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Open charm as a probe of preeguilibrium dynamics in nuclear collisions?
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The preequilibrium contribution to open charm production in nuclear collisions at ~s = 200A GeV
is calculated using three difFerent models for the correlations between momentum and space-time
coordinates. Ideal (Bjorken) correlation between the rapidity y and space-time rapidity rt of minijet
gluons suppresses greatly the preequilibrium yield, and even allowing for the minimal uncertainty
correlations leads, in contrast to previous estimates, only to a small preequilibrium charm yield as
compared to the initial yield due to gluon fusion. The "intrinsic" charm process is negligible in the
midrapidity domain.

PACS number(s): 25.75.+r, 24.85.+p

I. INTRODUCTION

Open charm, direct photon, and dilepton production
are among the most direct probes [1—4] of the early
time evolution of the quark-gluon plasma produced in
ultrarelativistic nuclear reactions. At collider energies
~s & 200A GeV the initial minijet plasma is mostly
gluonic [5, 6] with a quark content far below its chemi-
cal equilibrium value. Furthermore, the initial transverse
momentum distribution of those gluons is very broad [2],
resembling a hot thermal gas of gluons with an efFective
temperature T 500 MeV [5]. Because charm is pro-
duced mainly through gluon fusion, open charm produc-
tion provides a probe of that initial gluonic state. In con-
trast, hidden charm [7] is mostly sensitive to final state
interactions in the later stages of evolution. Photons and
dileptons are complementary probes of the evolution of
the suppressed quark component of the plasma.

The present study is motivated by two recent stud-
ies [2, 4] of open charm which predicted widely different
rates in nuclear collisions. In Ref. [2] the preequilibrium
contribution was found to be almost equal to the initial
gluon fusion rate. A similar factor of 2 enhancement of
charm from thermal production in the hot-glue scenario
was also suggested [5]. In Ref. [4], a more provocative
claim was made that open charm may even be enhanced
by over an order of magnitude above the initial perturba-
tive QCD (pQCD) rate. The main result of our present
study is that correlations between the rapidity y and the
space-time rapidity rl lead to a large suppression (about
a factor of 40) relative to the uncorrelated case. Thus,
preequilibrium open charm production is found to be un-
fortunately a very small fraction of the initial fusion rate.
The large enhancement of charm production in Ref. [4]
is found to be due to an overestimation of the contri-
bution from flavor excitation processes and the use of
a low energy A scaling from pp reactions measured at
E~ b

——300—400 GeV.
The paper is organized as follows: In Sec. II the depen-

dence of the direct pQCD rates for charm production on
structure functions, Q2 scale, and K factor is reviewed
and compared to existing data. The beam energy de-
pendence and the A dependence of the initial charm pro-

duction are compared to results in Ref. [4]. In Sec. III,
the preequilibrium charm production is calculated. The
minijet rapidity and transverse momentum distribution
are fit to results of the Monte Carlo HUIi~G model [8] in-
cluding initial and 6nal state radiation. Three difFerent
models for the space-time and momentum correlations
are studied and the influence on the charm yield is cal-
culated. Of the three models, we concentrate on a min-
imally correlated model resulting from the uncertainty
principle, which is similar to the type of correlation as-
sumed in Ref. [9]. We also study the sensitivity of the
results to different models of the formation physics [10].
Section IV contains the summary.

II. INITIAL CHARM PRODUCTION

Heavy-quark production in pp reactions was calculated
in Ref. [11] including both fusion and heavy flavor exci-
tation processes in leading-order pQCD. It was proposed
that flavor excitation processes were dominant at high
energies because a small Q exchange can easily liber-
ate any charm component in the nucleon while gluon fu-
sion was suppressed because Q & 4M, . In the parton
cascade model (PCM) [4], both mechanisms are incor-
porated to calculate 8, c, b quark production in nuclear
collisions. There the results suggested that the flavor
excitation of the charm quark of nuclear structure func-
tions would be the dominant source of charm production
in nuclear collisions as well. However, it is pointed out
[12] that the original flavor excitation rates in Ref. [11]
were too high in the xf 0 region due to neglected inter-
ference with other pQCD amplitudes to the same order.
When all diagrams were added together, a large destruc-
tive interference was found to suppress the flavor excita-
tion rates by powers of A/M~, where A 300 MeV is a
typical QCD scale and M~ is the heavy-quark mass. The
suppression factor appears in the process g + c(c) where
charm is evolved from the structure functions using per-
turbative QCD, as also shown in Ref. [13]. We note that
there is a possible nonperturbative charm component (in-
trinsic charm) in the nucleon. There are experimental
constraints on the amount of that nonperturbative charm
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where y = gl —4M, /s and we consider the following
two choices for the scale Q in the coupling constant
n, (Q2) = 127r/ [(33 —2ny) ln(Q2/A2) from Ref. [11]:
(1) for gg ~ cc, Q = s/2, for qq + cc, Q = s [Q2 choice

(1)] and (2) for both gg -+ cc and qq -+ cc, Q2 = s [Q2
choice (2)].

