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Heavy-ion collisions at intermediate energies are studied by using a new relativistic quantum
molecular dynamics (RQMD) code, which is a covariant generalization of the quantum molecular
dymanimcs (QMD) approach. We show that this new implementation is able to produce the same
results in the nonrelativistic limit (i.e., 50 MeV /nucleon) as the noncovariant QMD. Such a compar-
ison is not available in the literature. At higher energies (i.e., 1.5 GeV /nucleon and 2 GeV /nucleon)
RQMD and QMD give different results in respect to the time evolution of the phase space, for
example for the directed transverse flow. These differences show that consequences of a covari-
ant description of heavy-ion reactions within the framework of RQMD exist even at intermediate

energies.
PACS number(s): 25.70.—z, 24.10.Jv, 02.70.Ns

I. INTRODUCTION

The only way to probe nuclear matter under extreme
conditions of density and thermal excitations is to study
heavy-ion reactions. The main aim of these experiments
at intermediate energies, i.e., between 100 MeV /nucleon
to about a few GeV/nucleon, is to get some informa-
tion on the nuclear equation of state (EOS), which is
characteristic of the physical structure of the considered
system. Knowledge of the EOS is of immense theoretical
and practical importance for nuclear physics as well as
astrophysics.

In the last decade strong efforts were directed to de-
velop microscopic models to describe the dynamics of
heavy-ion collisions at intermediate energies. Today
mainly two different semiclassical theoretical approaches
are used with great success: One of them, the so-called
Boltzmann-Uehling-Uhlenbeck (BUU) type models [1-6]
simulate, with the help of the test particle method, ki-
netic equations like the Boltzmann-Uehling-Uhlenbeck
equation (BUU equation) which describes the time evolu-
tion of the one-body distribution function in phase space.
The other one, the so-called “quantum” molecular dy-
namics (QMD) [7, 8] is based on the classical molecular
dynamics and hence propagates the particles under mu-
tual interactions. In addition some important quantum
theoretical characteristics, which are also contained in
the BUU-type models, like Fermi motion of the nucle-
ons, stochastic scattering, and Pauli blocking, are also
included.

In QMD and BUU-type approaches the nucleon-
nucleon interaction is split into a long-range and a short-
range part. While the long-range part influences the par-
ticle trajectories in a steady way the short-range part is
responsible for the so-called “hard collisions,” in which
strong changes of the momenta of the particles can ap-
pear.

With the help of such phase-space simulations a clearer
picture of the dynamics of heavy-ion reactions has been
created. But the main aim of studying heavy-ion colli-

0556-2813/95/51(4)/2113(12)/$06.00 51

sions at intermediate energies, namely to extract some
information on the EOS, could not be reached due to the
sensitivity of the observables, like the collective flow, to
different ingredients.

One of these questions that still remains is how strong
do relativistic effects influence the dynamical evolution
of a heavy-ion reaction at intermediate energies? Since
even at this energy range the nucleons are moving with a
velocity which is not negligible with respect to the speed
of light, one has to work in a covariant framework to
get a reasonable description of heavy-ion collisions at in-
termediate energies. Therefore, it was worth developing
covariant generalizations of these non-covariant micro-
scopic models listed above.

Unlike the covariant generalizations of the BUU-type
models [9-11], which are closely connected to field theo-
retical features, the covariant generalization of the QMD
approach is not straightforward. The reason for these
difficulties is that the mutual nucleon-nucleon interaction
in QMD is dealt as a simultaneous action at a distance.
Hence one enters the problems of a Poincaré invariant
action at a distance if one wants to generalize the QMD
approach in a manifestly covariant way.

But these problems can be treated in the framework of
constrained Hamilton dynamics. This formalism was in-
troduced by Dirac [12] to express a theory based on a sin-
gular Lagrangian in a generalized phase-space approach
with the help of constraints and later on extended by oth-
ers [13-17] to a form which is suitable for our purpose.
These authors picked up the idea of Dirac [12] who has
realized for the first time that constraints are not only
reducing the degrees of freedom but can also determine
the dynamics.

Of course, all these covariant models are based on
analytical expressions with a well-defined nonrelativistic
limit. However, it was not shown for any of them that
the numerical procedures used in the implementations
give in the nonrelativistic limit really the same results as
the corresponding noncovariant model. But one should
make sure that the covariant codes are working well at
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nonrelativistic energies by checking sensitive quantities
like the transverse flow before one is able to discuss pos-
sible relativistic effects at higher energies. This was also
not done in [18] because these authors studied only in-
sensitive quantities at nonrelativistic energies.

Therefore we present here a detailed analysis of phase
space simulations at 50 MeV/nucleon. These results
show that our implementation of RQMD gives the same
results as the noncovariant QMD in the nonrelativistic
limit.  Another aim of this paper is to study whether this
covariant description of heavy-ion reactions in the frame-
work of RQMD has consequences for the time evolution
of the phase space in the intermediate-energy range. This
is done by comparing results of sensitive quantities like
the directed transverse flow extracted from QMD and
RQMD calculations.

The paper is organized as follows: In the following sec-
tion we will briefly discuss the formalisms used in QMD
and RQMD and will point out their main differences.
The third section contains a few details of the implemen-
tation of these methods. In the fourth section results of
simulations of semicentral Ca+Ca collisions at different
energies are presented. These results are analyzed with
respect to discussing the differences of the approaches
used, e.g., QMD and RQMD. Finally, in the last section,
we summarize and also give an outlook.

