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Relativistic nuclear matter with alternative derivative coupling models
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Effective Lagrangians involving nucleons coupled to scalar and vector Gelds are investigated
within the framework of relativistic mean-field theory. The study presents the traditional Walecka
model and different kinds of scalar derivative couplings suggested by Zimanyi and Moszkowski. The
incompressibility (presented in an analytical form), scalar potential, and vector potential at the
saturation point of nuclear matter are compared for these models. The real optical potential for
the models are calculated and one of the models fits well the experimental curve from —50 to 400
MeV while also giving a soft equation of state. By varying the coupling constants and keeping the
saturation point of nuclear matter approximately fixed, only the Walecka model presents a first-order
phase transition for finite temperature at zero density.

PACS number(s): 21.65.+f, 12.40.—y, 21.60.Jz, 24.10.Ht

I. INTRODUCTION

To study the properties of hadronic matter, Walecka
[1] has proposed a simple renormalizable model based
on field theory which is often referred to as quantum
hadrodynamics (QHD-I). In this model nucleons inter-
act through the exchange of o and w mesons the 0 sim-
ulating medium-range attraction and the u simulating
short-range repulsion. The usual approach to solve this
model is the mean-field approximation, in which the me-
son fields are replaced by their expectation values. The
Walecka model (W) has achieved important goals in the
description of hadronic matter as, for example, some bulk
properties of nuclear matter as well as some properties
of finite nuclei. An interesting one was to show us the
relativistic mechanism for nuclear matter saturation: it
occurs at a density (po) at which the scalar (S) and the
vector (V) potentials largely cancel one other. Extended
to finite nuclei, this model predicts a reasonable non-
central spin-orbit splitting contribution given mainly by
V —S. However the incompressibility (K) calculated
from this model [2] indicates the equation of state to
be stifFer than the expected one and at moderately high
density and/or temperature the efFective mass of the nu-
cleons becomes very small. Many attempts have been
made to improve this model, among them let us quote
here: inclusion of one-nucleon-loop vacuum effects [3],
inclusion of two-nucleon-loop effects [4], and addition of
nonlinear cubic and quartic scalar meson interactions in
the Lagrangian [5].

Recently Zimanyi and Moszkowski (ZM) have pro-
posed models for hadronic mat ter difFering from the
%alecka model only in the form of the coupling of the
nucleon to the scalar meson [6]. To avoid any confusion
let us explain what we understand for ZM models. The
usual one is referred in the literature as the ZM model
or derivative scalar coupling model (DSC) and consists
in including derivative coupling between nucleons and
scalar mesons. It yields a K = 224.49 MeV and an efFec-
tive mass M* = 797.64 MeV at the nuclear matter sat-

uration point. This model has already been applied to
investigate the following problems: multilambda matter
properties [7], neutron star [8], 4-excited nuclear mat-
ter [9], and some thermodynamical properties of nuclear
matter [10]. In the Appendix of [6], ZM pointed out that
the specific form of the coupling between the nucleon and
scalar meson is somewhat arbitrary and it would not be
only possible to extend the scalar coupling to the nucleon
derivative term, but also to the interaction between nu-
cleon and vector meson. The difFerent proposed scalar
couplings to the vector meson we refer to in this paper
as ZM2 and ZM3 models. In a very concise description of
them, ZM models can be understwood as models which
introduce a nonlinear efFective scalar coupling constant
g* = g m* = g (1 + g cr/M) in the Walecka model.
This nonlinear efFective coupling constant can then act:
(a) on the nucleon derivative and the nucleon-vector cou-
pling terms (ZM), (b) on the nucleon derivative term and
on all terms involving the vector field (ZM2), and (c)
only on the nucleon derivative term (ZM3). Constructed
in that way, after an appropriate rescaling, all the La-
grangians will describe the motion of a baryon with mass
M* = m*M instead of the bare mass M. This is the main
idea of the ZM models, where m* has the particular form
given above. This information rnanifests itself as difFerent
forms for the meson-baryon couplings in the above three
models. In case (a), the rescaled Lagrangian presents
an efFective scalar-baryon coupling, and does not change
the vector-baryon coupling at all. This is the usual ZM
model. The motivation to study cases (b) and (c) is that,
now the rescaled I agrangians present not only efFective
scalar-baryon coupling but also, through m*, difFerent
forms of eRective vector-baryon coupling, which will cou-
ple the scalar field to the vector Beld.