We take ny —— 4 for charm quark production and
nf = 5 for bottom quark production. The @CD scale
A depends on the choice of parton distribution functions
and is given in Table I.

To incorporate approximately the next-to-leading-
order corrections to the above rates we multiply the
leading-order results by a K factor. In general, the K
factor depends on the choice of parton distribution func-
tions, the center of mass energy of the collision, and the
type of projectile and target particles. Calculations to
order O(ns) for the subprocesses were carried out [20,
21], and afterwards calculations to order O(as) for p+ p
collisions were made [22, 23]. For DO1, M, = 1.5 GeV,
Q = 4M, , and Pj b = 100—1000 GeV, the K factor for
p-p collisions [22] was found to range from 2.85 to 4.1.
We also note a recent result [24] where the dependence
of the K factor on the final momentum of the initially
produced charm was studied for high energy AA colli-
sions. As a function of the rapidity of the charm, the K
factor is almost a constant 2. As a function of p~, the
K factor increases from 1.3 at p~ ——0.7 GeV to 3.4 at
p~ ——6 GeV.

component [14, 15]. The total contribution of the intrin-
sic charm was shown in Refs. [16, 17] to be small (about
10%) in the midrapity region where most of the charm is
made. Although the contribution of the intrinsic charm
component appears important at large xf, its contribu-
tion to the total cross section is small and well within the
uncertainties from other sources.

In this paper we only include fusion processes for the
parton level cross sections as in Ref. [2]. For the produc-
tion in p-p collisions, we use the light-quark and. gluon
structure functions from Gliick et al. [18] and Duke and
Owens [19] for comparison. The p@CD difFerential cross
sections for a+ 6 -+ cc+ X are taken from Ref. [11].For
example,

8vrcr2(Q2)
erg~ „—— - ' (s+ 2M, ) y,278

(dY) v=o (dY) 1=o
pp
inelaStiC l

where o,"+&,t,, is taken &om Ref. [32]. Glauber geome-
try for central high A+ A collisions gives o. = 1. In Fig. 2
the solid curve is our result using the same parameters

100

X
~O
(3
n, ~o

CL

C C———-- m, =1.4GeV, GRV-HO, Q -choice 3, K=3

In Fig. 1 we compare the so calculated charm cross
section to the limited data on inclusive cc production in
p-p collisions. The NA34 data for o,h, are taken di-
rectly from Ref. [25]. The values for the other data lines
are computed from D-meson cross sections according the
argument in Ref, [26] by using the published experi-
mental results [27—30]. Earlier experimental results [31]
also show large uncertainties among the diferent exper-
iments.

In Fig. 1 we see that both the solid curve and the
dashed curve B.t the low energy data reasonably well, and
so we use these two parametrizations for the following
high energy calculations in this section. As a consistency
check, we also plot the long-dashed curve using the same
parameters as in Fig. 1 of Ref. [22] (i.e. , DOl, M, = 1.5
GeV, Q = 4M, ) using a constant K = 3 for simplicity.
Comparing the solid and dot-dashed curves shows the
strong dependence on the assumed charm quark mass
for the GRV-HO set. Comparing the solid and dashed
curves we see that different choices for the Q scale can be
compensated for by shifts in the K factor. These results
together with the large uncertainty of the data emphasize
the need to measure pp and pA to fix uncertainties in
the initial charm production rate in order that charm
production in AA can be properly calculated.

Next we compare our results for the rapidity density
of produced cc pairs at Y = 0 with results of Ref. [4]. In
Fig. 2 the energy dependence in the range between RHIC
and LHC (~s = 200—6300A GeV) for Au+Au collisions
is shown. The scaling from pp results to AA is

TABLE I. QCD scale A for various choices of the parton
distribution function.

l00 200 300 400 500 600 700 800 900 1000
P],b (GBV)

Parton distribution functions
GRV-LO set
GRV-HO set
Duke-Owens set 1 (DO1)
Duke-Owens set 2 (DO2)

