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Higher-order corrections to the eikonal phase shifts for heavy-ion elastic collision
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We present first- and second-order corrections to the eikonal phase shifts for heavy-ion elastic
scattering based on Coulomb trajectories of colliding nuclei. Including the first- and second-order
corrections improves the agreement with the experimental data and the optical model result for the
elastic scatterings in the Q+ Ca and Q+ Zr systems at E&ap —1503 MeV.
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I. INTRODUCTION

There has been a great deal of effort [1—6] in describing
scattering processes between heavy ions within the frame-
work of the eikonal approximation method. In general,
the eikonal scattering wave functions and phase shifts are
derived from the Lipmann-Schwinger equation by a lin-
earization of the Green's function in momentum space
or from the integral equation by further approximating
the WKB results [1,2]. The physical assumption of the
eikonal approximation is that the energy of a projectile
is sufticiently high that its classical trajectory is little
deflected from a straight line.

The eikonal approximation has been found to be a very
effective approach to high-energy potential scattering and
has been applied to the scattering of hadrons by nuclei
[7]. Recently, the Glauber model with first- and second-
order noneikonal corrections has been applied to elastic
nuclear scattering at intermediate energies by Faldt et
al. [5]. Carstoiu and Lombard [6] investigated the lim-
itations of the eikonal approximation in the low-energy
regime for the calculation of total and total reaction cross
sections. They considered only light elements, neglecting
the Coulomb phase. So far, the higher-order corrections
to eikonal phase shifts are expressed in terms of the im-
pact parameters b = gl(l + 1)/k and they have only
been applied to the scattering of hadrons or light ele-
ments by nuclei.

In this paper we modify the eikonal phase shifts to
include the deflection efI'ect due to the Coulomb Geld and
we also apply the modified eikonal phase shifts to elastic

I

scattering between heavy ions. In Sec. II we describe
the formulation of the eikonal phase shifts based on the
Coulomb trajectories of the colliding nuclei. Section III
is devoted to an application of the present model for the
systems Q+ Ca and 0+ Zr at E~~p ——1503 MeV.

II. FORMALISM

If there is a single turning point in the radial
Schrodinger equation, the WKB phase shifts are given
by

pWKB
l

b2- 1/2
ki(r) dr — k 1 —— dr,

P

where rq is the turning point corresponding to the local
wave number kt(r),

2rl b' V~ (r)
k, (r) = k(1 — —+ —,+

kr r2 E (2)

pWKB ) pn

n=O

where

where k = v 2pZ/5, rl is the Sommerfeld parameter, and
V~ (r) the nuclear potential. Wallace [8,9] expanded the
solution of Eq. (1) in a power series in the strength of
the potential in terms of the impact parameters b,

[V/( ) ] b2 1+ b V.+i[(b2+,2)iy.
) d,l=(kb ~ ) (n + 1)~b2n db

(4)

Instead of Eq. (1), now we use the WKB expression for the nuclear elastic phase shifts, taking into account the
deflection effect due to the Coulomb field [10—12],

where

k((r) dr — k, (r) dr,
&t +C
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and

k, (r)=k 1 —
(
—+ —

)
Then Eq. (4) can further be written in terms of r as follows:

I'IV/(&I )'1"+'
2 1+ d "

~-+i(( 2+ .)iy.
) d

(n+ 1)!r2" dr

Expressions for the first three terms in this equation are explicitly

Viv(gr,'+ z') dz,
h2A;

3

653+5 + 2 VN 2+ 2 dz

(9b)

(9)

The Coulomb-modified eikonal phase shifts in Eqs. (9a)—
(9c) have the same forms as the eikonal expressions with
impact parameters 6 by Wallace. Instead of 6, however,
we obtained the expressions of the Coulomb-modified
eikonal phase shifts in terms of the distance of closest
approach, r, due to the deflection effect of the Coulomb
field. By taking Viv(r) as the optical Woods-Saxon po-
tential given by

over l give the deflection function

0) = 2 —(o( + Re b)).
dl

(13)

This deflection angle is a semiclassical treatment of a
trajectory with angular momentum l.

