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QCD sum rules for A isobar in nuclear matter

Xuemin Jin
TRIUMF, $00$ Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A8

(Received 1 November 1994)

The self-energies of A isobars propagating in nuclear matter are calculated using the finite-density
@CD sum-rule methods. The calculations show that the Lorentz vector self-energy for the A is
significantly smaller than the nucleon vector self-energy. The magnitude of the A scalar self-energy
is larger than the corresponding value for the nucleon, which suggests a strong attractive net self-

energy for the 4; however, the prediction for the scalar self-energy is very sensitive to the density
dependence of certain in-medium four-quark condensate. Phenomenological implications for the
couplings of the A to the nuclear scalar and vector fields are brie8y discussed.
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The finite-density QCD sum-rule approach provides a
framework to test the predictions of relativistic nuclear
phenomenology for baryon self-energies in nuclear mat-
ter. It was shown recently in Refs. [1—5] that the pre-
dictions of QCD sum rules for the nucleon self-energies
are consistent with those obtained from relativistic phe-
nomenological models (e.g. , the relativistic optical poten-
tials of Dirac phenomenology [6,7] or Brueckner calcula-
tions [8,9]). (Other applications of sum-rule methods to
finite-density problems are discussed in Refs. [10—15].) In
Refs. [16,17], the self-energies of the A and Z hyperons are
investigated. within the same framework. The sum-rule
calculations indicate that the self-energies of the E are
close to the corresponding nucleon self-energies while the
self-energies of the A are only about 3 of the nucleon self-
energies. The sum-rule predictions for the baryon scalar
self-energies are, however, sensitive to assumptions made
about the density dependence of certain four-quark con-
densates [2,4, 16,17]. In this Brief Report, we study the
self-energies of the 4 isobar in an infinite nuclear rnatter
within the finite-density QCD sum-rule approach.

Various investigators have discussed the roles of A in
hadronic field theories [18—22]. In these relativistic mod-
els, A is treated as stable particle, which couples to the
same scalar and vector fields as the nucleon, but with
diKerent strengths. Many interesting physical results de-
pend on the choice of the coupling strengths [18—20,22] .

However, little is known about these coupling strengths.
The vector coupling for the 4 is expected to be similar
to the corresponding coupling of the nucleon based on
SU(6) symmetry [23,20]. A weak restriction can also be
obtained if one demands that no real 4's are present in
the ground state of nuclear matter at the saturation den-
sity [20], r, & 0.82r„+ 0.71, where r, (r„) is the ratio of
the scalar (vector) coupling for 4 to that for the nucleon.
Finite-density sum rules may oKer new information on
these coupling strengths.

We find that the A vector self-energy is significantly
smaller than the sum-rule prediction for the nucleon vec-
tor self-energy. In terms of an eKective theory of baryons
and mesons, this implies a much smaller vector coupling
for the A than would be expected from SU(6) symme-
try. The predictions for the A scalar self-energy are

very sensitive to the assumed density dependence of the
four-quark condensate (qq) . If we assume that (qq)
depends weakly on the nucleon density (such that the
nucleon sum rules predict a strong attractive scalar self-

energy which cancels the nucleon vector self-energy [2,4]),
then the magnitude of the 4 scalar self-energy is found
to be larger than the corresponding value for the nucleon
and the net A self-energy is strong and attractive. If we

assume that (qq)2 has a strong dependence on the nu-

cleon density (in this case the nucleon scalar self-energy
is very small and the net nucleon self-energy is large and
repulsive [2,4]), the 4 scalar self-energy is very small and
the net 4 self-energy is moderate and repulsive.

To derive the finite-density sum rules for 4, we start
from the correlator defined by

where rl„(x) is a colorless interpolating field, constructed
from quark fields, which carries the quantum numbers of
the A isobar. The ground state of nuclear matter ~4o) is
characterized by the nucleon density p~ in the rest frame
and the nuclear matter four-velocity u"; it is assumed to
be invariant under parity and time reversal. Here we con-
sider the interpolating fields that do not contain deriva-
tives. The interpolating field for 4 is then unique and
can be written as [24]

(2)

where T denotes a transpose in Dirac space, C is the
charge conjugation matrix, and a, 6, and c are color in-

dices.
The correlator II„(q) can have a number of distinct

structures [24]. However, the three structures propor-
tional to g„„,g„], and g~„g receive contributions from
spin z states only (see Refs. [24,25]),

II„„(q)—= II, (q, q )g„+II (q, q u)g„]
+Iiu (q ~ q ' u) gt u g + ' ' '

So we will focus on the three invariant functions II, IIq,
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and II„,which are functions of the two Lorentz scalars q
and q u. In the zero-density limit, II„~0, and II, and
IIq become functions of q only. For convenience, we will
work in the rest frame of nuclear matter hereafter, where
u" = (1,0) and q. u —+ qo, we also take II,(q, q u) -+
II;(qo, lql) (i = (s, q, u)). To obtain @CD sum rules, we
need to construct a phenomenological representation for
II „(q) and to evaluate II„(q) using operator product
expansion (OPE) techniques.