A (GeV)
0.25
0.20
0.20
0.40

FIG. 1. The cross section for pp ~ ceX is plotted as a
function of Pj b. The solid line is our result with M, = 1.3
GeV, lt = 3, Q choice (1), and GRV-HO set. The long-
dashed curve is the result with the same parameters as in
Fig. 1 of [22], but using a K factor of 3 instead of doing an
Q(n, ) calculation.
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FIG. 2. (dN, /dY)v -0, rapidity density of charm and an-
ticharm pairs for Au-Au collisions vs ~S/A. Curves 1—4 from
the calculation of the parton cascade model [4] are compared
to our calculation of the yield (the solid line) due to initial fu-
sion processes. The top curve 4 is the total charm production
with QGP formation including incoherent fiavor excitation
processes. Curve 3 shows the charm production in the case
of QGP formation without excitation processes. The bottom
curve 1 is the parton model result extrapolated to AA from

pp using the A ' scaling measured at much lower energies.
Curve 2 is the parton model result scaled by A. . Our curve
uses the asymptotic A scaling. As shown by the two ar-
rows, curve 4 becomes curve 3 when the coherent cancellation
of Qavor excitation processes is considered, and curve 1 be-
comes curve 2 when high energy scaling is used. So the net
dynamical enhancement in the PCM (by comparing curve 3
to curve 2) is comparable to the result of Ref. [2].

as for the solid curve in Fig. 1. The parametrization for
the dashed curve in Fig. 1 gives a curve higher than the
solid curve by 15%—30%. The four long-dashed curves,
curve 1 to curve 4, are all from PCM calculations [4].
The top curve 4 is the parton cascade model result for
the so-called quark-gluon plasma (QGP) formation case,
including both fusion and the Havor excitation processes.
That curve is higher than our solid curve by about an
order of magnitude because it includes the contribution
from fiavor excitation processes. Curve 3, the curve with
solid squares, shows the contribution to curve 4 from fu-
sion processes only [processes (1) and (2) in the notation
of Ref. [4]], and curve 3 is very close to our results. The
bottom curve 1 is the estimate without QGP formation
by extrapolating the parton model pp result to AA using
A scaling. It is lower than our solid curve by a factor
of 6—2.5. The main source of this difference is from the A
dependence of p-A cross sections. Reference [4] used an
A scaling with o. = 0.76 [33] instead of the value n = 1
we use from Glauber geometry. We note that the value
o. = 0.76 is taken from low energy experiments, where en-
ergy conservation suppresses the contribution from mul-
tiple collisions. At high energies, @CD factorization im-
plies that o. = 1 for p-A scaling is the appropriate scaling
modulo small nuclear shadowing effects. To demonstrate
this effect from different A scalings, we multiply curve
1 by a factor of A~ /A ' = 3.55 and get curve 2, which

FIG. 3. The production of charmed hadrons as a function
of xf for p-p collisions at P& b = 400 GeV [27]. The solid curve
is our result for do/dxf using the first parametrization. The
dashed curve is our result using the second parametrization.
These curves assume a delta function charm fragmentation
function.
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FIG. 4. The cross section for pp ~ bb+ A vs v S/A. The
data point at ~S = 630 GeV is from Ref. [34]. The dashed
cross at ~S = 1.8 TeV is obtained indirectly from [23], and
the error bar is only illustrative.

is close to our results. In summary, the factor 50 en-
hancement of charm production suggested in Ref. [4]
comparing curve 1 with curve 4 for charm production at
RHIC is a consequence of the inclusion of incoherent Aa-
vor excitation processes and the extrapolation from pp to
AA via low energy scaling. Given the coherent suppres-
sion of the Ravor excitation processes [12] and the high
energy scaling under consideration, it is only sensible to
compare curve 2 with curve 3. In that case Fig. 2 leads
to the expectation that preequilibrium charm production
should be comparable to the initial fusion rate. This re-
moves the bulk of the discrepancy between Ref. [2] and
Ref. [4].

As a further check on the parameters we compare
charmed hadron xf results in Fig. 3 with 400 GeV
p-p data [27] using the idealized b-function fragmenta-
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tion function. The realistic fragmentation function used
in Ref. [16) lowers the curves slightly and reveals the
true high-xy intrinsic charm component. In Fig. 4 we
compare bb production. Here we take M = 4.75 GeV
as in Ref. [23], with K = 3, nf = 5. The data point
at ~S = 630 GeV is from Ref. [34]: o(pp ~ b+ X) =
19.3 + 7(expt) + 9(theor) pb, and only the experimental
error is indicated in Fig. 4. At ~S = 1.8 TeV, our value
is 41.8 pb x K = 125 pb. This is significantly larger than
found in Ref. [23].
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III. PREEQUILIBRIUM CHARM PRODUCTION

We consider next the preequilibrium contribution to
the charm yield in A+ A. This is the charm produced
through Anal state interactions between partons in the
dense minijet plasma. Here we only calculate the domi-
nant contribution from minijet gluon fusion.

