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The boundary of a boson system plays an important role in determining the momentum distri-
bution of the bosons. For a boson system with a cylindrical boundary, the momentum distribution
is enhanced at high transverse momenta but suppressed at low transverse momenta, relative to a
Bose-Einstein distribution. The boundary effects on systems of massless gluons and massive pions
are studied. For gluons in a quark-gluon plasma, the presence of the boundary may modify the
signals for the quark-gluon plasma. For pions in a pion system in heavy-ion collisions, Coulomb
final-state interactions with the charged nuclear participants in the vicinity of the central rapidity
region further modify the momentum distribution at low transverse momenta. By including both
the boundary effect and the Coulomb final-state interactions we are able to account for the behavior
of the 7~ transverse momentum spectrum observed in many heavy-ion experiments, notably at low

transverse momenta.

PACS number(s): 13.85.Ni, 12.38.Mh, 24.85.+p, 25.75.4r

I. INTRODUCTION

Recently, the production of high-density and high-
temperature matter in relativistic nuclear collisions has
received much attention. It is generally expected that
these collisions may provide the tools to probe the exis-
tence of a new phase of matter of strongly interacting par-
ticles, the quark-gluon plasma (QGP), at high tempera-
ture or at high baryon density [1]. In the QGP, quarks
and gluons are deconfined; the deconfinement refers to
a circumstance in which quarks, antiquarks, and gluons
are no longer confined within the spatial dimensions of
a hadron. Quarks and gluons are nonetheless confined
within the boundary of the plasma. Under laboratory
conditions in which a QGP is produced using relativistic
heavy-ion collisions, the expected initial transverse ra-
dius of the QGP is comparable to the smaller of the radii
of the two colliding nuclei producing the plasma, typi-
cally a few fm. Therefore, a corollary of the existence
of a QGP in a heavy-ion collision is that the quarks and
gluons in the plasma travel freely within a spatial region
of a few fm.

The distribution of transverse momentum provides in-
formation on the transverse boundary of the plasma. It
can be used to detect the presence of the QGP. Fur-
thermore, the magnitudes of the signals for QGP de-
tection are functions of the momentum distribution of
the quarks and gluons, which has improperly been taken
to be a thermal distribution [2-4]. Because the pres-
ence of the boundary affects the momentum distribution
[5], the boundary effects should be taken into account to
give better estimates of the magnitude of the signals of
the quark-gluon plasma. While the boundary effects on
quarks have been studied previously [5], here we wish to
study the effect of the boundary on the distribution of
the transverse momenta of gluons in a QGP, using wave
functions which satisfy the boundary conditions.

Another interesting boson system in which boundary
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effects may manifest themselves is the multipion system
produced after a high-energy heavy-ion collision. Before
the pion system freezes out, if the mean-field potential of
the system has a boundary as in a quasibound system,
the transverse momentum distribution will show the ef-
fect of the boundary.

The subject of the transverse momentum distribution
of pions has received much attention recently. The lat-
est experimental data [6-8] show that the transverse mo-
mentum distributions of negative hadrons, mainly pions,
from hadron-nucleus and nucleus-nucleus collisions ex-
hibit a striking enhancement at low and high transverse
momenta relative to that of negative hadrons from p + p
collisions at comparable energies. This origin of this puz-
zling phenomenon has been vigorously debated in many
articles [9-17]. Atwater et al. [9] and Lee and Heinz [10]
interpreted the data by assuming a transversely expand-
ing fireball. With assumed velocity profiles, Kusnezov
and Bertsch [11] argued that the transverse velocity pro-
files used in Refs. [9,10] imply an unnatural assumption
concerning the nature of the freeze-out surface. Further-
more, they indicated that a more complete hydrodynam-
ical description of the transverse flow cannot account for
the experimental shape of the pion transverse momentum
distribution at low p,. Another explanation, suggested
by several authors [12-14], is a nonzero chemical poten-
tial for the pions. Alternatively, Sollfrank, Koch, and
Heinz [15] found agreement with the S+S data by includ-
ing contributions due to resonance decays on hadronic
momentum spectra. However, Barz et al. [16] examined
the role of decays of the excited hadrons in determin-
ing the pion p, spectra, and argued that no reasonable
statistical model can reproduce the experimentally ob-
served peak at low p,. in the pion transverse momentum
distributions. A very good agreement with the S+S data
has also been found by Bolz et al. [17] by modifying Lan-
dau initial conditions with an initial rapidity distribution
which is only a function of the longitudinal coordinate.