The analytic structure of the correlator II, and con-
sequently the invariant functions II„ IIq, and II„, is re-
vealed by a standard Lehmann representation in the en-
ergy variable qo, at fixed three-momentum q [2],

1
11'(qo lql) = , ,

AII, ur, qd~ ' ' + polynomial, (4)
w —qo

]+M~ —$ (5)

where the ellipses denote the other distinct structures.
This implies [2]

for each invariant function II;, i = (s, q, u). The polyno-
mial stands for contributions from the contour at large
lqol, which will be eliminated by a subsequent Borel
transform (see below). The discontinuity AII; (which
is the spectral density up to a constant), defined by
&II*(~, lql) = »m, o+ [II'(~ + ie Iql) —11'(~ —i. Iql)]
contains the spectral information on the quasiparticle,
quasihole, and higher-energy states.

At finite density, the spectral densities for baryons and
antibaryons are not simply related because the ground
state is no longer invariant under ordinary charge con-
jugation. Here we assume that a quasiparticle descrip-
tion of the L is reasonable. In the context of relativistic
phenomenology, the 4 is assumed to couple to the same
scalar and vector fields as the nucleons in nuclear matter,
and is treated as a quasiparticle with real Lorentz scalar
and vector self-energies. We follow Refs. [2,4, 16,17] and
assume a pole ansatz for the quasibaryon (higher-energy
states are included in a continuum contribution), which,
in the Rarita-Schwinger formalism [26], can be expressed
as [20,25]

Z A*
AII„((u, lql) = 2~i—" ~ h(~ —E~) —8(u) —E~)

(8)

where A& is an overall residue. Here we have defined

M~ = M~ + Z„E*—: M~ + q2, Eq = Z„+
M& + q, and Eq —Z~ — M& + q2, where M~

is the mass of 4 and Z, and Z„are identified as the
scalar and vector self-energies of a A in nuclear matter.
The positive- and negative-energy poles are at Eq and

Eq p
respectively.

The OPE for the correlator can be carried out using
the simple rules and techniques outlined in Refs. [3,5].
We work to leading order in perturbation theory. Con-
tributions proportional to the up and down current quark
masses and the terms proportional to the condensate

((o., /vr)[(u G) + (u G ])~~ are neglected as they give
numerically small contributions [4,5]. We consider quark
and quark-gluon condensates up to dimension 5 and pure
gluon condensates of dimension 4. At dimension 6, we
include only the four-quark condensates.

The @CD sum rules follow by equating the spectral
representation of the correlator to the corresponding
OPE representation. We observe that a negative-energy
pole, occurring at E~, is introduced in Eqs. (6)—(8). This
corresponds to an antiparticle in nuclear matter. Since
we want to focus on the positive-energy quasiparticle
pole, we follow Refs. [2,4, 16,17] and construct the sum
rules that suppress the contributions from the region of
the negative energy excitations:

~[11; (q' lql) —E.ll, (q' lql)lgcD

= ~[11, (qo lql) —EP; (qo lql)1.~- (9)

for i = (s, q, u), where the left-hand side is obtained from
the OPE and right-hand side from the phenomenological
dispersion relations. Here the operator 8 is defined in
Ref. [4], and II/ and II+ are the even and odd pieces in
qo of the invariant functions

II'(qo lql) = 11, (qo lql) + qoiI, (qo lql) (10)

A*
AII~(~, lql) = +2vri b(cu —E~) —8((u —Eq)

(6)

(7)

for i = (s, q, uj.
With the spectral ansatz of Eqs. (6)—(8) and our calcu-

lations from the OPE, we obtain the following sum rules
for the L:

(
2 Ei(qq) p L + Eo(g q~'&q) p L — 7Eo + 32 (qiDoiDoq)qM2)

+ s (g, qa Qq) p„L ~ + Eq (qq) p (qtq) p
L'—s~2
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—(R —g )/M M 5 M2s1,4/2~/ ss ('t ) I, I2~ —— ED 'G) I,g g

~
Ep —4

~ (q iDoq)p L —
~

1 —
~ (q iDpiDpq)p9 2 ( M2) 3 2

q M2)

(12)

—(K —g, )/M
4 8M2 31M2

Ei(q"q) p L / + EoEs(q iDoq) p L / — Eo(g, qtcr gq)p L /

M2 2

+
~
Eo+ 10

~
((qtiDoiDoq)& + —,2(g, qtogq)p. „)L / + Eq(q—tq) L / ",

where L = ln(M/AclcD)/in(p/AclcD). We take p
0.5GeV and Aggro ——0.1GeV. Here we have adopted
the notations of Ref. [16] and defined Ep = 1

e 'o/ Ei = 1 —e '0/ M, +1, andE2 = 1—
", + 1, which account for continuum

corrections to the sum rules, where so ——~0 —q is the
continuum threshold. We use a universal effective thresh-
old for simplicity. In our calculations, we have ignored
the anomalous dimensions of dimension 4 and 5 opera-
tors.

