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Symmetry constraints on the classical Skyrmion

Mohammad Samiullah and Peter Rolnick
Division of Science, Northeast Missouri State University, Kirksville, Missouri 69501

(Received 7 June 1994)

We derive the constraints on the solutions of the classical SU(2) Skyrme model imposed by
requiring that angular momentum (J) and isospin (I) be well defined under the general symmetry
(aIs + bJs). We show that for all nontrivial solutions (aIs + bJs) must be 0, a/b must be an integer,
and for b g 0 the profile function must be of the form F(r) = F ((1 —A ) ~ z + Afx cos[(a/b)g+
B] + y sin[(a/b)P + B]))(x,y, z are Cartesian unit vectors; r, 8, $ are the usual spherical polar
coordinates; F, A, B are undetermined functions of r, 8).

PACS number(s): 14.20.Dh

I. INTRODUCTION II. DERIVATION OF THE CONSTRAINTS

The Skyrme model, in which topological solitary waves
in a classical pion field are interpreted as baryons, has
had some success in describing the low-energy realm of
quantum chromodynamics (QCD) [1]. Skyrme made the
initial observation that the nonlinear o. model, a classi-
cal chiral field theory of pions, can give rise to solitary
wave solutions which could be interpreted as baryons,
and added a term which stabilized these solitary waves,
henceforth referred to as Skyrrnions [2]. A topological in-
variant is associated with the Skyrme field, which is iden-
tified as the baryon number (B) of the Skyrmion. Skyrme
obtained a classical, radially symmetric solution, called
the hedgehog Skyrrnion, in which the third (or z) com-
ponents of isospin and spin are of equal magnitude. The
possible fermionic character of the hedgehog Skyrmion
was later confirmed [3], and a connection was made be-
tween the Skyrme model and the large-K, (number of col-
ors) limit of QCD [4]. The success of the Skyrme model
stems &om the observation that the B = 1 hedgehog so-
lution predicts the properties of the nucleon to within
about 30'Fo [5]. Since then, there have been applications
of the Skyrme model to multi-baryon systems [6], includ-
ing descriptions of light nuclei as systems of Skyrmions

[7,8], and investigations of the nucleon-nucleon force us-

ing the two-Skyrmion system [9,10]. General axial sym-
metry has been previously discussed [11],and axial sym-
metry for the case of two B = 1 Skyrmions combining to
form a deuteron was argued [12] before being discovered
numerically in some of the above investigations.

Though the hedgehog has been used almost exclusively
in applications of the Skyrme model, there is some refer-
ence to "exotic textures [1]." The choice of the hedgehog
is usually justified by its simplicity [1,13]. In this note we
investigate the relationship between allowable textures
and corresponding spin and isospin; we find that the re-
quirement of well-defined values of spin and isospin puts
severe constraints on the solutions of the Skyrme model.
The rest of the report is organized as follows: Sec. II con-
tains the derivation of the constraints, and conclusions
are in Sec. III.

A. Skyrme model notation

f is the pion decay constant and e2 is proportional to the
nucleon axial form factor in the limit K, ~ oo [5,1,11];
summation is implied for repeated indices; Latin indices
run from 1 to 3, Greek indices run from 0 to 3; the signa-
ture of the metric is (+ ———); and tr indicates a trace
over the matrices contained in the U field. We shall limit
our discussion to the SU(2) Skyrme model, and to the
most commonly used ansatz, in which case U(t, r) can
be written as

U(t, r) = exp (i[~ . n(t, r)] E(t, r) )
= cos E(t, r) + i[~ n(t, r)] sin E(t, r), (2)

where m represents the Pauli matrices in isospin space;
n(t, r) = ni(t, r) x + n2(t, r) y + ns(t, r) z is the field (of
unit length) representing the isospin direction at (t, r);
and E(t, r) is called the profile function [cosE(t, r) and
n(t, r) sinE(t, r) could be identified with meson fields cr

and 7r].
The energy of the system is conserved and can be writ-

ten down in terms of the field configuration U(r) at any
fixed time:

E= dr — tr BU OU t

+—e 'tr[(s;U)vt, (s,U)Ut] )
. (3)

The boundary conditon U(r i oo) = 1, where 1 is the
2 x 2 identity matrix, is needed to ensure that the en-

The Skyrme model consists of the following Lagrangian
for the matrix-valued unitary field U(t, r):

I = dr
~ f tr[O„—UB"Ut]

~

(1,
E4

dr
]

e —tr[(O„U) Ut, (O„U)Ut)
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ergy remains finite. With this boundary condition, U(r)
is seen to map Ss (the real three-dimensional space with
all points at oo identified) —+ S [the group manifold
of SU(2)]. The integral over all space of the topologi-
cal charge associated with this map must be an integer,
which in turn is identified as the baryon number, w hich
can be expressed in terms of the profile function as

B = — dr(( sin E(r)/12m )s;~y(V'n;(r) x V'n~ (r))

(3ny(r) V'E(r) + sinE(r) cosE(r) V'ny(r)) j (4)

(a';~y is the totally antisymmetric Levi-Civita tensor).
Thus, for all solutions of the Skyrme model, we require

that E be Gnite, and that B be an integer.

