The theory of radiative capture reaction in the RGM
and A-RGM formalisms can be found in the literature [5,
6] and will not be repeated here. The El capture cross
sections for RGM and A-RGM have been published pre-
viously. In Table I we compare them to the latest values
calculated from potential IP for the summed total cross
sections 0.&. The branching ratio of capture to the

and 2 states is also tabulated. We see clearly that the
agreement between the results from RGM and potential
IP is quite satisfactory at low energies, while the error
increases to 17% at E = 4 MeV. The latter inaccuracy
could be taken as an indication that, in this case when
the nuclei overlap strongly at higher energy, a potential
model may not be able to reproduce the details of the
working of the Pauli principle implicit in the RGM, even
though the potential-model wave functions have the same
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FIG. 2. Comparison of the scattering state functions from
A-RGM (solid line) and potential IP (dashed line). (a) (J, l) =
( —', 0). (b) (J, l) = ( —,2). (c) (J, l) =. (-, 2).
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TABLE I. Comparison of the E1 capture cross sections from RGM, A-RGM, and potential IP.

(MeV)
0.10
0.15
0.20
0.50
0.75
1.70
2.06
4.00

RGM
Sum
(ub)

0.000473
0.00625
0.0276
0.658
1.496
4.381
5.363
10.159

Ratio

0.414
0.414
0.414
0.417
0.422
0.438
0.441
0.442

A-RGM
Sum
(vb)

0.000471
0.00624
0.0274
0.654
1.487
4.335
5.296
9.892

Ratio

0.415
0.415
0.415
0.418
0.423
0.439
0.442
0.444

IP
Sum

(»)
0.000459
0.00608
0.0268
0.642
1.451
4.042
4.858
8.453

Ratio

0.411
0.411
0.411
0.415
0.420
0.439
0.443
0.450

TABLE II. Comparison of the S factors at zero energy
S(0) and the parameters a and b from RGM, A-RGM, and
potential IP.

RGM
A-RGM

IP

S(0) (keV b)
0.702
0.700
0.680

a
—0.597
—0.601
—0.567

6
—0.0652
—0.0636
—0.0976

and 2 states and the p-wave phase shifts to the preci-
sion found for potential IP. These new solutions produce
mean square radii of 14.57 (15.98) and 15.48 (16.9) fm

for the 2 (2 ) states Th.e corresponding S(0) obtained
for these potentials are 0.6 and 0.732 keV b, to be com-
pared to a value of 0.680 keV b obtained from potential
IP.

The results above provide clear indication that the po-
tential model from the IP inversion can accurately re-
produce results from the microscopic RGM calculations
for the sHe(a. ,p)7Be electric-dipole capture reaction. Be-
low we give a brief comparison of our analysis with other
potential models in the literature [5, 10, 11].

The price for using the simpler potential model rather
than a microscopic theory is that uncertainties exist in
the choice of input data used to constraint the potential.
As a result, diferent potential models for the capture
reaction sHe(n, p)7Be of Refs. [10] and [11], which are
claimed to have reproduced the empirical 8-factor well,
give results differing by nearly 10%. These investigations
used potentials with parity dependence as in our present
study. In [10] the potentials for the phase shifts were
derived from a folding procedure, and their depths were
adjusted to give the correct bound state energies and the
s-wave phase shifts. In [ll], the potential for the — and

bounds states was determined from their bound state2

energies and the mean square radii (B2) of the mirror nu-
cleus Li. The depth of this potential was then adjusted
to give the 8-wave scattering length as a way to introduce
parity dependence.

The IP method uses the phase shifts and the bound
state energies as input data on equal footing without ad
hoc readjustment. Regarding the RGM results as ideal-
ized experimental data, we have just shown that quite
high accuracy can be achieved, in contrast to a previ-
ous attempt [5] which adhered to the prescription of [11].

There the exact agreement with the RGM 8-wave scat-
tering length was obtained at the expense of total dis-
agreement in the d-wave phase shift. We have in e8'ect
opted for constraints different from [11] to impose on the
potentials. For the even-parity potential, we have opted
for a much better fit of the d-wave phase shifts as op-
posed to reproducing the 8-wave scattering length, i.e. ,
we now obtain 19.8 fm for the 8-wave scattering length,
to be compared with 28.2 fm from RGM. For the odd-
parity potential, we have obtained a better 6t to the 2

and 2 resonances in place of accurately fitting the mean7

square radii of the 2 and 2 bound states. The resul-
tant S(0) deviates from the RGM value by only 3%, an
improvement over the previous discrepancy [5] of 7.5%.
Our result supports the suggestion of [4] that simultane-
ous fitting of the bound state energies and phase shifts by
a potential model is important for the agreement between
a potential model and microscopic cluster theory.