II. THE FORMALISM USED IN QMD
AND ITS COVARIANT GENERALIZATION

In this section we give a brief description of both
the QMD approach and its covariant generalization, the
RQMD approach. For more details, especially for the
foundations of these formalisms, we refer to [7] in the
case of QMD and to [19] in the case of RQMD. First we
concentrate on the QMD.

A. Quantum molecular dynamics (QMD)

The dynamics of heavy-ion reactions can be studied in
a dynamical many-body approach on an event-by-event
base using QMD. This model gives a microscopic descrip-
tion of heavy-ion collisions at the nucleon level and was
developed by Aichelin and Stocker [8].

Each nucleon is represented by its Wigner density in
phase space in a Gaussian parametrization

Fi(F ) = —gexp{—[F— B2 — 7~ A(9)]*/2L)
&)

with a fixed width. The initial distribution of the two nu-
clei in orbital space and momentum space are generated
by a standard Monte Carlo procedure by taking care of
the right radii of the nuclei, the Fermi energy, and an
acceptable binding energy of each nucleus. In order to
simulate heavy-ion collisions these two well-prepared nu-
clei are boosted towards each other.

Since the nucleon-nucleon interaction in QMD is split
into a long-range part and a short-range part, we calcu-
late the time evolution of the system of the two colliding
nuclei in two parts.
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(1) As the width of the Gaussians is fixed the centroids
of each nucleon 7;(t), p;(t) are propagated by the classical
equations of motion

di; OH

i 2
& = o5, (2)
dp; 8H

- 3
= FEg (3)

where the Hamiltonian is given by the classical N-body
Hamiltonian

=2
NPl @, 1 (3)
LW e
i i, 1.,
The potentials in Eq. (4) are calculated as classsical ex-
pectation values by folding the two- and three-body parts

of the interaction with the Wigner densities of the inter-
acting nucleons:

U = [ fi@ i t) £ (B, 7, t) VIO (75, 75 i By)

><d3Fi d3Fj d3ﬁi d3ﬁj, (5)
US) = [ £i@i, 7, t) £5(B5, 75, t) Fu(Be 7, 1) V)

X (7, 75, ) d3F; d37; &>, d3P; dF; dPpr. (6)

Shrinking on a local Skyrme force only one gets for the
total potential energy by using (5) and (6)

~
e (§pu), B pis
VSkyrme = Z E =L + "“_T_T —= ’
i=1 i PO v j=i PO
(7)
with the so-called interaction density
- 1 JY
pij = Wexp(—rij/4L), (8)

where 7; is the distance of the centers of two Gaussians.

(2) If the centroids of two Gaussians come closer than a
certain distance dpyin = 1/0t0t(+/3)/7 during their prop-
agation, a stochastic collision of the two corresponding
nucleons is calculated by a Monte Carlo procedure. In
order to respect the Pauli principle the collision will be
blocked if the phase-space elements of the final states
are already occupied by other nucleons. The collisions
determined in this way can be elastic or inelastic. The
inelastic channels included in the calculations presented
in this paper are creation and reabsorption processes of
the A(1232) resonance. The whole collision part is dealt
by using a full relativistic kinematic as explained in [2].

In the propagation part one can also include some rela-
tivistic kinematics by replacing the kinetic energies in the
Hamiltonian (4) by /p2 + m2. This small modification
is always used in QMD calculations at relativistic ener-
gies. But a manifestly covariant description also requires
a covariant formulation of the interaction. Only in such
a full covariant model one can make sure that Lorentz
scalar observables are independent of the observer frame.
How one can generalize QMD to a manifestly covariant
mode! will be described in the next subsection.
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B. Relativistic quantum molecular dynamics

(RQMD)

The QMD approach contains as an essential part the
classical propagation of particles under instantaneous
mutual interactions “at a distance.” The generalization
of this nonrelativistic particle dynamics to a manifestly
covariant particle dynamics is not trivial because one has
to know how to deal action at a distance in a covariant
manner. The conceptual problems in this field are for-
mulated in the famous no interaction theorem [20], which
states that a Hamiltonian description of a multibody
system with a canonical representation of the Poincaré
group, where world line invariance is demanded and the
physical coordinates are identified with the canonical co-
ordinates is incompatible with interaction. This negative
implication of the no interaction theorem can be avoided
by dealing not with the whole phase space but with a
submanifold of it. One possibility in this fashion is given
in the framework of constrained Hamilton dynamics.

In a covariant theory one has to respect Poincaré in-
variance and hence every particle has to be described
by its four-momentum pf and its four position vector
g} means every particle carries its own time coordinate.
Therefore, an N-particle system is connected with an 8 V-
dimensional phase space. In the formalism of constrained
Hamilton dynamics this phase space is reduced to a 6 /NV-
dimensional phase space with the help of 2N constraints
fixing the energies and the relative times of the particles.
In addition a global evolution parameter has to be intro-
duced by these constraints in order to gauge the evolution
of the system. Doing this one defines a 6 N-dimensional
hypersurface in the original 8 V-dimensional phase space
on which the system is allowed to move during its evo-
lution. This formalism is not changing the notion of si-
multaneity by a change of the frame of reference, which
means one gets an invariant notion of simultaneity as well
as invariant world lines in this fashion.