In this paper we shall be committed to the standard
Walecka model and the three above-mentioned ZM mod-
els. Each one of these four models is very simple since
they have only two free parameters, the scalar (vector)
coupling constants Cz (Cz), adjusted to reproduce the
binding energy (E&) of the nuclear matter at p = po.
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ZM2 and ZM3 models are not well known in the litera-
ture and it seems important to enhance the knowledge
of hadronic models by investigating whether or not they
bring some new features in comparison to the others. Be-
sides, these models provide an excellent theoretical lab-
oratory to analyze the sensitivity of nuclear observables
on different kinds of field couplings. Therefore a kind
of anatomy of these models is needed. First we put the
four models in a unified rescaled Lagrangian form. The
fitting of C and C is presented in the coupling-constant
plane exhibiting the sensitivity of them under small vari-
ations of Ep and po. From this study it turns out that
none of the ZM models presents phase transition for fi-
nite temperature at p = 0 as opposed to the Walecka
model [11]. Furthermore, in order to establish a mean-
ingful comparison we have also calculated S, V, and K.
For finite nuclei V —S gives us roughly the strength of
the spin-orbit splitting while V+S indicates the real part
of the optical potential for zero three-momentum. Since
these three quantities K, U —S, and V+ S are related
directly to observables, none of them alone can establish
the goodness of a particular model. Our results show
a strong sensitivity of K and V —S on change of the
coupling. Let us also remark upon an important point
regarding how M*(po) behaves as a function of K. The
thought that the stiffest equation of state is obtained for
the lowest effective ground-state mass suggested by many
calculations [5,12] is not supported from our calculations
with ZM2 and ZM3 models. It means that these two
models are bringing a new qualitative feature regarding
M*(po) versus K. For example, we find for ZM3 M'(po)
= 671.25 MeV and K = 155.43 MeV while the ZM model
gives M*(po) = 797.64 MeV and K = 224.49 MeV V/e.
have also calculated the real part of the optical potential
for the models and the calculations have shown that the
ZM3 model its the experimental curve quite well from
—50 to 400 MeV.

&zMs —— 4—MV + m* '4 i~,~"0 —g-4~~4 ~"

where

m* = (1+g o.jM)

—0 w„, and M is the bare nucleon mass.
Now we proceed to rescale the fields g and w„as follows:

g —+ m* @ for all ZM's models arid ur„~ m*w„ for
ZM2 and ZM3 models. Considering that m* does not
depend on space-time coordinates (nuclear matter case),
the rescaled Lagrangian densities acquire a unified form:

CR = pip&0"Q —Q(M —m* g cr)g

+m* [ gpss„Q—~" —4F" F„+2m cu„cu"]

+2(B„oc))"o.—m cr ),

where n and p have the following association to the mod-
els:

W:n =O, P =0,

ZM:n =O, P = 1, (7b)

ZM2 n=1, P=1, (7c)

ZM3:n=2, P= 1. (7d)

[ip„O" —(M —m* g cr) —m* g p„w"]g = 0,

From Eq. (6) we obtain the coupled equations of motion
for the fields of nucleon and mesons:

II. THE MODELS

Since the models we are dealing with were presented in
detail in [1,6], let us go to their main points. The degrees
of freedom are baryon fields (g), scalar meson fields (o'),
and vector meson fields (w). The Lagrangian densities
are given by

B„F "+m (u" = g gp"g,

(B„O"+ m )cr = g m* [1 —P(l —m*)]Qg

(9)