A. Spectrum of minijets

10
0 1 2 3 4 5 6 7 8 9 10 1'I

(GBV~

FIG. 5. The minijet gluon distribution
A (dK/dydee~) p is plotted. The solid curve is taken
from the HIJING calculation vrith radiation efFects included,
and the circles are our result from the initial production. The
dashed line is the 6t 0.06e

The spectrum of minijet gluons in leading order follows
from Ref. [35]:

de
dt gg~gg

9 pro, , ut ui3—
2 i2 i /Q 2

do

dt gq-+gq

~2 4~2+ i2 ~2+ i2
+

9 ui t2 (5)

The term "minijets" refers to unresolved jets at a scale
p~ )p~, „~ ——2 GeV. The inclusive cross section to pro-
duce minijets is given by

do do
dysxI f]x2f2 =(1 + 2 m 3 + 4),

8gdp~ dt

where fq is the incident parton distribution evaluated
at xr ——p~(e" + e"')/~s at a scale Q = p&. The
light-cone coordinates of the initial and final partons

are pI —— [2xIpp 0, 0] p2 = [0 2x2pp)0]l ps
[m~e"', m~e "',—p~], and the observed parton has p =
[m~e", m~e ",pJ ]. The subprocess Mandelstam vari-
ables are i = Sxqx2, etc. For the calculation of mini-
jet gluon fusion process in the following Sec. IIIB, we
choose Q = s. As in Ref. [2], we use DO1 as the proton
structure functions and K = 2, M, = 1.5 GeV for the
minijet production. Shadowing on Au is taken from Ref.
[36]. The resulting transverse momentum distribution of
midrapidity minijet gluons at ~s = 200A GeV is shown
by the open circles in Fig. 5. We call this distribution
the hard distribution since it has p~, „~ ——2 GeV. It is
compared to the solid line, which is the output of the
Monte Carlo calculation via the HIJING model [8] that
includes initial and Anal state radiation.

For convenience we have parametrized the Monte Carlo
results as the following:

—:g(p~)p(y)A ~ = 0.06e ' s"~ cos A ~ with ~y~ & 3.7. (7)

In the following, we call this parametrized distribution
the soft+hard distribution. The soft+hard, hard, and
Monte Carlo distributions are very close to each other
in the semihard p~ ) 2 GeV region at y = 0, as seen
in Fig. 5. However, the parametrized distribution falls
underneath the Monte Carlo result in the region p~ & 1
GeV. We emphasize that the soft component is strongly
model dependent as it requires the furthest extrapolation
from the p@CD hard domain. The HIJING yield in that
region is due to initial and Anal state radiation. Other
contributions in this soft domain from coherent string
are possible [6]. While most of the following results are
obtained with the simple parametrization above, we will
check the sensitivity to variations of the soft component

as well. We also note that at larger rapidity the p~ spec-
trum falls more rapidly. The above parametrization does
not include that property. However, that property only
lowers the high-p~ tail, and hardly changes the low-p~
part and the total number of the preequilibriurn charm.

B. g-y correlations

&joe'ken cot v elation

In ideal Bjorken dynamics, the space-time rapidity

2 ln[(t + z)/(t —z)] and the true momentum ra-
pidity y =

2 ln[(E+ p, )/(E —p, )] are assumed to be per-



OPEN CHARM AS A PROBE OF PREEQUILIBRIUM DYNAMICS. . . 2181

fectly correlated. This is referred to as the inside-outside
picture and the phase-space distribution function in this
case has the form

I'(x, p, t)~, = (2vr) s dN
7 7t RApg dydpJ

x 8(q —y) O(~ —7,)O(7-f —r).
0.1 fm/c is the minijet formation time.

1.7 fm/c is the proper time when the en-

Il(z, p, t)~, d'x
(2m) s

d3N 1 dN
d3p E dydp~

In this section we study the preequilibrium charm pro-
duction at y = 0 [2]:

ergy density of the preequilibrium minijets falls by an
order of magnitude to 2 GeV/fm due to rapid lon-
gitudinal expansion, and that is when we terminate the
preequilibrium stage.

The phase-space distribution is normalized such that

" &.~z, &-„i) &.(*-,&-„&) ~M~* 4"& ) s") .

Denoting dX/dydp~ = g(y, p~) and p1, ——(costi, sin/1, 0)p~i, the ideal q-y correlation leads to

( d Xl& ' d7. „„„„„g(q,p~, )g(rI, p~2)b(Q E)lMl2

ln(~g/~;)
32(2vr)'sr R2

y(n, p~1,0)g(n, p~2) IMI'

p~2 [1 —cos($1 —P2)] —(E cosh q —p cos $1)

In deriving the above, we have used kinematic relations

E —(pi 1 + pi 2) cosh rI E&

~(EE)

If one assumes a fixed volume V = ~,7rR2&, then jdt
~f —v;. , and

dx17f
V2 vrR~ ~,.