The QMD model was extended to its covariant version,
the RQMD model, first by Sorge et al. [19] to study
heavy-ion collisions at ultrarelativistic energies. We use
a similar method in order to study heavy-ion collisions at
the intermediate-energy range. In the following we will
discuss some details of this method.

We use here similar constraints as introduced in [19]
and hence the first N constraints are chosen as on-shell
constraints!

K,-:pfpw—m?—f/i=0, i=1,...,N, (9)

which request that the particles move between collisions
on energy shell. This choice of the first N constraints
requires that the potential part V; should be a Lorentz
scalar and therefore a function of Lorentz scalars. Since
we want to define a system with mutual two-body inter-
actions as in QMD, V; should be given by a sum of these

1We use the Einstein convention for the tensor indices, but
no summation over repeated particle indices, except if explic-
itly specified.

two-body interactions. Following [19] we therefore use

Vi = ZVz‘j(Q%ij)v (10)
i#i
which means that the two-body interactions depend only
on the Lorentz invariant squared transverse distance

u 2
q%‘ij _ qizj _ (ngpz;u) , (11)
P;;
with ¢f; = ¢f' — ¢¥ being the four-dimensional distance
and pf; = Pt + pg.‘ the sum of the momenta of the two
interacting particles ¢ and j.
Motivated by a comparison in the nonrelativistic limit
we use for the potential part finally

a Z exP[q%ij /4L)

VL:2m1, '5 p0(47rL)3/2

J#i
B explat;; /4L
* (v+1) z#; p0(4’ll'LJ)3/2 (12)

In this way the local Skyrme interaction used in QMD
22

is generalized by replacing the squared distance —7;
in the interaction densities (8) by the Lorentz invariant
squared transverse distance g2, ;- One should notice that
due to the second term on the right-hand side of Eq. (11)
this generalized interaction used in RQMD is slightly im-
plicit momentum dependent. Because of this term, which
gives the longitudinal squared distance, the interaction
used in RQMD depends not only on the distance of the
two interacting particles, as in QMD, but also on the di-
rection of their center-of-mass motion in the rest frame
of the two nuclei.

Since the on-shell constraints alone do not specify the
world lines one needs additional N constraints which are
fixing the relative times of the particles. In order to re-
spect world line invariance, causality, and cluster separa-
bility this IV time fixations are defined as

Xi = Z 9ijPi;%iin =0, i=1,..,N—1, (13)
3(#1)
XN:P”Q#—T:07 (14)

with P# = pt/{/p?, p* = 3, p!, Q* = % X, 4%, and

the dimensionless scalar weighting function

1 2

gij = qu/Lc exp(qz]/LC) (15)
with Lc = 8.66 fm2. Conditions (13) are motivated by
studies in the framework of singular Lagrangians [21].
Using this method one gets up to the weighting functions
gi; the same conditions as secondary constraints and the
on-shell conditions (9) as primary constraints in a natu-
ral way. The important fact for using the expression (15)
as weighting function is that this scalar function respects
the principle of causality, while the ones used in the sin-
gular Lagrangian theories and in the model of Samuel
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[17] can violate this important physical restriction.

Constraints (13) take care that the times of interact-
ing particles are not dispersed too much in their common
center-of-mass system. Furthermore, they specify the dy-
namics by fixing the times at which the forces have to be
calculated but they do not specify the global evolution
parameter 7. This evolution parameter must be defined
to be determined dynamically since the no-interaction
theorem can only be avoided in this way as pointed out
in [16]. The evolution parameter 7 is defined by the gaug-
ing condition (14) in a way that the individual times are
increasing with increasing 7.

This set of 2N constraints given by (9), (13) and (14)
determines covariant world lines parametrized by the ini-
tial data at equal 7, which means the starting conditions
are given by the values of p! and ¢! at a given starting
value of 7.

With the help of this set of constraints the reduction
of the phase space can be done in a well-defined way and
the dynamics of the system can be determined by the
Hamiltonian

N N-1
H= Zl N K+ Zl AN+ Xis (16)

given by a linear combination of the 7 independent 2V —1
constraints and hence, in the sense of Dirac [12], these
constraints determine the dynamics. The Hamiltonian
(16) generates equations of motion with the help of Pois-
son brackets as

dqf

W~ () (18)

The unknown Lagrange multipliers A; can be deter-
mined using the fact that the complete set of 2/V con-
straints must be fulfilled during the whole time evolution.

This formalism has a well-defined nonrelativistic limit
as shown in [19]. This fact is a prior condition that
RQMD and QMD calculations should give the same re-
sults at nonrelativistic energies if one uses in RQMD the
same type of interaction as in QMD but generalized in
the way as described above for the Skyrme interaction.

The binary collisions are dealt in RQMD in the same
way as in the noncovariant QMD by using Monte Carlo
methods. But in RQMD we use a full covariant kine-
matic to determine these collisions whereas in QMD the
kinematic is relativistic, but not manifestly covariant.

III. DETAILS OF THE IMPLEMENTATION

Before we present some results of calculations in the
next section we will discuss in this section some details
of the numerical realization of QMD and RQMD.