For dimension 3 and 4 in-medium condensates, we
use the values quoted in Ref. [16]. For dimension 5
condensates, we take (g,qo gq) ~~ = (g, qo gq), +
(0.62GeV )p~ [3], (g, qto-.gq)p —

(—0.33GeV )pN [27],
(qiDoiDpq)p„+ s(g, qo. . gq)p —— (0.085GeV )p~ [3],
and (qtiDpiDpq)~ + —(g, qto gq)~ = (0.031 GeV )p~
[3]. Four-quark condensates are numerically important
in both the vacuum and the finite-density L sum rules.
In the sum rules derived above, we included the con-
tributions from the four-quark condensates in their in-
medium factorized forms [3]; however, the factorization
approximation may not be justified in nuclear matter.
Thus, we follow Ref. [4] and parametrize the scalar-scalar
four-quark condensate so that it interpolates between its
factorized form in free space and its factorized form in
nuclear matter:

predictions for all self-energies to the zero-density pre-
diction for the mass. We choose a fixed Borel window at
1.05 & M & 1.6 GeV in our analysis. The study of the
L sum rules in vacuum suggests that the sum rules are
valid in this region [24].

In Fig. 1, we display the optimized results for the ratios
M&/M~ and Z„/M~ as functions of f for ~q~

= 270 MeV.
One notices that Z„/M~ is not sensitive to f, and the
sum rule prediction is

Z„/M~ 0.09—0.11 .

M~ /M~ —0.62—0.71, (16)

The finite-density nucleon sum rules predict Z„/MN.
0.24—0.37 [4]. Thus, we find (Z„)~/(Z„)~ 0.4—0.5.
This result, if interpreted in terms of a relativistic
hadronic model, would imply that the coupling of the
A to the Lorentz vector field is much weaker than the
corresponding nucleon coupling. This compares to the
SU(6) expectation of 1.

The ratio M&/M~, however, varies rapidly with f.
Therefore, the sum-rule prediction for the scalar self-
energy is very sensitive to the density dependence of the
scalar-scalar four-quark condensate. For small values of
f (0 ( f & 0.3), the predictions are

(qq) : (qq),
' —= (1 —f)(«).'..+ f(«)'... (14) 1.2

where f is a real parameter. The density depen-
dence of the scalar-scalar four-quark condensate is now
parametrized by f and the density dependence of (qq)~
The factorized condensate (qq) appearing in Eq. (12)
will be replaced by (qq) in the calculations to follow.
The other four-quark condensates give small contribu-
tions. So we use their factorized form for simplicity. All
the finite-density results presented are obtained at the
nuclear matter saturation density, which is taken to be
p~ = (110MeV) .

To extract the self-energies from the sum rules, we use
the same procedure as used in Refs. [2,4, 16,17]. To get
a prediction for the A mass, we apply the same pro-
cedure to the sum rules evaluated in the zero-density
limit. We follow Ref. [2] and rely on the cancellation
of systematic discrepancies by normalizing finite-density

0.8

li

M /M

0.6 '-

0.2

0.0
0.0 0.2

I I

04 0.6 0.8 1.0

FIG. l. Optimized sum-rule predictions for M~/M~ and
Z„/Ma as functions of f, with ~q~

= 270 MeV. The other
input parameters are described in the text.
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which implies Z, /M~ —( 0.29—0.38). With the nucleon
sum-rule prediction M~/M~ 0.63—0.72, we obtain
(Z, )~/(Z, )~ 1.3. In a hadronic model, this implies
a stronger coupling of the L to the Lorentz scalar fi.eld
than for the nucleon. In this case, the net 4 self-energy is
strong and attractive. For large values of f (f 1), the
predictions turn out to be M&/M~ 1, which implies a
very weak scalar self-energy and a sizable repulsive net
self-energy for the L.

In conclusion, we have studied the self-energies of the
isobar in nuclear matter using finite-density @CD

sum-rule methods. The sum-rule calculations indicate
that the 4 vector self-energy is much smaller than the
corresponding nucleon self-energy. In terms of a rel-
ativistic hadronic model, this result implies that the
vector coupling for the 4 is signifi. cantly smaller than
the corresponding nucleon coupling to the vector me-
son (r„0.4—0.5). The sum-rule prediction for the A
scalar self-energy is somewhat indefinite as the predic-

tions are sensitive to the undetermined density depen-
dence of four-quark condensates. If the four-quark con-
densates only depend weakly on the nucleon density (so
that the sum-rule predictions for the nucleon self-energies
are consistent with known relativistic phenomenology),
we find a large and attractive scalar self-energy for the
L, the magnitude of which is larger than the value for
the nucleon (r, 1.3). In this case, the net self-energy
for 4 is strong and attractive. Clearly, phenomenological
constraints on the density dependence of the four-quark
condensates from other sources will be very important.
Work in this direction is in progress [28].
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