(1O)
Zw = pip„B"Q —/MAL+ 2(O„crB"cr —m a )

+g crag —'F" F„+2m ~-„~"

g~0'Ypl~

When the meson fields are replaced by the constant clas-
sical fields 0.0 and ~0 we arrive at the mean-field approx-
imation with the equations

&zM = SM0+ m* '[4iv—~"4 —g-4&~4~"]

+ i (B„cr0"cr —m cr ),

&zM2 = gM0+ m* '[0iv —~"0 —g-0~&4~"

+—(O„oB"cr—m cr ),

(2)

~o =, (0+i)') =, pa,

, m* (g@) + —(,)
—m'

+2C2

m'. 2 g~

(12)

(13)
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where we have introduced C = g M /m and C
g2M2/m2, and also identified jl —P(1 —m*)] = m*~
which is valid to P = 0 and P = 1. The constant classical
fields O.p and up are thus directly related to the baryon
sources. The source for up is simply the baryon density
p~ ——&, which is a constant of the motion for a uniform
system of B baryons in a volume V. The source for
op involves the expectation value of the Lorentz scalar
density @g = p, . Notice however that for the cases where
n is not identically zero (ZM2 and ZM3 models) 00 is also
coupled to p~. Any way op is, for any case a manifest
scalar.

Now we proceed to define the scalar potential (S) and
the vector potential (U). It can be done by looking at the
Dirac equation for the models, Eq. (8), and by rewritting
M* in the form

2

2M' 2C' m

+-' '
3 (2vr)s

d k (nk+ nl, ),
k

where

'Y

(2vr)'
d'k (nk —nA, ).

Here p is the degeneracy factor (p = 4 for nuclear matter
and p = 2 for neutron matter), nk and nk stand for
the Fermi-Dirac distribution for baryons and antibaryons
with arguments (E* —v)/T, respectively. E*(k) is given
by

g. )M* = M —g 0. 1+ = M —m* g o. (14)M

If we interpret M* in the Dirac equation as an effective
mass shifted by S (M* = M + S), the natural way to
define S is

p p SpS = —m* g o. = —m* Sp ———
('+ 5)'

Sp = g~o

E*(k) = (k' + M*')

while an effective chemical potential which preserves the
number of baryons and antibaryons in the ensemble, is
defined by

(22)

where p is the thermodynamical chemical potential. The
expression for the entropy per volume (s) can be obtained
from the thermodynamical potential (0),

S=Sp ——g 0, m*= 1

(1+ 5) (16)

Here we call attention to the fact that Zimanyi and
Moszkowski have defined S, ( Eq. (12) of [6] ) in a slightly
diferent fashion; namely,

0—= —p = t —TS —pp~.V

The gap equation already presented by Eqs. (11)—(13)
is obtained explicitly through the minimization of E' in
relation to m*. It reads

Equations (15) and (16) agree at the first order in So, the
case where the Walecka and ZM models are equivalents.
In the next section we will give the values of S and Sp for
models ZM, ZM2, and ZM3 in order to see the impact of
the higher order terms in the scalar coupling present in
m*. Still analyzing the Dirac equation we see that V can
be defined as a quantity which shifts the energy,

1V=m* g wp ——
g g~ Mp.
M

This definition recovers the usual one for the Walecka
model and the ZM model (a = 0). For (n g 0) U is
coupled to the scalar field. The expressions for the energy
density and pressure at a given temperature T can be
found as usual by the average of the energy-momentum
tensor,

,3@+i2

1 —m — m
27r2

x dx
, , (n. + n. )

(x2 + m*') ~

+P+12 2
m* pii = 0, (24)

2 M6

where we have introduced the dime nsionless variable
x = M. This equation has to be solved self-consistently
and provides the basis for obtaining all kinds of thermo-
dynamical quantities in the mean-field approach we are
using.