~(PL 1 PZ 1,0)

p~ 2 [1 —cos($1 —P2)] —(E cosh 77
—p cos $1)

as in Ref. [2]. Then from Eq. (10), we have

p~2(E cosh g —p cos P2)
p~2 [1—cos($1 —Q2)] —(E cosh Fj —p cos $1)

(12)

10

Numerical integration of the above integral in Eq. (11)
leads to the results shown in Fig. 6. The solid line is the
p~ distribution for the initial charm production, from
Sec. II. We see that the preequilibrium contribution in
this strongly correlated case is totally negligible. This
result is similar to the thermal charm production contri-
bution calculated in Ref. [2] except that in our case the
curve extends to higher p~ because of the broader initial
minijet distribution in p~.

2. Uncorks elated g-y
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In Ref. [2], another extreme case, opposite to the ideal
Bjorken picture, was considered. In that case the gluon
distribution is assumed to be completely uncorrelated as
in an ideal thermal fireball. This assumption leads to

(2~)s 1 dN
E(Z, p, t)pn =

p V dydee~

FIG. 6. The distribution (Ed N/d p) of charm quarky=0
production using h(g —y) correlation is plotted as a function of
p~. The solid curve is the initial charm production. The curve
labeled with solid diamonds is the preequilibrium contribution
including both the soft (p1 ( 2 GeV) and hard (p~ ) 2 GeV)
components of the minijet gluons. The curve labeled with
open diamonds is the preequilibrium contribution including
only the hard component.
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( dsN l I(p~)
d'p )„, 32(2~)'

where

d'x
Q2

I(p~) = dyI dy2dp~2dpI dp2
g(yl ~ p+1,0)y(y 2& pJ 2) IMI'

p~2 [cosh(yI —y2) —cos(Pq —P2)] —(E cosh yI —p cos Py)

EE) ~(p~i —p~i, o)
E' p~2 [cosh(yq —y2) —cos(Pq —P2)] —(E cosh yq —p cos Pq)

'

p~2 (E cosh y2 —p cos P2)
p~2 [cosh(yq —y2) —cos(Pq —P2)] —(E cosh yI —p cos Pq)

For the uncorrelated case, the preequilibrium charm production is much larger than the Bjorken correlation case,
and is comparable with the initial charm yield, as shown in Fig. 7. This is similar to the result in Ref. [2] where
preequilibrium charm production has almost the same magnitude and p~ shape as the initial charm.

8. Minim, ally eorr elated vy-y

We consider here the simplest source of g-y correlations resulting from the minimal geometrical spread in initial
production points required by the uncertainty principle. These type of correlations are included in the parton cascade
model and discussed in Ref. [9]. The phase-space distribution function including such minimal correlations has the
form

&max: cosF(x, p, t);„=JV, ')' " pp(xo, to)b(x —xo —vAt)d xodto
dydee~ 1+ ('f(J') )2

(17)

The integration is over the space-time coordinates (xp, to)
of the production points of the gluons. These points are
distributed according to a normalized density po(xo, to).
The delta function arises to take into account the free
streaming of the partons from the production point,
with velocity v = p7jE, where E = p~ coshy and p, =

p~ sinhy. The theta function defines what we mean by
preequilibrium. The proper time when the preequilib-
rium fusion is terminated is 7, which is determined
in Fig. 8. The theta function ensures that only those
gluons with proper time less than w contribute.

The formation physics is included via the Lorentzian
formation factor [10]
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FIG. 7. The distribution (Ed N/d p) of charm quarky=o

production for the uncorrelated case is plotted as a function
of p~. The solid curve is the initial charm production. The
curve labeled with solid circles is the preequilibrium contribu-
tion including both the soft (p~ ( 2 GeV) and hard (p~ ) 2
GeV) components. The curve labeled with open circles is the
preequilibrium contribution including only the hard compo-
nent.

t (fm/c)

FIG. 8. The energy density at z = 0 is plotted as a
function of proper time assuming minimal correlations and
I orentzian formation probability. The solid curve includes
both soft and hard components while the dashed curve is cal-
culated using the hard distribution and includes only the hard
component.
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where 4t = t —tp is the elapsed time, and the formation
time is given by

ciple by an amount bz—:d h/p~ since the dominant
parton interaction leading to a y = 0 parton with final

p~ has an initial longitudinal momentum zP0 p~. We
take as a particular model

0.2 GeV
tg (p) = cosh y

'
(fm) .

PJ
d = (fm).

0.2
PJ

(22)

We note that the above formation factor more accurately
describes the interference phenomena suppressing pro-
duction at early time than the conventionally assumed
factor

0[&t —t t (p)) . (20)

lim F(x,p, t)~;„d x/(27r) = d N/d p
taboo

As discussed in Ref. [9], the production points are spread
along the beam axis according to the uncertainty prin-

In the following we consider both formation functions for
comparison to check for the sensitivity to this formation
physics.