In this work we study the boundary and Coulomb ef-
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fects on pion systems at high temperature. The momen-
tum distribution of particles in a bounded medium is
altered because the single-particle wave function must
satisfy the appropriate boundary conditions. The pions
produced after a nucleus-nucleus collision are moving in
the Coulomb field of the colliding charged nuclear partic-
ipants, whose total charge depends on the impact param-
eter. For a head-on collision, the charge of the colliding
participants in the central rapidity region can be as big
as 2 Z for two identical nuclei. The momentum distri-
bution of charged pions is changed due to the Coulomb
final-state interactions between the pions and the pro-
tons near the center of mass region. This Coulomb effect
depends on the factor n = Za/v, which is large in heavy-
ion central collisions. This final-state interaction has a
large effect on the charged pions with small transverse
momenta, as shown in this paper.

This paper is organized as follows: In Sec. II, we de-
scribe the method for obtaining the momentum distribu-
tion of a boson system. In Sec. III, the transverse mo-
mentum distribution of gluons in a quark-gluon plasma
is obtained, using wave functions satisfying the bound-
ary conditions. In Sec. IV, we study the boundary effect
on the pion transverse momentum distribution in a pion
system at high temperatures. The effect of the Coulomb
final-state interaction on the pion transverse momentum
distribution is discussed in Sec. V. Finally, Sec. VI
contains the summary and conclusions.

II. MOMENTUM DISTRIBUTION
OF A BOSON SYSTEM

For a boson system in a mean-field scalar potential
m(x), if ®,(p) is the boson single-particle wave function
in a quantum state A in momentum space, the momen-
tum distribution of bosons is given by

Tl =00 S W(E) 1B, &)
A

where the summation is carried out over all the single-
particle quantum numbers {A}, g, is the boson degener-
acy number, and W (E)) is the occupation probability of
the single-particle state A. The thermodynamical state of
the system is described by the distribution W (E)),which
is a function of the single-particle energy E. For a bo-
son system at thermal equilibrium W (E) is represented
by the Bose-Einstein distribution, which for a boson sys-
tem at temperature T and chemical potential u is given
by

W(E) = [e{B~#)/T _ 1)1

The wave function @(p), for a boson system with a cylin-
drical boundary, is given by the Fourier transform

1

&(p) = W/Gi"p ®(r, ¢, 2) dr,

where ®(r, ¢, z) is the corresponding single-particle wave
function in configuration space, which is obtained by
solving the Klein-Gordon equation for a boson in a mean-
field potential m(r). The Klein-Gordon equation, for the
wave function ®(r,¢,z) of a boson in a boson system
with a cylindrical boundary and moving in a mean-field
scalar potential m(r) varying in the transverse direction,
is given by

[P2 - mZ(,,,)] @(1‘, ¢7 Z) =0 ’ (2)

where p is the boson four-momentum. Different boson
systems will be described by different mean-field poten-
tials m(r).

III. BOUNDARY EFFECTS ON
A GLUON PLASMA

We consider a gluon in a quark-gluon plasma in the
form of a sharp cylinder, which is presumed to be formed
in a high-energy nucleus-nucleus collision. The mean-
field potential m(r) is defined by

_ [ m, ifr < Ry (region I),
m(r) = { M if r > Ry (region II),

for gluons we set m, = 0. Separation of the wave function
®(r, ¢, z) in Eq. (2) into

®(r,¢,2) = R, (r)ef™"?Z(2)
leads to the longitudinal wave equation
d2
[a
and the radial wave equation

[%+li+(cg_:_:)]3,(r)=o, (4)

rdr

2 E2] Z(z) =0 (3)

where C2 = m*? — m?(r), and m* is separation constant
which physically is the transverse mass. For simplicity
we shall study the case of an infinitely long cylinder; this
gives E> = P2 + m*?, where E is the eigenenergy and
{P?.} are the eigenvalues associated with the longitudi-
nal wave functions Z,_(z) = Ae’P»:*. Equation (4) is a
Bessel equation which has the following two solutions:

RI(r) = AJ,(Cyr)
Rll(r) = A'K,(CLr)

in region I,
in region II,

where C2 = m*? —m_, C}? = M? —m*?, and A and A’
are overall normalizations. Using the continuity of the
logarithmic derivatives of the two wave functions RE(r)
and RI!(r), and taking the asymptotic forms of both J,
and K, as M — oo in region II, we obtain an eigenvalue
equation for C, as

RIJ(RO) = Ju(cu,sRO) = 0’ (5)

which gives C, , = j, 5/Ro, where the values {j, ,} are
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the zeros of the Bessel function J,.
function is then

R, s(r) = AJ,(C, 7).