At zero temperature limit the ground state is obtained
by Glling energy levels up to a Fermi surface K~, and so
ny goes to 8(K~ —k) and ni, vanishes. Now we are in a
position to calculate the incompressibility. At T = 0 its
definition is given by

C2,- 2
M4 (1 —m" ) , a' I'zl a'z= 9p2o,

l

— = 9po
P P ) P

P=PQ P=PO

(25)

d k E( )(kn +Any)
where p means the baryon density p~. This expression
can be analytically obtained for the models we are dealing
with. Its derivation is straightforward but tedious and we
give the details in the Appendix. The closed form is
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K=9 m* p +3
M ' E*(k)

P=PO

K~2

[I~' + (M+ S)z]i&2
P=Po

Op E*(k)™M2

(26a)

or the equivalent one, by using the definitions of S and
V, where

BS f (M+ S)+9 p
Op l[K + (M+ S) ]'&

(M+ S)
(26b)

m'+3P (1—m* )
Cg m. ~+' + z(~+1 2t )M m p ™~ M' z'(k)

(27)

and

(1—m*) ~ C C q +1

8
m*

Let us define K1, K2, and K3 as the first, second, and
third terms of the incompressibility, respectively. Notice
that K1 and K2 are always positive while K3 is negative
due the derivative of m* with respect to p. It is really
very interesting to see how the difFerent contributions
sum up to balance the final result of the incompressibil-
ity. In particular K3 exhibits in a very clear form that it
depends essentially on at the saturation point of theBp
nuclear matter. Of course as we can see from Eqs. (26a)
and (26b), this term also involves coupling constants and
other quantities so that a smaller value of does not

Op
necessarily indicate a smaller value for the incompress-
ibility. K1 is directly proportional to V and K2 comes
from the baryon gas.

III. THE REAL PART OF THE OPTICAL
POTENTIAL

UQpT = E —(p +M ) (29)

The equation of motion for the nucleon [Dirac equation,
Eq. (8)] supports the understanding that in the nuclear
medium this nucleon acquires an effective mass M*
M + S with a shifted energy E —V. Therefore

[p'+ (M+ S)']'~' = E —V. (3o)

If we now substitute the value of p given by the above

Since we have already S and V, the natural way to
proceed further comparing the models is the construction
of an optical potential. Let us start defining the real part
of the optical potential as the difFerence between the total
(E) and kinetic energies of a nucleon traveling in nuclear
matter with momentum p:

constraint into Eq. (29) we end up with

UQpT = E —[(E —V) —S(2M + S)]

This definition of UQpT is exactly the same used by Feld-
meier and Lindner [12] . For zero momentum UQpT goes
to S+V while in the ultrarelativistic energy regime UQpT
goes to V. Notice that this definition differs slightly from
the linear definition widely used in the literature (see [1]
and references therein):

Ui, iN = (1/2M)[V(2E —V) + S(2M+ S)]. (32)

These definitions can be related through

UQpT = @

For zero momentum, both definitions give the same re-
sult. In this paper we will assume VQpT defined by Eq.
(31). Nevertheless we will present in the next section
a sample of numerical comparisons between UQpT and
Uz, yN for a specific model. A more detailed theoretical
discussion regarding both definitions is well presented in
Ref. [12].

IV. RESULTS AND DISCUSSIONS

The coupling constants for the models are presented in
Table I. For the Walecka model we have used the values
given in [2], which are slightly different from those given
in [1]. For the ZM model we have used those given in
[6] and since this reference does not present the values
for the models we named here as ZM2 and ZM3 models
we have to calculate them. It has been done by solving
Eq. (24) and fitting C and C to reproduce Eb and
po, and these values are also given in Table I. Figure 1
presents how Eb varies with the density (p) for the mod-
els. The behavior of M* in terms of p is given in Fig.
2. In order to have a qualitative idea about how stifF or
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Q2

273.8
59.1
100.5
305.5

po
0.148
0.160
0.152
0.149

ps
0.138
0.155
0.147
0.143

0.54
0.85
0.82
0.72-15.76

TABLE I. Coupling constants C and C; binding energy Eb (MeV) at the density ps(fm ),
p, (fm ), and m" for the indicated models.