B. Isospin and. angular moment um constraints

Skyrme further constrained the Skyrme model by in-
vestigating the isospin and angular momentum properties
of U. Although the quantum Geld theory based on quan-
tization of U in the Skyrme Lagrangian is nonrenormal-
izable, we can still study the quantum numbers asso ci-
at ed with the Geld operator U . Skyrme assumed maximal
symmetry: F = E(r only) and n = r (hedgehog assump-
tion). Though neither the z component of isospin (Is)
nor of angular momentum (Js) are independently well
defined for the hedgehog Skyrmion if they are nonzero,
the quantity Ks = (Is + Js) is well defined and is identi-
cally zero. Thus the hedgehog configuration can describe

I

only those nuclei which have
~
Is

~

=
~
Js ~. However, for

many nuclei (such as the deuteron) I g J. In the follow-
ing we study the possible solutions to the Skyrme model
under the more general symmetry Ks (a, b)—:(aIs + bJ3) .

Here we look at constraints on the solution imposed
by requiring that for a fixed time it have a well- defined
J3 and a well-defined I3 ~ From elementary quantum me-
chanics, it is known that a quantum Ge ld 4 will have a
good quantum number q associated with an infinitesimal
generator Q if [Q, O] = q4. Similarly, to study the solu-
tions of the Skyrme model, we treat U as a quantum field
operator . Thus, the requirement that J3 and I3 be well
defined with eigenvalues j3 and i 3, respectively, for a Geld
configuration U(r) at a fixed time implies the following:

[Js, U(r)]( = [
—i(r x V')s, U(r)]) = jsU(r),

[ s ( )](= [( s/ ) ( )]) = ~ ( ) .

Substituting (2) into (5) and (6), we get:

(r x VE(r))s[i sin F(r) + a n cos E(r)]

+ sin F(r) [r x V'(a n)] = jsU(r),
sinE(r)(~ x n)s ——isU(r) .

Treating I and 3 independently, the only solution to (7)
and (8) has js ——is ——0, thus there is no solution to the
Skyrme model for which both isospin and angular mo-
mentum are independently well defined and have nonzero
projection. However, consider Ks(a, b):

[Ks(a, b), U(r)] = [(a(7s/2) + —ib(r x V )s), U(r)] = (ais + bj s)U(r),
or, substituting (2) into (9):

a sin E(r) (a x n)s + b((r x V'F(r))s [i sin E(r) + (r n) cos E(r)] + sin F(r) (r x V'(7 n))s) = (ais + bjs) U(r) .

(10)

Note that if a = b = 1 and n = r" (the hedgehog assumption), then all terms on the left-hand side of (10) cancel,
leaving 6j3 ———ai3 as a nontrivial solution. In order to explore other solutions of the Skyrme model which admit
nontrivial angular dependence, we must look at the most general form of (10), which, unless b = 0 (in which case a
is ——0) or one of sin(E) or cos(E) = 0, reduces to the following conditions:

ai3 + 6j3 ——0

B@E(r) = 0

Bpns(r) = 0

Bpn, (r) = —(a/b)n2 (r),
Bd 'a2 (r) = (a/b) "i(') .

(»)
(12)

(»)
(14)
(15)

(By indicates difFerentiation with respect to the azimuthal angle P.) Thus, for b g 0, sin(E) g 0 and cos(E) f 0, F(r)
must be of the form:

F(r) = F(r, 0)((1—A (r, 0) ) f ~ l z + A (r, 8) [cos ((a/b) qt, + B(r, 0))x + sin ((a/b) P + B(r, 0) )y]) (16)

(where A. , B, and E are undetermined functions of the
radial variable r and the polar angle 0). The magnitude
of F is independent of P, as is the magiutude of the pro-
jection of n onto the z axis and onto the x, y plane . But
for a given value of r and 6, the projection of F in the
x, y plane rotates a/b times as &P goes from 0 to 2vr. For
F to remain single-valued, a/b must be an integer.

III. CONCLUSION

In this note, we have explicitly shown the necessary
symmetries of the solutions of the Skyrme model, using
ansatz (2), which have well-defined nonzero z compo-
nents of spin and isospin under the general symmetry
K3(a, b) = (aIs + bJs). We find that all solutions must
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have a[is~ = bj[s[. Most uses of the Skyrme model to
describe multi-baryon systems start with multiple hedge-
hog Skyrmions and quantize spin and isospin degrees of
freedom separately. This allows one to construct matrix-
valued functions that have [is[ g [Js[. It may prove valu-
able to explore the nonspherical solutions to the clas-
sical Skyrme model. In particular, B = 2 solutions
may be used to study the Skyrmion-Skyrmion interac-
tion potential by providing a small separation limit as

two widely separated hedgehog Skyrmions are brought
closer together [9,10].
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