We note that for the case of transverse confinement,
m* is quantized and contributes a zero-point energy as-
sociated with motion in the transverse direction. Thus,
as is evident from Eq. (3), even for a gluon with zero
rest mass, the gluon acquires a nonzero intrinsic momen-
tum distribution due to the kinetic energy of confine-
ment.

Introducing the Fourier transforms of Z,_(z) and
R, ,(r)et?, we find longitudinal and transverse wave
functions in momentum space,

Fo. (p2) = \/-32_; / P57, (2)dz (6)

and

2 ! Prr v
¢Vv”(pT) = 2_7T /dzl‘ e'Pr R,,,B('r) e:t ¢
1
=B 2— /TdT JV(PTT)J,,(CV’ST) , (7)
™

where B is a constant. Carrying out the integration gives
18]

dN,
d3p(dz/27r

=g, Zeu[

<Nt

o)/ T _ 1] -1

Ry

In contrast, if the boundary of the quark-gluon plasma
extends to infinity, then the transverse momentum dis-
tribution is given by the Bose-Einstein form:

dN, _ wR2 1
Sp(dz/2m) ¢ (2m)2 eE-W/T —1°

(11)

Figure 1 shows the transverse momentum distributions
of the gluons in a quark-gluon plasma of different radii
Ry = 2, 3.5, and5 fm, at temperature 7' = 200 MeV,
p =0, and p, = 0. The solid curves give the gluon trans-
verse momentum distributions including the boundary
effects, as given by Eq. (10). The dashed curves give
those distributions for an unconfined plasma, obtained
using the Bose-Einstein distribution, given by Eq. (11).
For a plasma of a small radius, the distribution given
by Eq. (10) (the solid curves) differs from that given by
the Bose-Einstein distribution of Eq. (11) (the dashed
curves), as shown in Fig. 1(a). In each case, the distribu-
tion which includes the boundary effect is suppressed at
low p,. relative to the Bose-Einstein distribution; this is
due to the small density of confined single-particle states
at low energies. As the radius of the plasma increases,

The radial wave

P oz, [Pr Jut1(prRo) Jo(Cy s Ro)

2137

- Ro
¢u,s(pT) = Nu_l/zpz— [pT V+1(pTR0) J (Cv sRO)

l/8

_Cu,s Ju(pTRO) u+1(Cu,sR0)] )
(8)

where

N, = / d’p..

‘—‘E?‘[PT Jy4+1(prRo) J,(Cu s Ro)

2
_CV»H JV(pTRO) JV+1(CV,3RO)]

The wave function qgu,a(pT) varies approximately as p, 3,
with a small oscillatory component, at large p,. The

single-particle wave function in momentum space is de-
fined as

= (;Sv,a (pT)]:n, (pz) )

and hence the gluon momentum distribution [Eq. (1)]
becomes

&’nz,u,s(p)

| B8 ( p’r)l | P, (p2) I
e(Bv—n)/T _ 1

9,2 >

vs mn,

; (9)

wheree, = 1forv =0,¢, = 2forv =1,2,3,... the gluon
degeneracy number g, is 8. The transverse momentum
distribution of the gluons in a quark-gluon plasma of tem-
perature T and chemical potential u is therefore given by,
using Egs. (6), (8), and (9),

2

- Cu,s Ju(pTRO) JV+1(CV,3R0)] . (10)

the distribution in the low-momentum region increases
and approaches the Bose-Einstein distribution of an un-
bounded boson system; this is shown in Figs. 1(b) and
1(c). The large difference between the two distributions
at very low momenta, p, < 0.1 GeV, is due to the fact
that Bose-Einstein distribution diverges as the momen-
tum of the massless gluon goes to zero, and in contrast
the distribution with a boundary does not, due to the
smaller density of low-energy states. In the opposite limit
of large p,., the bounded case has a large high-momentum
tail, which varies with the transverse momentum by a
power law, and exceeds the Bose-Einstein distribution
by many orders of magnitude. This is due to the vanish-
ing of the single-particle wave functions at the boundary
of the plasma. The momentum at which the distribu-
tion begins to differ substantially from the Bose-Einstein
distribution increases with the radius of the plasma.