Models Qb m*

Walecka -15.75
ZM -15.9

ZM2 -15~ 77
ZM3

soft the equation of state is for each model we present in
Fig. 3 the pressure (p) versus p. Since the incompress-
ibility is related directly to Bp/Bp we see directly that
the ZM3 model gives the softest equation of state. Si-
multaneously from Fig. 2 (or Table I) we also see that it
does not correspond to the largest value of M*(po). The
first conclusion is that when the scalar field couples to
the vector field [see Eq. 6 with n g 0], the statement
that the stifFest equation of state is obtained for the low-
est eR'ective ground-state mass M*(po) does not apply.
In fact, there was no established statement for it, but
many results obtained by nonlinear scalar models have
implicitly suggested it [5,12]. Nevertheless it means that
the ZM2 and ZM3 models are bringing a new qualitative
behavior regarding M*(po) and K. Notice that we have
gotten a complete agreement in calculating K by using
its direct definition given by Eq. (25) as well as the ana-
lytical form presented in Eq. (26). Table II presents the
results for S, V, S + V, V —S, and K at the saturation
poin. of the nuclear matter for the models. To calculate
S we have used our definition given by Eq. (15) which
as we have pointed out in the previous section differs by
a factor 1/(1 + So/M) from that of Eq. (16). In or-
der to see the impact of neglecting higher orders terms
in these models we give the values of S/Sp. They are

0.85 for ZM, 0.82 for ZM2, and 0.71 for ZM3. There is
a simple check for our definitions of S and V given by
Eqs. (15) and (17). At T = 0 and at p = po, Eq. (23)
gives t (po)/po ——p, = v+ V, where v is the Fermi energy
(E&). Since M* = S+ M, the following relation has to
be satisfied:

= V+ [k~~+ (M+ S)2]~. (34)

Our results for S and V are consistent with the above
requirement.

We have made a detailed analysis of each model, by
varying the coupling constants and keeping Ep and pp
approximately fixed (po between 0.14 fm and 0.17 fm
while Eb was kept between —15 MeV and —16 MeV). The
values of S, V, and K have only a very weak dependence
on C and C . Figure 4 exhibits how M* behaves as
a function of T at zero density. In this regime (p=0,
T $0), after a careful numerical investigation, we have
concluded that none of the proposed ZM models (unlike
the Walecka model [ll]) is able to present a first-order
phase transition.

A settled point coming flom our calculations is that all
ZM models give soft equations of state compared to the
Walecka model. Among ZM models themselves, ZM3
model is the softest, giving K = 155.43 MeV but also
giving the value of V —S which most approaches that

1000

800—

400—

—10—
200—

—20
0.0

I

0.2
(frn ')

I

0.4 0.6

FIG. 1. Proper energy/baryon as a function of baryon den-
sity for the Walecka model (W) and Zimanyi-Moszkowski
models ( ZM, ZM2, ZM3).

0
0.0 I

I

0.1

p (frn ')
I

0.2 0.3

FIG. 2. Baryon e8'ective mass in nuclear matter as a func-
tion of the proper baryon density for the models.
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TABLE II. Values in Mev for S, V, V+ S, U —S and K at po given in Table I for the indicated
models.