Vp TVp
V~(r) =- 11+ e(r —&.)/a„1+ e(r —& )/a (1O)

III. RESULTS AND CONCLUSIONS

we can use the three eikonal phase shifts in the general
expression for the elastic scattering amplitude. The elas-
tic scattering cross sections are then obtained from the
scattering amplitude

f (0) = fR(0) + —. ) l+ — e ' '(S~ —1)Pi(cos 0),ik ( 2

2ibg (12)

Since the nuclear phase shifts are complex, the variations
of the Coulomb and real parts of the nuclear phase shifts

where fR(8) is the usual Rutherford scattering amplitude
and o~ the Coulomb phase shift. The S-matrix elements
S~ in this equation can be expressed by the nuclear phase
shifts b~ as

As in the preceding section, we have calculated the
elastic differential cross sections for 0+ Ca and

0+ Zr systems at E&~b=1503 MeV by using the
Coulomb-modified eikonal phase shift and its two higher-
order corrections. Parameters of the Woods-Saxon po-
tential are given in Table I. In Fig. 1, the short-dashed
curve is the result for the zero-order eikonal phase shifts,
while the dotted and solid curves are the results for the
first- and second-order corrections. As seen in this figure,
the differences between the short-dashed and dotted and
solid curves are substantial when compared to the exper-
imental results of Ref. [13]. Furthermore, these difFer-
ences give some variations in the depths of the minimum
and a change in the location of the minimum. However,
the differences between the results from the first- and
second-order corrections are too small so that the dot-
ted curves overlap with the solid curves. As a whole, we
can find in Fig. 1 that the two results calculated from
the first- and second-order corrections improve the agree-

TABLE I. Parameters of the fitted Woods-Saxon potential for 0 beams at E~ b ——1503 MeV.
Values are taken from Ref. [13j.

System

160+40C
160+90Z

V0

(MeV)

60.0
129.0

(fm)

1.042
0.946

(fm)

0.710
0.790

~o
(MeV)

54.1
124.1

(fm)

1.042
0.946

(fm)

0.710
0.790
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FIG. 1. Elastic scattering angular distributions for
0+ Ca and 0+ Zr systems at EI b ——1503 MeV. The

solid circles denote the observed data taken from Ref. [13].

ment with the observed data for 0+ Ca and 0+ Zr
systems at EI b ——1503 MeV compared. to the result of the
zero-order eikonal phase shifts.

The transmission functions TE = 1 —[Sl[ and deflec-
tion functions Oi are plotted in Figs. 2 and 3. Figures
2(a) and 2(b) show the transmission and deflection func-
tions corresponding to the potential for 0+ Ca sys-
tem at Ei b=1503 MeV, while Figs. 3(a) and 3(b) show
those two functions for 0+ Zr at E~ b

——1503 MeV.
The deflection functions in these figures have two typ-
ical extreme values. One is the nuclear rainbow asso-
ciated with the maximum negative deflection angle due
to a nuclear attraction; the other is the Coulomb rain-
bow associated with the maximum positive angle d.ue to
a Coulomb repulsion. In Fig. 2(b), we can see that the
nuclear rainbow of the second-order corrections is slightly
moved toward the right compared to the result of zero-
order phases, while the Coulomb rainbow has the same
position and magnitude. We can also notice in Fig. 3(b)
that the deflection function for 0+ Zr has a similar
structure as the case for 0+ Ca, but the magnitudes
of the nuclear and Coulomb rainbow angles for 0+ Zr
are somewhat larger than the results for 0+ Ca.