In a general context, a potential model is never ex-
pected to be able to reproduce all facets of a micro-
scopic theory. High accuracy in some quantities might
be achieved at the expense of the obverse in others. This
aÃects the constraints one chooses to impose on the lo-
cal potential. For this capture reaction, we may con-
clude that the macroscopic potential should be deter-
mined from the 2 and 2 bound state energies simul-
taneously with the l = 0, 1, 2, 3 phase shifts, rather than
the mean square radii and the scattering length. An ex-
amination of the wave functions for the potential model
in Ref. [5] reveals that, in adjusting that potential to re-
produce the mean square radii, errors were introduced
into the wave function normalization in the asymptotic
region. This error translates to an error in the capture
cross section of 8%. We have also tested the condition
related to the 8-wave scattering length by renormalizing
the even-parity potential to reproduce exactly the value
28.2 fm2 for it. The S(0) becomes 0.631 keV b, which is
in worse agreement with the RGM value.

If the capture reaction is entirely from the exterior re-
gion, then the hard-core model would have suKced. This
was disproven in [5], where it was established that for
capture below the Coulomb barrier, even at zero energy,
the region inside the barrier to as low as B = 3.6 fm, i.e. ,
some way inside the barrier, also contributes, although
the main contribution does come from outside the bar-
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rier. We examine below a second type of electromagnetic
transition and show further evidence that the extended
IP potential model also gives good agreement with RGM
results when contributions from inside the barrier become
more important.

We have made calculations of the o.+a bremsstrahlung
cross section based on IP inversion of the o. + o. RGM
(single-configuration) phase shifts [12]. We have deter-
mined a local potential which is a noticeable improve-
ment upon the deep potential of Ref. [13] for energies up
to 16 MeV and l ( 6. In fact, the IP potential produces
curves for the phase shifts which go through all the RGM
data points in Fig. 1 of [12]. The bremsstrahlung cross
section is calculated for the detection angles 0~ ——0~ ——

27, such that the E2 transition takes place between the
l = 4 resonance at 12.1 MeV and the l = 2 resonance at
2.9 MeV. In this resonance to resonance transition, the
wave functions from the IP potential are being tested for
its ability to reproduce the RGM results with important
contribution from inside the barrier. The RGM and po-
tential model cross sections are shown in I"ig. 3. Clearly
the potential model gives a satisfactory account of the
RGM values, although further eKects due to antisym-
metrization are not completely negligible.

Due to the good agreement between the results from
RGM and the IP potential, we are encouraged to specu-
late how the methods used above could be used to analyze
real empirical data. That is, empirical phase shifts and
bound state energies could be used as input data for the
IP potential, while, at the same time the capture cross
section ought to be multiplied by the spectroscopic factor
for the He + o. clustering in the 2 and 2 bound states
[14]. We suggest that the present case might be used to
provide guidelines for choosing a potential in cases where
microscopic calculations are diKcult to obtain. The E2
transition in the C(cr, p) 0 capture reaction is a possi-
ble example, since the relevant bound states and partial
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FIG. 3. The double cross section d o'/dB~dBa (pb/sr )
as a function of the incident energy E, for polar detection
angles 0& &

——27 . A scale for the anal energy Ef is included.
The results of ROM are denoted by solid dots and potential
IP by a solid line.

waves could be approximated quite well from a C + o.
clustering point of view [15] and local n+ C potentials
have already been established from empirical phase shifts
[16].

We have presented two specie. c examples of electro-
magnetic transitions, illustrating the accuracy to which
a fully microscopic model can be reproduced by a sim-
ple potential model. In particular, we have shown that
by using potentials determined by IP inversion to repro-
duce a range of phase shifts and bound state energies
very accurately, a value of the zero-energy S factor S(0)
for the He(cr, p) Be reaction is obtained which deviates
from the RGM results by 3/0 only.
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