In contrast to our results for the momentum distri-
bution at low p,, Sinyukov [19] studied the finite-size
effect on the momentum distribution of a massless parti-
cle using Bjorkan’s scale hydrodynamics. He found that
the single-particle transverse momentum at p, =~ 0 is
much enhanced over the Bose-Einstein distribution (the
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Boundary FIG. 1. The transverse mo-

1 mentum distributions of gluons
in a quark-gluon plasma with
a sharp cylindrical boundary,
for radii Ro = 2, 3.5, and 5
fm, at temperature 7' = 200
MeV, p = 0, m;, = 0, and
p. = 0. The solid curves
are the numerical results ob-
tained using Eq. (10), and the
dashed curves are the predic-
tions for a Bose-Einstein distri-
bution, given by Eq. (11).
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Bose-Einstein distribution is infinite at p,, ~ 0 for an
equilibrated massless particle gas). The physical reason
of the enhancement is not known. His results also con-
tradict those of Bolz et al. [17], and Kataja et al. [20],
who studied the transverse momentum distribution using
Bjorkan’s scale hydrodynamics. The p,. distributions for
massless particles in the latter two calculations do not
show an enhancement over the Bose-Einstein distribu-
tion.

IV. EFFECT OF MEAN-FIELD BOUNDARY ON
A PION SYSTEM

After an ultrarelativistic nucleus-nucleus collision the
produced pions are at high temperature, typically 100—
200 MeV. It is well known that w-7 interaction in the
isospin I = 0 state is attractive [21]. Furthermore, the
strong interaction range of the pions is about 1.4 fm and
the average separation between pions, d, in these pion
systems can be estimated as follows. The pion density is
approximately [22,5]

1 dN,
n=-— —
A tody
where tg = 1 fm/c is the formation time and A is the

transverse area of the collision region. For 0 on Au at
2004 GeV, the peak value of dN,/dy is 120- 3 = 180 and
it is 120 for S on S at 2004 GeV. The average separation,
d = n~1/3, between pions in the pion system produced
in the former collision is about 0.6 fm and about 0.7 fm
in the latter collision. Because the average separation
between pions is smaller than the pion interaction range,
the pions in such systems are strongly interacting with
each other and they are moving in an attractive mean-
field potential which extends over the pion system. The
attractive mean-field leads to a quasibound pion system
which can be considered to be in a liquid phase with a
surface boundary, rather than in a gas phase. The no-
tion of a pion liquid was introduced by Shuryak [23], to

emphasize the importance of interparticle interactions;
these interactions are attractive and have easily observ-
able consequences.

We assume that hadronic matter after a heavy-ion col-
lision is only confined within the boundary of their mean
field when their average separation is smaller than the
interaction range between pions. They become free pi-
ons when the pions’ average separation in the system be-
come larger than their interaction range. Because of the
short range nature of the pion interactions, as the system
expands, the transition from a pion with an attractive
mean-field potential to a free pion system, i.e., freeze-
out, is a rapid process. The momentum distribution of
the pions is governed much by their momentum distribu-
tion just before they freeze out. It is therefore reasonable
to use the boundary of their mean field before the freeze-
out transition to calculate the momentum distribution of
the observed pions. Pions in such a system have a mo-
mentum distribution that is modified by the presence of
this boundary. For example, the boundary leads to a van-
ishing of the pion wave function throughout the exterior
region, which enhances the momentum distribution in the
high momenta region relative to a Bose-Einstein distribu-
tion. It is interesting to apply the previous formulation
to this pion system, to develop our understanding of the
boundary effects on a massive boson system.

We consider a pion system in a cylinder with a sharp
transverse (radial) boundary. We envision the boundary
disappearing at the moment of freeze-out, while the mo-
mentum distribution of pions remain unchanged. The
mean-field potential m(r) for this pion system (before
freeze-out) is taken to be

_ J m_ if r < Ry (region I),
m(r) = { oo if r > Ry (region II),

where m_ is the physical pion mass.