First of all we would like to stress that in contradic-
tion to earlier RQMD codes [19, 18] our new code is fully
integrated in a simulation package which contains the
noncovariant QMD approach with its different options
and the covariant RQMD approach as well. The whole

LEHMANN, PURI, FAESSLER, BATKO, AND HUANG 51

package is called UNIScO standing for unified simulation
code.? In this development special care is given to keep
exactly the same initial conditions in both approaches,
QMD and RQMD. In addition, this way of implementa-
tion assures us to use the same parameters in QMD and
RQMD calculations. This is extremely important when
one wants to look for relativistic effects at intermediate
energies and guarantees that disagreements of results ex-
tracted from these two approaches have a physical origin.

In QMD RQMD heavy-ion collisions are simulated
with the help of independent runs. In each run a sin-
gle event is calculated. In the full simulation the average
of these independent events is taken in order to get rep-
resentative results.

In each event two carefully prepared nuclei are boosted
against each other. A single nucleus is built up with the
help of a Monte Carlo sampling method. This procedure
used in QMD is applied in RQMD as well. But in RQMD
one has additionally to take care of the constraints. A
violation of these constraints right from the start would
be conserved during the whole time evolution and hence
one would leave the base of the formalism in such a case.
Therefore one can only accept distributions in RQMD
which are able to fulfill the constraints and special care
is taken in the code to fulfill this condition.

By this procedure one gets nuclei which are stable for
a much longer time span than the usually considered re-
action time. This was already carefully proven for QMD
in [7]. For RQMD we present here results in Fig. 1.
As a measure of the stability of the nuclei we have plot-
ted the time evolution of the root mean square radius
R, s for various single nuclei, which are prepared by
the procedure discussed above. For all three nuclei
(*2C, 28Si, 4°Ca) the time evolution of the root mean
square radii of 10 different initializations boosted to a
certain energy is plotted. As can be observed from Fig. 1,
very light nuclei like 2C suffer strong vibrations whereas
the root mean square radii of heavier nuclei, like °Ca,
are more smooth. Finally, these results show clearly that
these nuclei, which are not even heavy ones, are stable
for a very long time span (at least 200 fm/c).

In the part of the code where the centers of the Gaus-
sians are propagated we integrate the Hamilton equations
(2) and (3) in the case of QMD and the equations of mo-
tion generated by formulas (17) and (18) in the case of
RQMD. The numerical integrations are done by standard
integration routines.

In order to decide if a baryon-baryon collision will oc-
cur or not we use a strictly geometrical interpretation of
the cross section. Therefore two baryons will collide if
their distance becomes closer than dmin = v/0tot (/) /7
within a small time interval, whereas those passing each
other at a larger distance will not suffer a collision during
this time interval. oyt(+/s) is the total nucleon-nucleon
cross section at a given c.m. energy of the colliding nu-

2A full overview of this simulation package, which on the
nonrelativistic side is based on the latest version of the QMD
of Aichelin and co-workers, is given in [22].
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Time (fm/c)
FIG. 1. Root mean square radii of various nuclei (C, Si,

Ca) as a function of time.

cleon system. The time interval is given by the actual
time step size of the numerical integration used in the
propagation part.

Using this minimal distance concept in QMD one com-
pares |7; —7;| with dpyi, in order to decide if particles ¢ and
j became canditates for a collision. Since this collision
criterion is not Lorentz invariant the collision sequence
and the number of collisions can depend on the frame of
reference as has been shown in [23]. In RQMD we use an
invariant measure, namely the Lorentz invariant trans-

verse distance by comparing ,/—q%, ; With dpin and we

are therefore avoiding these difficulties.

The scattering angles of a single baryon-baryon colli-
sion are determined randomly by a standard Monte Carlo
procedure whereas the magnitudes of the final momenta
are fixed by conservation of energy and momentum. For
the cross sections used in this procedure we use the so-
called Cugnon parametrization [24] of the free nucleon-
nucleon scattering data, which includes excitation and re-
absorption processes of the A(1232) resonance and takes
care of the different isospin channels of the processes in-
cluded.

Whenever the final state of a nucleon-nucleon collision
is determined in this way we compute for each scattered
nucleon the overlap in phase space with the surrounding
nucleons. In this procedure we assume that each nucleon
occupies a sphere in coordinate and momentum space.
Therefore, in RQMD this overlap has to be determined
in the rest frame of the nucleon of interest to justify the
assumption of a spherical distribution of the nucleon. In
QMD the overlap is calculated in the CMS of the two

nuclei and hence a spherical distribution of the nucleon
is not ensured in the noncovariant approach. From this
overlap in phase space one can then determine the prob-
ability with which the collision is blocked. Using this
procedure one is able to respect the Pauli principle on a
semiclassical level in a satisfying way as proven in [7].

IV. RESULTS AND THEIR DISCUSSION

A. Nonrelativistic limit

As we have already stressed in this paper, it makes
absolutely no sense to discuss possible relativistic effects
without making sure that the methods used for these
studies, in our case QMD and RQMD, do not give the
same results in the nonrelativistic limit. Therefore we
first present here a comparison of QMD and RQMD at
50 MeV /nucleon, which is an energy where no relativistic
effect should occur.