Models
Walecka

ZM
ZM2
ZM3

S
-431.02
-140.64
-167.83
-267.00

V
354.15
82.50
109.73
203.71

V+S
-76.87
-58.13
-58.09
-63.28

V —S
785.18
223.13
277.56
470.71

K
550.82
224.71
198.32
155.74

one obtained from Walecka model. The expected value
for V —S can be related to the spin-orbit splitting of
6nite nuclei and if one accepts the value of the Walecka
model as reasonable, this quantity is worsening to the
ZM and ZM2 models while the incompressibility is im-
proving. Apart &om this behavior, the ZM3 model is
which most approaches the Walecka model in other fea-
tures. See, for instance, Fig. 2. The relativistic contents
of each mod. el can be estimated. It is given by the ratio
R = p, /p~ at the nuclear matter saturation point. Par-
ticularly, if one neglects the contribuition of the small
component of the Dirac nucleon spinor, B = 1. When
this component is present, B estimates the nonrelativis-
tic limit versus the relativistic one. From Table I the B
values are 0.932, 0.975, 0.967, and 0.960 for the Walecka,
ZM, ZM2, and ZM3 models, respectively. It indicates
that among the ZM'8 models, the ZM3 model is the one
which more approaches the Walecka model in terms of
relativistic effects.

From the nuclear matter mean-field approach we have
used, it is possible to extract a momentum dependence
of the averaged interaction of a nucleon in the nuclear
medium and from this an energy dependent real optical
potential as we have presented in the last section. This
quantity can now be compared with the optical model
fits obtained from measured nucleon-nucleus elastic cross

sections [13, 14] in the limits of mass number going to in-
finity and. radius going to zero. It has been implemented
by Feldmeier and Lindner [12] in a simple empirical for-
mula covering the kinetic energies from —50 to 1000 MeV.
We plot in Fig. 5 the experimental values of the real op-
tical potential [12—14] and the theoretical predictions of
the models using Eq. (31). In order to see how UopT
given by Eq. (31) deviates from Ur, yN given by Eq. (32)
we present in Fig. 6 the results for the ZM3 model using
both approaches. Figure 5 singles out the ZM3 model.
This model as we have already pointed out is the one
which keeping some relativistic features of the Walecka
model, gives a soft equation of state and a not so small
value for V —S. All this together with the nice G.tting this
model gives for the experimental real optical potential
suggest the importance of the nonlinear scalar coupling
with the vector Beld. This "mixed coupling" can be seen
directly from the rescaled Lagrangian, Eq. (6), for cases
0.'= 1 and 0! =2.

The discussions we have presented deserve some com-
ments. The Walecka model is renormalizable while ZM
models are not. However, nucleon loops correction for
the Walecka model does not seem to converge [3,4] . We
are aware that the different kinds of derivative scalar cou-
plings are somewhat arbitrary, but we can look at them as
effective models which give reasonable results for nuclear

2.0 ——

1.5—
T=O (MeV)

1000

0.5— 600—

0.0—
40D—

—0.5—

200—

—1.5
0.00

I

0.05 0.15 0.20 l00
f

I

200

T(Me V)

I

300

FIG. 3. Pressure as a function of proper baryon density for
the models.

FIG. 4. Baryon effective mass in nuclear matter as a func-
tion of the temperature at p = 0.



A. DELFINO, C. T. COELHO, AND M. MALHEIRO 51

derived. We have also calculated the real part of the op-
tical potential for the models and compared them to the
experiments. Unlike the Walecka model the ZM models
do not exhibit phase transition for finite temperature at
zero density.
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—100-
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FIG. 5. The real part of the optical potential [Eq. (31)] for
the models and the experimental curve extracted from Refs.
[12—14]; in function of energy.

APPENDIX: ANALYTICAL
INCOMPRESSIBILITY FOR WALECKA

AND ZM MODELS

Let us start this section by rewriting Eq. (25) in terms
of the pressure. In order to do it we erst use the definition
of p in terms of the energy density (at T = 0),

p=p gp (Al)

matter. It is in this sense that our calculations must be
understood. However it is important to call attention to
the recent work of Miyazaki [15] about the foundation of
the derivative scalar coupling (DSC). He claims that such
DSC can be obtained by utilizing the relativistic SU(6)
model of the meson-baryon couplings. In summary, we
have presented in a unified form the Walecka model and
diferent derivative couplings suggested by Zimanyi and
Moszkowski [6]. In particular, for the first time the ZM2
and ZM3 models were implemented. An analytical ex-
pression for the incompressibility for these models was

P=PO

(A2)