Following the discussion of Sec. III, the pion trans-
verse momentum distribution in the bounded system,
with temperature T' and chemical potential u, is given
by
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dn, =g, Z [ (Bu,s—1)/T _ 1]_
d3p(dz/27r
R 2
XNV_ *—CQ [pT V+1(pTR0) JV(C,,,sRo) - Cy,g Jy(pTRO) J,,+1(C,,’3R0)] (12)

In contrast, the pion transverse momentum distribu-
tion without a boundary is given by the Bose-Einstein
distribution,

dN, 7R} 1
d3p(dz/2m) G (2m)2 e(B-w)/T —1°

(13)

where E? = p2 + p? + m? and g, = 3.

Figure 2 shows the pion transverse momentum distri-
butions arising with the boundary [using Eq. (12), solid
curves] and with a Bose-Einstein distribution [Eq. (13),
dashed curves] for systems of different radii: Ry = 2,4,
and 6 fm, T = 200 MeV, p, = 0, and p = 0. The general
features of the pion transverse momentum distribution,
shown in Fig. 2, are similar to those for the gluons, shown
in Fig. 1. For a pion system of small radius, the distri-
bution arising from the boundary effect (solid curves) is
quite different from that of a Bose-Einstein distribution
(dashed curves) but they approach each other as the size
of the system goes to infinity. Note, however, that the
pion transverse momentum distribution at low momenta
is broader than we found for gluons.

Figure 3 shows the pion transverse momentum dis-
tribution Eq. (12) for a pion system with a boundary
(solid curve), and the Bose-Einstein distribution Eq. (13)
(dashed curve), compared with experimental data for
S+S — negatives + X at E = 2004 GeV [6-8]. Fig-
ure 4 similarly shows O+Au — negatives + X. The ra-
dius Ry of the pion source is taken from the results of
pion interferometry [24]. By equating the root-mean-
square radius of our sharp distribution and the Gaussian
distribution of [24], we have Ry = v/2R,., where R, is
the effective transverse size of the source, as defined in

[24]. Our calculations fit the experimental data well over
most of p,., given a pion system of radius Ry = 5.0 fm
for S+S and Ry = 7.0 fm for O+Au, at T = 200 MeV,
1 =0, and p, = 0. However, at low momenta (p,, < m_)
neither the bounded pion system distribution Eq. (12)
(solid curve) nor the Bose-Einstein distribution Eq. (13)
(dashed curve) fits the data.

V. COULOMB EFFECTS ON A PION SYSTEM

The Coulomb final-state interaction in relativistic nu-
clear collisions has been studied by many authors [25-27].
This effect has been found to play an important role in
the momentum distribution of charged multiplicity pro-
duced in relativistic nucleus-nucleus collisions. For exam-
ple, Libbrecht and Koonin [26] used a covariant classical
formulation to show that a Coulomb focusing could arise
toward 6., = 90° and finite p,. in the Coulomb field
generated by two charged fragments in relative motion
(the projectile and the target remnants). Gyulassy and
Kauffmann [27] used a relativistic field theoretic model to
derive formulas to first order in Z« for the Coulomb final-
state interactions. They derived covariant formulas that
took into account multiple independently moving charged
fragments of finite size and finite thermal expansion ve-
locities, and showed the importance and complexity of
the Coulomb final-state interaction in nuclear collisions.

The charged pion inclusive cross section o+ (p), where
p is the particle momentum |p|, to first order in Za and
to first order in the gradient of the pion-source current
J(z) is given [by Eq. (3.13) in [27]] as

10 3 -~ == Bose-Einstein E ———— Bose-Einstein 1 - —=—- Bose-Einstein 1
g , Boundary ——— Boundary s Boundary
o~ 10 r L N E -
N \
C\S 10" |\ R=2.0fm 1 R,=4.0 fm 1 R=6.0fm 1 FIG. 2. The transverse mo-
~ . mentum distributions of pions
. 10 1 in a pion system with a sharp
(lsl . (c) cylindrical boundary, for radii
~ 10 Ro = 2, 4, and 6 fm, at tem-
~ . perature T = 200 MeV, p = 0,
o, 10 m., = 140 MeV, and p, = 0.
ﬁ\ﬁi S The solid curves are the distri-
~ 10 butions arising from the bound-
=, y ary effect, given by Eq. (12).
s 10 The dashed curves are the pre-
e ) ) . \‘.. dictions for a Bose-Einstein dis-

tribution, given by Eq. (13).
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FIG. 3. The pion transverse momentum distributions in a
pion system with a boundary given by Eq. (12) (solid curves),
and the predictions from the Bose-Einstein distribution given
by Eq. (13) (dashed curves), in comparison with the exper-
imental data for S+S — negatives + X at E = 2004 GeV
[6-8]. Good agreement is obtained with a radius Ro = 5 fm,
temperature T = 200 MeV, 4 = 0, m, = 140 MeV, and
p. = 0.
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Boundary
* O+Au 200A GeV

(GeV?)