A further investigation of the situation can be gained
by looking at the transmission functions. In Figs. 2(a)
and 3(a), we can see in both cases that the transmission
functions of the second-order corrections are shifted to-
ward the right compared with those of the zero-order
eikonal phases. Such shifts compensate the values of
transmission function underestimated in the zero-order
eikonal phases. Those shifts are also reflected in the reac-

I i I s I i I & I s I3
80 110 140 170 200 230 260 290

L

FIG. 2. Transmission and deHection functions for the sys-
tem 0+ Ca at Ei b

——1503 MeV plotted versus angular mo-
mentum L. The short-dashed and solid curves correspond to
the transmission and deBection functions with the zero-order
eikonal phase shift and its second-order correction, respec-
tively.

tion cross sections as displayed in Table II. We can notice
in this table that the agreement of the results from the
first- and second-order corrected phases are satisfactorily
good (relative discrepancy=0. 4% for 0+ oCa and 1.0%
for 0+ Zr) with the optical model result compared to
the result of the zero-order eikonal phases.

The near- and far-side decompositions [14] of the scat-
tering amplitudes with the second-order corrections to
the eikonal phase shifts were also performed by replacing
the associated polynomials Pj (cos8) by

Qi+ (cos8) = —[Pi (cos8) ~ i(2/vr)Qi (cos8)], (14)

where Ql is a Legendre function of the second kind.
The contributions of the near- and far-side components
to elastic scattering cross sections are shown in Fig. 4
along with the total differential cross section. The total
differential cross section is not just a sum of the near-
and far-side cross sections but contains the interference
between near- and far-side amplitudes as seen in Fig. 4.
The refraction oscillations observed on the elastic scat-
tering cross section of 0+ Ca system are due to the

TABLE II. Comparison of the reaction cross sections (in mb) obtained from the first-order (Cal.
2) and second-order corrections (Cal. 3) to the zero-order eikonal phase shifts (Cal. 1) with respect
to the optical model result. Values with optical model are taken from Ref. [13].

System
160+40C
160+90Z

Cal. 1

1966
2707

Cal. 2

1980
2722

Cal. 3
1981
2723

Optical model

1996
2749
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FIG. 3. Transmission and deBection functions for the sys-
tem 0+ Zr at E~ b

——1503 MeV plotted versus angular mo-
mentum I. The short-dashed and solid curves correspond to
the transmission and deQection functions with the zero-order
eikonal phase shift and its second-order correction, respec-
tively.

strong interference between the near- and far-side com-
ponents. The magnitudes of the near- and far-side con-
tributions are about the same around 4.7', however, the
far-side dominates at angles greater than this. On the
other hand, in case of 0+ Zr elastic scattering, the
far-side component becomes very small compared with
the near-side one over the whole angle. Because of the
smallness of the far amplitude, we can see that the cross
sections of the 0+ Zr system show weak oscillations.

In conclusion, we have presented the first- and second-
order corrections to the zero-order eikonal phase shifts
based on the Coulomb trajectory of the colliding nuclei.
We have found that the differential and total reaction
cross sections calculated from the first- and second-order
eikonal phase shifts improve the agreement with the ex-
perimental data and optical model result for 0+ Ca
and C+ Zr systems at Ej~b ——420 MeV, respectively,
compared to the result of the zero-order phases. How-
ever, we have found that the differences between the first-
and second-order corrections to the zero-order eikonal
phase shifts are too small. We have also found that
the transmission functions and nuclear rainbows of the
second-order eikonal corrections for the 0+ Ca and

1O-4
0 1 2 3 4 5 6

e, (deg)

FIG. 4. DifFerential cross sections (solid curves), near-side
contributions (short-dashed curves), and far-side contribu-
tions (long-dashed curves) following Fuller's formalism [14] by
using the second-order corrections to the eikonal phase shifts
for the systems (a) 0+ Ca and (b) 0+ Zr at E& b=1503
MeV.

C+ Zr systems were moved toward the right com-
pared to the results of the zero-order eikonal phases,
while the Coulomb rainbows did not change their po-
sitions and magnitudes in both cases. The shifts of the
transmission functions have been reHected in the reac-
tion cross sections. Through near- and far-side decom-
positions of the cross section we have also shown that
the re&action oscillations of the 0+ Ca system are
due to the strong interference between the near- and far-
side amplitudes, and the near-side one dominates for the

0+ Zr system.
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