We assume that J po(xp, tp)dsxpdtp ——1. In this case
the normalization factor is JV = (27r)s/E, so that

Clearly this is only a rough guess, but it allows us at
least to investigate the sensitivity of the results to a
particular q-y correlation that results from this spatial
spreading of the production points. We emphasize that
it is precisely the uncertainty of the initial space-time
formation physics that leads us to study the possibility
of open charm production as an experimental probe of
that physics.

Given the above assumption we take

1 e zo/(2d )

po(xo, to) = R, ~(to)
27K d

where d is the mean spread for gluons depending on p~
from above. This distribution only spreads out the pro-
duction points along the beam axis. A more realistic
treatment would also smear out in the time coordinate.

Neglecting transverse expansion, we obtain finally

t
( ~) pl (s g~ohy g) (~ is)2 1 dN ( ~sx coshy )

+2~~R2„0.2 p dy dp& 1+('" '"")2 (24)

Let aq ——tanhyq, a2 ——tanhy2, bz ——("p'2') /2, b2 ——("p 2 ) /2; then after integration over z, we have the final
expression as the following, while its numerical results are shown in Fig. 9:

f dsN l ~7r
dsp ) 16(2~)4R~2

g(yi, pal, o)y(y2& pi 2)
X

Qbg+ b2 0

pi&, o"..'2' "p".2' IMI'
dy, dy, dp~, dP, dP,

p~2 coshyg coshy2(E coshy2 —p cosPz)
—(n1 —a2) t

1/b1+1/b2
dt

1 + (
0.2 coshyy )2 1 + (

0.2 coshys
)

2
J ~1ot

(25)

In the above tf = r „min (coshyj, coshy2), and p~z p

is the same as in Eq. (16). Note that by using the
unit GeV for momentum and unit fm for time, the

expression E &, in Eqs. 11, 15, and 25
P y —0

has the dimension GeV fm, and we need a factor
(hc) (0.2 GeVfm)2 to convert it to the dimension
GeV, which we have used in Figs. 6, 7, 9, and 10.

We also plot the energy density curve at z = 0 as a
function of time in Fig. 8. We see that it; increases first,
and reaches a maximum at a time of about 0.1 fm/c; then
the energy density decreases linearly to 2 GeV/fm at

0.9 fm/c ( 1.7 fm/c ) for hard (soft+hard) distribution.
We choose the above time as the cutoff v

The previous uncorrelated case neglects the finite for-
mation times of the minijets. In order to see the

formation-time effect, we also use the 0-function form
in Eq. (20) instead of the Lorentzian form in Eq. (18) for
the formation-time effect. The result from this 0 function
is about 10% higher at p~ = 0 GeV, and 10% lower at
p~ ——9 GeV, as shown in Fig. 10. The lack of sensitivity
to the formation-time physics is due to the relative large
p~ for the gluon xninijets in the charm production pro-
cess. There would be more sensitivity had the production
been dominated by low-p~ components.

We also see that for the soft+hard distribution the soft
gluons significantly increase the preequilibrium charm
production in both the low-p~ and high-p~ regions, with
the largest increase in low-p~ region. It is interesting to
identify where the enhancement comes from. In Fig. 9,
the curve with diamonds shows the contribution from the
fusion of soft gluons both with p~ ( 2 GeV, and the curve
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use the old fit 0.06e "~ for higher-p~ gluons. This
new Bt gives us more very soft gluons. We have done the
calculation for the minimally correlated case using the
new fit, and the result is different only by less than 10%,
which means the supersoft gluons are not very important
for preequilibrium charm production.

There is also a possible cross-term contribution from
the interactions of the incoming nuclei and the preequi-
librium gluon minijets. However, our preliminary result
shows that it is not larger than the above preequilib-
rium charm yield and is therefore also negligible com-
pared with the initial charm production.

C. Why is the preequilibrium charm yield so small?

FIG. 9. The distribution (Ed N/d p) of charm quarky=0
production using minimal g-y correlations is plotted as a func-
tion of p&. The curve labeled with solid squares includes
both components while that labeled with open squares in-
cludes only the fusion of hard gluons. The curve labeled with
diamonds shows the contribution from fusion of soft gluons
both with p& ( 2 GeV. This shows that the preequilibrium
contribution mainly comes from the fusion of soft and hard
gluons. (hc)'

4(2~) s
d4x d Pl P2 F(

(dy

To understand the reason why the preequilibrium
charm yield is so small compared to the initial yield as
found through tedious numerical calculations in the pre-
vious section, we consider here the calculation of the total
number of preequilibrium charm pairs. The expression
for that number is given by

with open squares shows the contribution from the fusion
of hard gluons both with p~ ) 2 GeV. These two curves
are both very low compared with the curve calculated
from the soft+hard distribution. So the enhancement go-
ing from a hard distribution to a soft+hard distribution
mainly comes from the fusion of hard and soft minijet
gluons.