As a measure of the evolution of the phase space
we have extracted three different quantities from QMD-
RQMD calculations: the nucleon density in the central
zone of a heavy-ion reaction as a measure of how much
the nuclear matter was compressed during the reaction,
the rapidity distribution as a measure of the stopping
and the directed transverse momentum as a measure of
the bounce off. The last quantity is defined as

N
. 1 .
Pi“ =N ;_1 51gn[lQ(CM)]pi¢ (19)

with the rapidity of the ith particle evaluated in CMS
from

1 E; + p;.
= Zn (2T Piz ) 20
Y 2n<Ei_piz) (20)

Another measure of the bounce off, namely the trans-
verse momentum distribution p,/A as a function of the
rapidity, is often used instead of pdi*, especially to com-
pare calculations with experimental data. In this paper
we are interested in a relative comparison of two theories
and hence we are using here pdi*, which has the following
advantages for our purpose.

In contradiction to p,/A the quantity pgir integrates
over all rapidity bins and provides therefore one value at
a given time and allows one to follow this quantity easily
as a function of time. Due to this fact pdi* as a function
of time also reflects the creation of the bounce off during
the reaction.

Figure 2 presents the results for the nucleon density as
a function of time, calculated in a sphere with 2 fm radius
around the origin of the CMS, the rapidity distribution
of the final state (after 120 fm/c), and the directed trans-
verse momentum as a function of time as extracted from
QMD and RQMD calculations of semicentral C+C colli-
sions at 50 MeV /nucleon. The impact parameter (b=1.3
fm) is half the radius of the two colliding nuclei.

As can be recognized from these plots, all three quanti-
ties reflect their typical behavior at low energies, e.g., the
nucleon density is in all cases far less than 2p¢ because
of the small compression at this low energy, the rapidity
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distribution shows one maximum due to the small bom-
barding energy and the directed flow is negative.

All results of these three quantities for semicentral
C+C collisions presented in Fig. 2 show an excellent
agreement of QMD and RQMD. Even the directed trans-
verse flow, which is a highly sensitive quantity with re-
spect to all ingredients (physics and numerics), shows
this excellent agreement during the whole reaction time.

The analysis of semicentral collisions of a higher mass
system, namely Ca+Ca, also gives good agreement of
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QMD and RQMD as shown in Fig. 3. In this figure the
same three quantities as in Fig. 2 are displayed. (The
rapidity distribution is analyzed at 100 fm/c in this re-
action.) The small differences in the directed flow (few
%) are understandable by taking into account that the
constrained dynamics used in RQMD needs more numer-
ical efforts than the simple Hamilton dynamics used in
QMD.

Therefore, in conclusion, we can point out that our
new RQMD gives in the nonrelativistic limit the same

2.00 T S T un][) T T T T T
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1.75l (a) T- QD + QMD 4
1.50 + 4
1254 hard EOS
o v
& 1.00
Q \
0.75- 3
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0.00 T T T T T T T — [- T - 1T T T T
o] 20 40 60 80 100 0 20 40 60 80 100 120
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T T — Tequ T T Inqm)
“u (b) T QD FIG. 2. Nucleon density (a)
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4
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=) ] as function of time and the ra-
a pidity distribution (b) at the fi-
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results as the noncovariant QMD as it should be. The
fulfilling of this critical benchmark convinces that one
can study, with the help of this code, relativistic effects
in heavy-ion collisions comparing RQMD and QMD at
higher energies.

B. Relativistic energies

In order to test whether the covariant description of
heavy-ion reactions as given in RQMD already shows
consequences at intermediate energies we compare here
QMD and RQMD calculations at 1.5 and 2 GeV /nucleon.
At these energies the nucleons are moving with a velocity
of about 85% and 92% of the speed of light, respectively,
and hence possible relativistic effects should become vis-

2.00 : r - g
1.75+ (a) R T b 1
1.50 1
© 15l hard EOS
Q
™~ 1.00
< 0.75
0.50-
0.254
0.00 . . , r
0 20 40 60 80 100
Time (fm/c)
50 : T : . . : ;
— RQMD
— (b) -- qudD
:.g 40 1
=}
5
. 30 J
o
—~
©
~ 20 J
>
2
= 104 hard EOS i
kS|
0 - r . . . . .
20 -15 -10 -5 00 05 10 15 20
Yc.m./Ybeam
10,0 . - . .
-— RQMD
(e) -~ QMD
5.04 A
- hard EOS
NS
>
B
= -5.0
4 « —10.0-
29
—15.04
-20.0 : , ; .
0 20 40 60 80 100
Time (fm/c)
FIG. 3. Same as Fig. 2 but for semicentral Ca+Ca col-
lisions. The impact parameter was 2 fm and a static hard

Skyrme interaction was used. The rapidity distribution (b) is
plotted at the final state (after 100 fm/c).
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ible at these energies.

We concentrate here our investigations on semicentral
Ca+Ca collisions and analyze one of the most sensitive
quantities, namely the directed transverse momentum as
defined by Eq. (19). The impact parameter is 2 fm,
which is about half the radius of the considered nuclei.

In Fig. 4 the directed transverse momentum is dis-
played as a function of time as extracted from QMD and
RQMD calculations of semicentral Ca+Ca collisions at a
bombarding energy of 1.5 GeV /nucleon. In Fig. 5 results
of the same reaction, but at 2 GeV /nucleon are plotted.

Analyzing the time evolution of the directed flow cre-
ated during the reaction one observes an appreciable dif-
ference among the different equations of state and, more
important for our intention, among QMD and RQMD.