Prom Eq. (Al) one has

At the saturation point, p = pp, the energy per particle
has a minimum leading from the above expression to p =
0, meaning the hydrostatic equilibrium of nuclear matter.
From this statment, the incompressibility given by our
equation (25) can be rewritten as

(A3)

By substituting this expression in our equation (25), the
incompressibility can be rewritten as

a &~+~'l
K =9pp ),=„

—25—
C40 = 9 (I'+ E) ——t9

Op
(A4)

EXP
/

—.1 00
—100

I

100 200

E—M(Me V)
300 400

To have K in this form is very convenient since Eqs. (18)
and (19) show that by adding p and E the second right-
hand side term of each of them cancel one other. At
zero temperature the integrals appearing in those equa-
tions can be evaluated analytically. We have used these
results to obtain

FIG. 6. The same as Fig. 5 for the ZM3 model (only) and
Ur, iN given by Eq. (32).

E'+ p = m* p~ + E*(k)p@ . (A5)
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Notice that the derivation in p~ contained in Eq. (A4)
has to be done following the chain rule

Bpg

2'7t t9 (9m+
pk+ Bk~ Bp~ Bm

The expressions we need to obtain K are

(A6) 2Cz C „--. z 8m*
m pgy+ck m p~ pa)

(A8)

[E*(k)pgg]

p= pa

(A7)

With these auxiliary derivations we end up with
the unified incompressibility expression for the hadronic
models we are dealing with given by Eq. (26). Only

remains to be detailed. The explicit expression forBp

p, = (@@) is obtained from Eq. (13) and given by Eq.
(28). An intermediary step is the obtaining of

Op, mz 1 —M[m* + p(1 —m*)] (n + 1) CzCz „2 0m*

t9p g g~ m*
I

2p M(1 —m') a c'c' .- ~,
)m*"+' &.m*' m pg

Q2 +2
M5g~ m*

(A9)

But as we have explained before

ps ps k~ ps m+
Bpg BkI; BpI3 8m* Bp~

pg t9m*

EF Bpg
(A10)

Now we are in the position to obtain & by using Eqs. (A9) and (A10) which turns out to be that given by Eq.
(27). Notice that all quantities involved in Eqs. (25)—(28) have to be calculated at the saturation point p = po.

[1] J.D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974); B.D.
Serot and 3.D. Walecka, Advances in Nuclear Physics
(Plenum, New York, 1986), Vol. 16.

[2] R.J. Furnstahl and B.D. Serot, Phys. Rev. C 41, 262
(1990).

[3] R.J. Furnstahl and B.D. Serot, Phys. Rev. C 43, 105
(1991).

[4] R.J. Furnstahl and B.D. Serot, Phys. Rev. C 44, 2141
(1991).

[5] B.M. Waldhauser, J.A. Maruhn, H. Stocker, and W.
Greiner, Phys. Rev. C 38, 1003 (1988).

[6] J. Zimanyi and S.A. Moszkowski, Phys. Rev. C 42, 1416
(1990).

[7] M. Barranco et al. , Phys. Rev. C 44, 178 (1991).

[8] N. K. Glendenning, F. Weber, and S.A. Moszkowski,
Phys. Rev. C 45, 844 (1992).

[9] S.K. Choudhury and R. Rakshit, Phys. Rev. C 48, 598
(1993).

[10] Z. gian, H. Song, and R. Shu, Phys. Rev. C 48, 154
(1993).

[11] J. Theis et al. , Phys. Rev. D 28, 2286 (1983).
[12] H. Feldmeier and J. Lindner, Z. Phys. A 341, 83 (1991).
[13] C.M. Percy and F.G. Percy, At. Data Nucl. Data Tables

17, 1 (1976).
[14] S. Hama, B.C. Clark, E.D. Cooper, H.S. Sherif, and R.L.

Mercer, Phys. Rev. C 41, 2737 (1990).
[15] K. Myazaki, RCNP Report No. 67, 1994 (unpublished).