R,=7.0 fm
T =200 MeV
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0.0 1.0 2.0
pr (GeV)

FIG. 4. The pion transverse momentum distributions from
Eq. (12) for a bounded pion system (solid curves), and
a Bose-Einstein distribution [Eq. (13), dashed curves], in
comparison with experiment for O+Au — negatives + X at
E = 200A GeV [6-8]. Good agreement is obtained with a ra-
dius Rg = 7 fm, temperature T' = 200 MeV, p = 0, m, = 140
MeV, and p, = 0.
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ot (p) = oro[p F 6k(p){1 F6D(p)}, (14)

where o,0(p) is the neutral pion inclusive cross section,
0k(p) is the shift in the momentum p due to the Coulomb
final-state interaction, {1F§D(p)} is the Coulomb phase
space factor, and the =+ signs refer to the charge of the
pion considered. In our calculations o,o(p) is identi-
fied either by the distribution of a bounded pion system,
Eq. (12), or by a Bose-Einstein distribution, Eq. (13).
The longitudinal momentum p_, in terms of the rapidity
y and the transverse mass m,, is

p, = mysinh y, (15)

m, = 4/p2 +m2. (16)

The Coulomb phase space factor for a static charge den-
sity and in the limit of small momentum is found to be
given by the Gamow factor G(n), which is defined as

27n
e (17)
where for a *|e| charged particle, n = £+Za/v, where Z
is the total charge, « is the fine structure constant, and
v is the pion velocity. In our calculations we replace the
first order expansion {1F 6D} of Eq. (14) by the Gamow
factor G(7), to include Coulomb effect to all orders of

Za. Equation (14) thus becomes

27

Ort (p) = oro[p F 0k(D)] et (18)

Figure 5 shows how the Coulomb final-state interac-

3

10

Boundary (7° )
......... ~ Boundary + Coul. (1 )
— --=~ Boundary + Coul. (t")

® \

G N\ R,=5.0 fm ]
- T =200 MeV
z=32
y=2.0-3.0

d'N_/(dp dz/2m)

10’ v - :
00 02 04 06 08 10

pr (GeV)

FIG. 5. The effect of the Coulomb final-state interaction,
calculated using Eq. (18) on the transverse momentum distri-
butions of 7+, 7, and 7° in a bounded pion system produced
after the collision S+S — negatives + X (see text).
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tion given by Eq. (18) affects the pion transverse mo-
mentum distribution, which was obtained previously us-
ing Eq. (12) for a pion system formed after a relativis-
tic S+S collision, with Z = 32 and Ry = 5.0 fm. It is
clear that, at low p,., the Coulomb final-state interaction
enhances the 7~ transverse momentum distribution and
suppresses that of 7 relative to 7°.

Figure 6 shows, relative to that of a p + p collision in
comparable energies, the ratios of the normalized pion
transverse momentum distributions for a bounded pion
system given by Eq. (12) (solid curve), and the Bose-
Einstein distribution of Eq. (13) (dashed curve), com-
pared to experiment for S+S — negatives + X [28]. The
Coulomb final-state interaction defined by Eq. (18) is
taken into account, and calculations are carried out in
the rapidity range 2.0 < y,., < 3.0 for a system of radius
Ry = 5.0 fm, with Z = 32, T = 200 MeV, and p = 0.
The transverse momentum distribution of the charged
pions is found to be quite sensitive to the rapidity of the
pion. The pion transverse momentum distribution from
p + p collisions is parametrized by [28]

1 1 AN - byigTor - (19)
N, sens Pr AP '

where B = 0.162 + 0.003 GeV and C = 0.11 £ 0.02 GeV,
and the normalization is defined by