We have noted before that our fit for the minijet gluon
spectrum falls below the Monte Carlo result from the HI-

JING calculation. We can fit the soft gluons from HIJING
better by using 0.265e 2 s"~ for p~ 6 (0, 1.1) GeV, and

x F(x, p2, t) so.(s),

where o (s) is the integrated cross section for the process
gg ~ cc; see Eq. (2). Our main strategy is to estimate
the mean difFerence between the two gluon rapidities and
then from the kinematical constraint on charm produc-
tion (s ) 4M2) estimate the effective lower cutoff for p~
of the minijet gluons. Thus we separate the p~ integrals
from the rapidity integrals and have a rough estimate for
the total number of charm pairs.

10

BjorIcen correlation ca8e and uncorv'elated ca8e

For the fireball case,

10)
Q)

1 0
II

CL
10

U
LLI

10

10
0.0 2.0 4.0 6.0

PT (GeV)
8.0

(2~)' 1 dK
F(T,p, t)Fn =

p V dydp~
'

s = 2p~&p~2 [cosh(yz —y2) —cos(P& —P2)] .

For the Bjorken case,

F(z, p, t)n; = „2O(7. —7 ) ~(Or—t T),
(27r)s d% 8(g —y)
pJ g pJ 7KB~

s —2pJ ypJ 2 [1 cos(4'1 'lt'2)] .

FIG. 10. The distribution (Kd N/d p) of charm
y=O

quark production using different formation-time probabil-
ity distributions. The solid curve is obtained using the
Lorentzian form in Eq. (18), and the dashed curve using the
theta function form in Eq. (20).

(28)

For all the cases, we use the fit to the gluon distribution
given by Eq. (7), where g(p~) = ae "~ = 0.06e
Therefore,
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(hc)2 —A ~

4 R2

(hc)' In@ As)'

4'A~2

P(») d P(»)
dy1 dy2

cosh y1 cosh y2
dpJ yg(pi&) dpi2g(pJ 2) dt's d4'2s+(s)

dq(p(q)] dpi', gIuz, ) fdic. ,gIy. , ) ddt dPgiici)ii)

The dominant contribution is coming from the vicinity
of the production threshold where 8 = 4M = 9 GeV
[ll], and so we make the following rough estimates:

so(s) n (s) 0.06,

We then have the estimate for the total number of the
preequilibrium charm:

NPB
4

'
2 2 8 1 ob

2' so 8

dp~g(p~)-
a

dp&g(p&) - b, (30)

where p is the effective cutoff value for pg 1 and p~ 2 from
the requirement 8 & 4M

For the fireball case,

3.5,

(hc) in~As) s

0.098.

4 9 7 b
2~ 2 s~ s

(34)

"d d "' "' h'

cosh y1 cosh y2

4.0. (31)

y1 ——y2 ——g ~ 8 3p ~ p 1 73 GeV. (32)

Since the minijet p~ spectrum is dropping almost expo-
nentially, the production heavily favors the smaller cutoff
p„and so the mean value of cos(Pq —P2) is most likely
to be negative. We take (cos(Pq —P2)) —0.5. Then
s 9p, and so the effective cutoff for the fireball case is

p 1.0 GeV.
On the other hand, for the Bjorken case,

Therefore we estimate NFB/Ng; 35, in rough agree-
ment with the detailed numerics. We see that the main
source of the large increase going from the Bjorken case
to the fireball case comes from the different p~ cutoff In
the uncorrelated fireball case, one allows particles with
different rapidities to interact with each other [see Eq.
(31)]; thus more low-p~ gluons can take part in the in-
teraction. Since the minijet p~ spectrum is dropping al-
most exponentially, the fireball case produces a lot more
preequilibrium charm than the Bjorken case (a factor of 6
increase from the smaller p~ cutofF). Although the ques-
tionable linear proper time dependence in the fireball case
also gives an considerable increase (about a factor of 3.5),
it is not as important as the correlation effect.

Using the same values as in Sec. III B, w, = 0.1 fm,
7 f = 1.0 fm for the fireball case, wf ——1.7 fm for the
Bjorken case, and

2. Minimal cot r elation ease

dy
'("') - 2 8

cosh y1
dq [p(q)]' - 4.9. (33)

For the minimal correlation case, the estimate is un-
fortunately not as straightforward. The phase-space dis-
tribution function is

(2~) e (z anhy t) ( — )—~/)dN ( t l ( h hF(xp t),„= gi ~ „

hagi

hccoshy dy dp& ( "
coshy) ( p~

(35)

and s is the same as in Eq. (27). In the above distribution function we choose to use the g function for the formation-
time effect. We have seen from Fig. 10 that Lorentzian formation-time formula and 0-function formula give almost
the same result.