In the early time stage of the reaction the directed flow
is negative since the interaction between the nuclei is at-
tractive. After the two nuclei collide the flow becomes
positive because a repulsion is induced by the high den-
sity in the region where the two nuclei overlap each other.
From this region particles are bounced off due to their in-
teractions with the other particles.

This repulsion is stronger in the case of the hard EOS
and hence the transverse flow becomes larger in this case
as for the soft EOS. In RQMD the interaction gets less
attractive in the early time stage and hence starts earlier
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transverse flow is plotted as a function of time. Results ob-
tained with a hard EOS (above) are shown as well as results
obtained with a soft EOS (below).
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FIG. 5. Same as Fig. 4 but at a bombarding energy of 2
GeV /nucleon.

to become repulsive than in QMD as all results plotted
in Figs. 4 and 5 are showing.

Due to the covariant treatment of the interaction in
RQMD the strength of the attractive forces, dominating
the early time stage of the reaction, is smaller in RQMD
than in QMD. This can be understood by the fact that
the forces will be modified in the covariant treatment by
correcting factors which convert the nonrelativistic force
to the spatial part of the corresponding Minkowski force.

Furthermore, the final values of the directed flow in
RQMD and QMD are very sensitive to the energies con-
sidered.

At 2 GeV/nucleon as shown in Fig. 5, the flow is
enhanced in RQMD in comparison to QMD in case of the
hard and the soft EOS as well. At 1.5 GeV/nucleon (see
Fig. 4) the flow is decreased in RQMD in comparison to
QMD for the soft EOS but increased for the hard EOS.
Therefore, the comparison of the results at 1.5 and 2
GeV /nucleon plotted in Figs. 4 and 5, respectively, shows
that the covariant description affects the flow strongly
but not in a unique way.

Information about the causes of the differences in the
flow can be achieved by comparing QMD and RQMD
calculations in a Vlasov mode (no collisions) as well as in
a cascade mode (collisions only). Whereas calculations
in the Vlasov mode give a measure of the influence of the
mutual potential interactions on the flow, calculations in
the cascade mode measure the influence of two-body col-

lisions on the flow. Results obtained by these calculations
for semicentral Ca+Ca collisions at 2 GeV/nucleon are
displayed in Fig. 6. These results show an increase of the
flow in RQMD calculations in the Vlasov limit compared
to equivalent QMD calculations. RQMD creates due to
the Lorentz contraction a higher density and therefore
already a positive flow in the final state of the considered
reaction whereas in QMD the flow is negative. This fact
reflects that in QMD due to the lower density mainly
attractive interactions are created.

In the cascade limit the flow is decreasing in RQMD
compared with QMD. This difference has its reason in
the different treatment of the two-body collisions in the
two considered approaches: Although QMD contains a
relativistic kinematic RQMD uses a full manifest covari-
ant kinematic, which avoids problems of reference frame
dependent collision sequences. Furthermore, in RQMD
due to relativistic contractions more collisions are Pauli
blocked than in QMD, which also reflects the differ-
ent treatment of the two-body collisions in the two ap-
proaches.

The comparison of the Vlasov limit and the cascade
limit makes clear that the mutual potential interactions
and the two-body collisions affect the flow in opposite
directions in RQMD and in QMD. Therefore, it becomes
understandable that one can get an increased as well as
a decreased flow when using RQMD instead of QMD,

15

T T T T T
| == RQMD
104 a0 QuD hard EOS
] Vlasov—mode
5 |
©) ) 3
[¢] "_‘H/./'\k ]
\ j \n\ 4
= g . ]
) j ’
= '
~— —104 ' B
3 % —15- a —
A 1 - -8-0-8-0-8-0-8-0-8-0-8-0-8-3
—204 4
;25_ —
-30 —
=—a RQMD
@ -0 QMD
25 N
—~ 204 u,—E~~u-—E~-O-»ra~-u-~u—ﬂ-~9-4:—-a—{|-—a--ﬂ——__
[9)
=
> 157 b
=
~ 10 J
IV
A 54 B
od Cascade—mode |
_5 T T T T T
0 10 20 30 40 50 60
Time (fm/c)
FIG. 6. Directed transverse flow as a function of time

as obtained from QMD and RQMD calculations in a Vlasov
mode (above) and a cascade mode (below). Ca+Ca collisions
at 2 GeV/nucleon and an impact parameter of 2 fm were cal-
culated by using a hard EOS.
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as it was shown for semicentral Ca+Ca collisions at 1.5
GeV /nucleon in Fig. 4.

The interplay of these two contrary effects is studied
again in Fig. 7, which shows a decomposition of the
flow for the same reaction as considered in Fig. 5. In
full QMD-RQMD calculations both effects are acting to-
gether because they are both present, whereas in the
Vlasov limit or in the cascade limit either the collisions
or the mutual potential interactions are switched off, re-
spectively. Here, the contribution created by the mutual
potential interactions contained in the Hamiltonian as
well as the contribution created by two-body collisions is
calculated separately as a function of time. This decom-
position is extracted from full QMD-RQMD calculations
and is done in the following way.