2GeV dN
/ d—dPT =1.
pT=0 Pr

Figure 7 shows the ratios of the normalized pion trans-
verse momentum distribution relative to that from p+p
collisions at comparable energies for a pion system with
a boundary (solid curve) and for the Bose-Einstein dis-
tribution (dashed curve), in comparison with experimen-
tal data for O+Au — negatives + X [28]. The Coulomb
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FIG. 6. The ratios, relative to that of p+p collisions, of the
normalized transverse momentum distributions of negatively
charged pions in a pion system with a cylindrical boundary of
radius Ry = 5.0 fm, given by Eq. (12) (solid curve), and the
Bose-Einstein distribution, Eq. (13) (dashed curve), in com-
parison with data from the collision S+S — negatives + X
[28]. For the bounded pion system results have been calcu-
lated taking into account Coulomb final-state interaction, as
in Eq. (18) (see text).

2141

~ N
©

UM A B B

~
N

T
\
1
\
\
\
\
\
\

~
EN

(dN,/dp, )"™ /(aN,/dp] "
N

0.8 I3 1

0.6 Lo - 1

- —~-~ Bose-Einstein + Cou{. (n )/p+p 3

0.4 Boundary + Coul. (t )/p+p 3

* O+Au/p+p (y=0.8-2.0) ]

0.2 O O+Au/p+p (y=2.0-3.0) 3
0.0 . . N N s s N .

00 01 02 03 04 05 06 07 98 09 10

p, (GeV)

FIG. 7. The ratios of the normalized transverse momentum
distributions of negatively charged pions in a pion system with
a cylindrical boundary of radius Ro = 7.0 fm [Eq. (12), solid
curve], and the Bose-Einstein distribution [Eq. (13), dashed
curve), relative to that of p + p collisions, in comparison with
data from the collision O+Au — negatives + X [28]. For the
bounded pion system results have been calculated taking into
account Coulomb final-state interaction, as in Eq. (18) (see
text).

final-state interaction given by Eq. (18) is again included,
and calculations were carried out for the rapidity range
2.0 < y,,,, < 3.0 for a system of radius Ry = 7.0 fm, with
Z =60, T = 200 MeV, and p = 0.

The last two figures, Figs. 8 and 9, show a direct
comparison of these pion transverse momentum dis-
tributions, for the case with a boundary [Eq. (12),
Figs. 9(a) and 8(a)] and Bose-Einstein distribution
[Eq. (13), Figs. 9(b) and 8(b)], with data from
S+S — negatives + X and O+Au — negatives + X
[6-8], taking into account the Coulomb final-state inter-
action. Both sets of data were fitted using T = 200
MeV, p =0, 2.0 < gy, < 3.0, and Ry = 5.0 fm and

Boundary + Coul. (') Bose-Einstein+Coul. (1)
~ 10 © S+S 200A GeV * S+S 2004 GeV
>
S, R,=5.0fm R=5.0 fm
N T =200 MeV T = 200 MeV
B ]
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~
<
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~
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FIG. 8. The pion transverse momentum distributions in a
pion system with a boundary, Eq. (12), as in Eq. (18) (a),
and the predictions from Bose-Einstein distribution, Eq. (13)
(b), taking into account Coulomb final-state interaction, in
comparison with experiment for S+S — negatives + X [6-8].
Theoretical results are obtained with radius Ro = 5 fm, for
Z = 32, temperature T' = 200 MeV, p = 0, m, = 140 MeV,
and 2.0 < y < 3.0.
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FIG. 9. The pion transverse momentum distributions in a
pion system with a boundary, Eq. (12), as in Eq. (18) (a), and
the predictions from Bose-Einstein distribution, Eq. (13) (b),
taking into account Coulomb final-state interaction, in com-
parison with experiment for O+Au — negatives + X [6-8].
Theoretical results are obtained with radius R¢ = 7 fm, for
Z = 60, temperature T' = 200 MeV, p = 0, m, = 140 MeV,
and 2.0 < y < 3.0.

Z = 32 for S+S data and Rg = 7.0 fm and Z = 60 for
O+Au data. It is clear that incorporation of both the
boundary effects and the Coulomb final-state interaction
effects on the pion system leads to good agreement with
the data over the range of p, under consideration, as
shown in Figs. 9(a) and 8(a). Also, Bose-Einstein distri-
bution along with Coulomb final-state interactions give
good agreement with data and a slightly larger enhance-
ment at low p,., as in Figs. 9(b) and 8(b).