Using Eq. (26) and after the integration over z, we have

(hc) A ~

dp&ig(pii) Jdp+, g(pi. ) dpi dpi'
4vr B2~

where

x dye dy2 sa (s)p(») p(»)
cosh y1 cos y2 &xni n

—(a1 —a2) 2 2

1/61+1/b2
dt

Ql/b~ +. 1/b2
(36)

(cosh yi coshy2it;„=hc max
~

= 7 f min(cosh yz, cosh y2),
p~2

(37)

and a), a2, bq, b2 are defined the same as in Eq. (24).
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We estimate that for the dominant part of the integral

h,c cosh y
t~~~ ~ 7 y cosh g,

p
(38)

where y = (~yi~ + ~y2~)/2. Now let u = t p, /(hccoshy); then the last three-dimensional integral in Eq. (36) without
the factor so.(s) is

s (ui)
cosh gy

dy2 —cosh y
~(») 1

cosh y2 2

&f Pc
hc f »iih(yl y2) «sh y )2 2

du e ~«shy& c»hy

The u integral gives a dependence on ~y which is similar to the logarithmic dependence in
the exponential form in the integrand forces the spread y~ —y~ to be small. Numerically, by
p, 2.0 GeV (as the first-step value) in the u integral, the above three-dimensional integral
the integrand is weighed by cosh(yi —y2), the integral is 23.3. So

(cosh(yi —y2)) 23.3/19.1 1.22 ~ s 3.44p ~ p 1.62 GeV.

the Bjorken case, and
taking v.

y 1.7 fm/c,
is J 19.1, and when

(40)

Note that the above determined value of p, is insensitive to the first-step p, value we tried in the u integral.
Therefore for the total preequilibrium charm number

(hc)'As~'
~%Jag(PJx) ~$'-J -zg(PJ2) J ~4'i &42 ~ -«(~)

4~A~~

(hc) 'As~s J a
(2~) '[s& (s)] —0.10.4' A~2 g~ be'6'~ (41)

Therefore N;„/JV~; 1. From the above estimate we
can see that although the minimally correlated case al-
lows particles with diferent rapidities to interact, the
dominant contribution still comes from the region where
the two gluons have almost the same rapidity; thus there
is no sizable enhancement in the preequilibrium charm
yield. The minimally correlated case is very much like
the Bjorken case in that the dominant contribution comes
from y] y2 region.

As a comparison to the above rough estimates in this
section, the numerical integration gives NFB —— 3.8,

0.093, and K;„= 0.078, and so JV;„/N~„
80%.

IV. DISCUSSIQN AND SUMMARY

In this paper, we calculated initial and preequilibrium
charm production in nuclear collisions to test the sensitiv-
ity of this probe to the unknown initial conditions in such
reactions. For the initial charm production, the sensitive
dependence on the choice of structure functions, the Q2
scale, and the K factor was noted. The parameters were
fixed by fitting the limited available experimental data
at lower energies. We emphasized the need for new mea-
surements of pp and pA charm production to reduce the
present large theoretical uncertainties. We argued that
the copious charm production predicted in Ref. [4] was
mainly due to the neglect of the coherent suppression of
flavor excitation processes. Our calculated initial charm
yields are close to those computed in Ref. [2] and to
curve 2 in Fig. 2 from Ref. [4].

For the contribution from preequilibrium charm pro-
duction, we studied the effect of correlations between the

rapidity y and space-time rapidity g of minijet gluons.
For the ideal Bjorken-correlated case, where g = yq ——y2,
the preequilibrium charm production is negligible com-
pared with the yield due to initial gluon fusion. For the
opposite extreme fireball case, corresponding to uncor-
related. y and g, the preequilibrium charm production is
almost a factor of 50 larger than in the Bjorken-correlated
case and is comparable with the initial charm yield [2].
By the estimates of the total preequilibrium charm num-
ber, we found the the difference mainly comes from the
g-y correlation. Therefore, the preequilibrium charm pro-
duction is very sensitive to the (il-y) correlations in the
initial state.

In order to investigate the efFect of more realistic cor-
relations that may exist in the initial minijet plasma, we
introduced a minimal correlation model taking into ac-
count the uncertainty principle along the lines of Ref. [9].
Our main result is that this minimal correlation is sim-
ilar to the ideal Bjorken correlation case and produces
negligible preequilibrium charm compared with the ini-
tial charm yield. We also found that the preequilibrium
charm yield is rather insensitive to the formation physics
because the early-formed p~ ) 1 GeV gluons dominate.
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