In each time step the momentum transfer created by
the mutual potential interactions and the momentum
transfer produced by two-body collisions is analyzed sep-
arately by using Eq. (19). Therefore, this analysis gives
two values in each time step and both contributions can
be easily followed during the whole reaction. If one adds
both contributions one gets the total directed transverse
flow. From this analysis one realizes that in QMD the
flow is mainly created by two-body collisions in the com-
pression stage in the considered reaction whereas the mu-
tual potential interactions even decrease the flow because
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FIG. 7. Different contributions to the directed transverse

flow as extracted from QMD and RQMD calculations for the
same reaction (Ca+Ca at 2 GeV/nucleon, b=2 fm) as in Fig.
5. Here the contribution of the directed transverse flow cre-
ated by mutual potential interactions (MPI) contained in the
Hamiltonian and the contribution created by two-body colli-
sions (Coll) are displayed separately.

they create a negative contribution. In RQMD the col-
lisions as well as the mutual potential interactions influ-
ence the flow in the same direction and nearly with the
same amount. Therefore, one finally gets a higher side-
wards flow in RQMD in the considered reaction. The con-
tribution of the flow created by mutual potential inter-
actions reflects the same effect as was already discussed
in the Vlasov limit: The mutual potential interactions
alone create no positive flow in QMD whereas in RQMD
one already gets a positive flow in the Vlasov limit in the
considered reaction (see Fig. 6). The enhancement of the
repulsion in RQMD in comparison to QMD, which is re-
sponsible for this effect, is mainly created by the Lorentz
contraction of the nuclei in the CMS (compare also Fig.
8).
Figure 6 as well as Fig. 7 show that the mutual poten-
tial interactions create more positive flow in a covariant
treatment whereas binary collisions create less flow in
RQMD than in QMD. Comparing covariant approaches
with corresponding non-covariant approaches Ko et al.
[9] as well as Schmidt et al.® [25] found that the flow
is strongly increased if binary collisions are disregarded.
The flow might be reduced also in their approaches if
binary collisions are taken into account.

In order to gain more information about the differences
in the flow we have done two additional calculations at 2
GeV /nucleon for the same reaction, which are shown for
the hard EOS in Fig. 8, together with the results already
plotted in Fig. 5.

In one calculation, assigned with QMD*, we have
changed the starting conditions in QMD by using Lorentz
contracted distributions of the nuclei in orbital space and
Lorentz elongated distributions in momentum space in
the CMS of the two nuclei. The phase space is always ini-
tialized in this way in RQMD but not in the usual QMD
calculations. Since we use only static Skyrme forces in
our studies presented in this paper the nuclei are stable
for a longer time span than the reaction time also when
this special initialization of the nuclei is applied in QMD.

Comparing the results plotted in Fig. 8 one realizes
that QMD calculations with modified initial conditions
result in even larger values for the transverse flow in the
expansion stage than with RQMD. Due to the Lorentz
contraction of the nuclei the density is increased. There-
fore, the repulsive interaction gets stronger and the flow
is increased. This effect is partly counterbalanced in
RQMD by the covariant treatment of the interaction.*
But in comparison to normal QMD calculations RQMD
increases the transverse flow for the reaction shown in
Fig. 8.

In another calculation, assigned with RQMD* in Fig.
8, we have modified RQMD in order to study the impor-
tance of the multitime description in this approach. Our
intention in this modification was to force the particles

3This approach based on classical molecular dynamics was
only Lorentz invariant up to the order of (v/c)?.

“One should note that this result is an improvement over
earlier RQMD calculations [26].
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as extracted from various QMD and RQMD calculations for
semicentral Ca+Ca collisions at a bombarding energy of 2
GeV /nucleon. Whereas usual QMD and RQMD calculations
are assigned with QMD and RQMD, respectively, QMD calcu-
lations with Lorentz contracted starting conditions (see text)
are assigned with QMD*. RQMD calculations with equal time
constraints [see Eq. (23) and text] are assigned with RQMD*.
The impact parameter was 2 fm and a hard EOS was used.

to have the same time coordinate in a defined frame of
reference during the whole reaction. This cannot be done
by defining simple nonrelativistic time fixations like

xXi=q —q¢% =0, i=1,...,.N—1, (21)

because these constraints are not Poincaré invariant and
hence would strongly violate the foundations of the un-
derlying formalism of constrained Hamilton dynamics.
Therefore, in order to violate the restrictions of the for-
malism as less as possible, we have used more refined
constraints even in this modification of RQMD and have
replaced the T-independent N — 1 time fixations (13) by

xi =P" (g —Qu) =0, i=1,..,N—1, (23)

whereas the gauging condition (14) is kept the same.
This set of time constraints given by Eqgs. (23) and (14)
stresses the particles to have equal time coordinates in
the CMS. Therefore, one can use this modification only
for calculations in the CMS if one wants to have equal
time coordinates of all particles. In addition, one should
remark that these time constraints are not really an alter-
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native to the constraints defined in Eqgs. (13) and (14),
because they violate cluster separability and causality
(compare [27]). But condition (23) fixes that all particles
have the same time coordinate in the CMS. This allows
one to study the importance of the multitime description
in RQMD requested by Lorentz invariance.

The results displayed in Fig. 8 clearly show that the
difference among RQMD and QMD is drastically reduced
if one disregards the multitime description and requests
equal times according to Eq. (23) in the RQMD ap-
proach. However, this multitime description presents the
price which one has to pay to have a full covariant for-
malism. Therefore, it is not surprising that individual
times of the different baryons in RQMD play an impor-
tant role for relativistic effects in the transverse flow. The
covariant treatment of the interaction in this multitime
description enhances the flow in comparison to nonco-
variant QMD calculations in the considered reaction as
can be seen from Fig. 8.