Coulomb final-state interactions predict also that there
are significant differences between the transverse momen-
tum distributions of #*, 7#~, and 7° in the low transverse
momentum region.

VI. SUMMARY AND CONCLUSIONS

The effects of a boundary on a system of massless
bosons (gluons) and a system of massive bosons (pions)
at high temperature have been studied. The boundary is
found to affect the transverse momentum distribution of
these systems. Relative to a free-particle Bose-Einstein
distribution, the transverse momentum distribution of
gluons and pions is suppressed at low momenta and en-
hanced at high momenta. For the gluons in a quark-gluon
plasma of a radius of only a few times 7", the trans-
verse momentum distribution at low momenta relative to
Ry' is much smaller than the Bose-Einstein distribution
and approaches it as the radius of the plasma goes to
infinity. This suppression is due to the lower level den-
sity of single-particle states at the bottom of the well for
a finite system [29]. It can also be depicted as due to
the weakness of large-wavelength amplitudes in a bound
system. In contrast, the high-momentum tail arises from
the rapid variation of the single-particle wave function at
the boundary of the system. It is clear that the bound-

ary effects on a quark-gluon plasma play an important
role in the gluon transverse momentum distribution, and
consequently on signatures of the plasma. The boundary
effects should be taken into account to provide more re-
liable estimates of the signatures of quark-gluon plasma-
formation.

The pions in a hadronic system produced after a
high-energy nucleus-nucleus collision interact with each
other and with the surrounding hadronic and nuclear
matter. These interactions, in the isospin state I = 0,
are attractive. The pions can be modeled as moving in
a mean-field potential which creates an effective bound-
ary for the system. Here we assume that the pion sys-
tem has a sharp boundary before freeze-out. The gen-
eral features of the pion transverse momentum distri-
bution are rather similar to that of the gluons. There
is a suppression at low momenta, with a scale that
depends on the radius of the system, and there is a
large enhancement relative to Bose-Einstein distribution
at high momenta, p, > 2.0 GeV. The distribution is
quite different from Bose-Einstein for systems of small
radius, and approaches Bose-Einstein as the radius is
taken to infinity. However, the pion transverse mo-
mentum distribution is broader than that of gluons at
low momenta. For p, > m_, good agreement with
experimental data is obtained for the pion transverse
momentum distributions for S+S — negatives + X and
O+Au — negatives + X.

The pion transverse momentum distribution at low p,.
for a system with a boundary does not depart consid-
erably from a Bose-Einstein distribution for large sys-
tems, when compared with the available experimental
data. However, the bounded model predicts that there
is always an enhancement relative to the Bose-Einstein
distribution at high momenta, p, > 2.0 GeV. There is
a possible contamination from hard scattering processes
to the high transverse momentum tail, which makes the
boundary effect difficult to observe. However, structure
function is poorly known in this p,. region and a quantita-
tive study is needed in the future to differentiate between
the two mechanisms.

What is the momentum distribution of an expanding
pion system? The transverse momentum distribution of
the pions is suppressed at low p, (relative to static sys-
tem) giving rise to a depression in the distribution in that
region, if the particles in the system have been boosted
by the same amount. However, if the boost increases
with the energy of the single-particle wave function, a
very small suppression in the transverse momentum dis-
tributions at low p,. is found and the magnitude of the
suppression is slightly increased with the amount of the
boost. On the other hand, we have found no change in
the high transverse momentum tail with the magnitude
of the boost, while the intermediate portion of the dis-
tribution slightly increases. A pion system with a boost
behaves as if it is approximately a system with a higher
temperature.

The puzzle of the pion transverse momentum distri-
bution in the low-p, region, p,, < m_, where an en-
hancement is observed in the data, leads us to study the
effect of Coulomb final-state interactions on the system.
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Coulomb final-state interactions on pions arise from tar-
get and projectile remnants near the central rapidity re-
gion. This Coulomb final-state interaction modifies the
charged pion transverse momentum distributions consid-
erably at low transverse momenta, where the distribution
of charged pions relative to neutral pions is enhanced for
7~ but suppressed for 7. The degree of enhancement or
suppression is quite sensitive to the rapidity of the par-
ticles in the system. The inclusion of effects calculated
from Coulomb final-state interactions leads to very good
agreement with the 7~ experiment. Differences between
the transverse momentum distributions of 7+, 7—, and
7% in the low transverse momentum region await future
experimental data for direct comparison.
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