In order to gain a better overview it is helpful to
summarize here the different influences on the flow con-
nected with the covariant description in the framework of
RQMD. (1) Different starting conditions affect the flow
to a certain amount. A Lorentz contracted distribution
in coordinate space enhances the flow drastically. This ef-
fect is partly counterbalanced by the covariant treatment
of the interaction in RQMD. This covariant treatment of
the interaction can only be done in a multitime descrip-
tion, which takes care of individual time coordinates of
all particles. Disregarding this fact, which violates the
foundations of the underlying formalism, produces a flow
which is not much different to the one obtained by non-
covariant QMD calculations.

(2) The “long-range part” of the nucleon-nucleon in-
teraction, contained as mutual potential interactions in
the Hamiltonian in the approaches discussed, increases
the flow in RQMD in comparison to QMD, mainly due
to the Lorentz contraction of the nuclei. In addition, one
should note that the implemented forces are slightly dif-
ferent although they are based on the same static Skyrme
force in both approaches. This difference in the forces
used is also responsible for some differences of the flow
between QMD and RQMD.

(3) The directed sidewards flow is also affected by the
covariant treatment of the two-body collisions, which
represent mainly the “short-range part” of the nucleon-
nucleon interaction. These effects reduce the flow in
RQMD compared with QMD, where the treatment of the
two-body collisions is only relativistic but not manifestly
covariant.

Finally, all these effects produce the difference in flow
between RQMD and QMD at relativistic energies reflect-
ing kinematical and dynamical relativistic effects. The
results for the directed transverse flow show clearly that a
Lorentz invariant treatment is necessary to study heavy-
ion reactions in the GeV energy region.

V. SUMMARY AND OUTLOOK

Heavy ion collisions were studied in the framework of
QMD and RQMD at relativistic energies as well as in
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the nonrelativistic limit. The formalisms used in QMD
and RQMD were discussed by working out their main
differences.

Although the nucleon-nucleon interaction is described
in both approaches by static Skyrme forces it turned out
that the correct covariant treatment of this interaction,
as done in RQMD, results in some differences in compar-
ison to the noncovariant approach used in QMD. Further
differences can be produced by a manifest covariant treat-
ment of the two-body collisions which assures reference
frame independent collision sequences.

It was proven explicitly that our new implementation
of the RQMD approach produces the same results as
QMD in the nonrelativistic limit by comparing RQMD
and QMD calculations of semicentral C+C and Ca+Ca
collisions at 50 MeV /nucleon. This critical benchmark
is even fulfilled for highly sensitive quantities like the di-
rected transverse flow during the whole reaction.

At relativistic energies the covariant description of
heavy-ion reactions as given in the framework of RQMD
shows consequences on the dynamics of heavy-ion reac-
tions. These consequences were studied by comparing the
directed flow produced during semicentral Ca+Ca colli-
sions at 1.5 and 2 GeV/nucleon as extracted from QMD
and RQMD calculations.

The careful analysis of the observed differences turned
out that the flow is affected by several reasons, based on
various differences among QMD and RQMD.

A simple modification of the initial conditions in QMD
towards relativity, e.g., Lorentz contracted distributions
in coordinate space and Lorentz elongated distributions
in momentum space, but treating the interaction as not
covariant leads to a drastic overestimation of the flow.
Disregarding the multitime description, which presents
the price to pay for a manifest covariant treatment, leads
to a flow which is not much different in comparison to
the flow obtained by QMD calculations. But the cor-
rect treatment of the dynamics in a multitime formalism
produces quite different results for the flow in RQMD
compared to the flow in QMD.

Whereas the difference in the treatment of the mu-
tual potential interaction contained in the Hamiltonian
increases the flow in RQMD the manifest covariant treat-
ment of the two-body collisions decreases the flow in
RQMD in comparison to QMD. Finally, the interplay of
these contrary effects is responsible for the differences of

2123

the directed flow detected from comparisons of QMD and
RQMD calculations at relativistic energies. Due to the
fact that these two effects act in opposite directions, one
can get an increased but also a decreased flow in RQMD
in comparison to QMD.

All RQMD calculations presented were obtained by de-
scribing the mutual two-body potential interactions with
help of generalized static Skyrme forces, treated as scalar
potentials in constrained Hamilton dynamics. However,
a more reasonable and realistic description of heavy-ion
collisions should take care of the complete Lorentz struc-
ture of the nucleon-nucleon interaction and has to include
large scalar and vector potentials as well.

Therefore, in future, on should work with modified on-
shell constraints given by

Ri = Hi‘ H,;u - m;-'z = 0, (24)
where the effective momenta
I = P}’ — gv A7 (25)

contain all mutual two-body vector interactions, e.g.,
Af =3; Al; and the effective masses

m; =m; + g5 P; (26)

contain all mutual two-body scalar interactions, e.g.
P, = Z j @,_J

In order to take care of the nuclear medium and
the correct energy and momentum dependence of the
nucleon-nucleon interaction one should work with real-
istic forces and hence, these interactions should be ex-
tracted from self-consistent Dirac-Briickner calculations.

However, such a treatment is not at all trivial, but
nevertheless, work on this line is in progress.
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