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Role of final state interactions in quasielastic Fe(e, e') reactions at large qt
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A relativistic Bnite nucleus calculation using a Dirac optical potential is used to investigate the
importance of final state interactions (FSI) at large momentum transfers in inclusive quasielastic
electronuclear reactions. The optical potential is derived from first-order multiple scattering theory
and then is used to calculate the FSI in a nonspectral Green's function doorway approach. At
intermediate momentum transfers excellent predictions of the quasielastic Fe(e, e') experimental
data for the longitudinal response function are obtained. In comparisons with recent measurements
at ~qg

= 1.14 GeV/c the theoretical calculations of RL, give good agreement for the quasielastic peak
shape and amplitude, but place the position of the peak at an energy transfer of about 40 MeV
higher than the data.

PACS number(s): 25.30.Fj, 24.10.Jv, 24.10.Ht

I. INTRODUCTION

There has been a recent interest in inclusive quasielas-
tic electronuclear reactions at large momentum transfers
(~qg

+ 1 GeV/c), especially with the upcoming programs
planned at CEBAF. Along with recent measurements
[1] there has been some theoretical work investigating
the physical role of relativity and final state interactions
(FSI) in such reactions [2,3]. From these studies it has
been noted that a full finite nucleus calculation would be
helpful in discerning the various physical contributions.
This paper attempts to address that need.

In the simple relativistic Fermi gas calculation of
Ref. [2] the implications were that the role of FSI at
~qg

+ 1 GeV/c appeared to be greatly reduced, espe-
cially since the use of a real energy-independent poten-
tial to model the FSI caused the predicted position of
the quasielastic peak to move significantly away from the
data. The use of a Fermi gas model may be misleading,
however, since the recoil efFects will be misrepresented
which may afFect the calculated position of the quasielas-
tic peak. A finite nucleus model should be more appro-
priate. In Ref. [3] an energy-dependent real potential
was introduced to give the FSI, and the conclusion from
this study is that the FSI remain important at large ~q],
and that the energy dependence is required to enable one
to predict the peak position correctly. In that work the
imaginary part of the optical potential is neglected. From
optical model studies of elastic nucleon-nucleus scatter-
ing and from multiple scattering theory there is known to
be a strong energy dependence in the optical potentials.
To delete the imaginary part of an energy-dependent po-
tential is to break the unitarity constraint and thus incor-
rectly represent the reactive content of the optical poten-
tial. For a more physical representation, the full complex
energy-dependent optical potential should be included in
a consistent manner. The importance of such considera-
tions was discussed in detail in Ref. [4].

In this paper two complex energy-dependent Dirac op-
tical potentials derived from multiple scattering are used

in a relativistic finite-nucleus calculation to calculate the
separated response functions for inclusive quasielastic
(e, e') scattering from sFe. In these calculations Dirac
dynamical efFects resulting from couplings to negative
energy states, which were shown in Ref. [4] to be im-

portant, are included. In Sec. II a theoretical discussion
of the model and the calculation is presented. The re-
sults and the comparison with the experimental measure-
ments, along with a discussion of current conservation
issues, are presented in Sec. III followed by a conclusion.

II. THEORETICAL DISCUSSION

Although the main mechanism in quasielastic reactions
is assumed to be the knockout of a single nucleon, in
inclusive reactions all possible final states are included
in the experimental measurements. The optical poten-
tial implies the existence of other final states besides the
knockout channel within the imaginary part. For this
reason to include all of the possible final states implied
by an optical potential the nonspectral Green's func-
tion doorway approach [5], which is discussed more fully
in Ref. [4], is used. The longitudinal and transverse
response functions within the one-photon-exchange ap-
proximation are given by

Rl. (q, ai) = W (q, io),

RT (q, io) = W" (q, ~o) + W (q, io), (2.1)

(2.2)

Here ~i) represents the initial nuclear many-body state,
while the sum over

~ f) corresponds to all final states of
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the full hadronic many-body assembly. 1"(q) is the elec-

tromagnetic nuclear current operator, and the P,. de-
notes an average over the initial states.

One would like to perform an explicit sum over the
complete set of complex inelastic reaction channels in
the final state, but in practice such a many-body calcu-
lation is prohibitively difficult. Therefore a nonspectral
approach is used where the sum over all of the final states
within a particular space is implicitly performed, by con-
sidering the full A-body Green's function.

Suppressing the discrete state contribution, Eq. (2.2)
can be rewritten in terms of the forward virtual Compton
amplitude:

1W" (q, (u) = — ImT"—(q, (u), (2.3)

where

T" (q, (u) = ) (ild" (q)tG((u+ E;)J"(q)li). (2.4)

Here G is the full many-body propagator for the A-

nucleon system. If J~ is assumed to be a one-body opera-
tor, it can be shown [4] that within this one-body space G
reduces to the optical model Green's function. By using
the optical model Green's function in a nonspectral form,
then a consistent unitary representation of the reactive
content of the final state interactions is maintained [4].
If one assumes that each knockout channel is represented
by the same optical model potential, then the following
substitution can be made:

G Gopt = Go + Go Uopt Gopt. (2 6)

G pt corresponds to the use of an optical model poten-
tial to represent the final state interactions between the
ejected nucleon and the residual nucleus. Go is the free
propagator for a nucleon within the nuclear medium.

To reduce the calculation to the plane wave approxi-
mation (PWA), U pt is set to zero or equivalently

G=Go, (2.6)

which leads to Eq. (2.2), where only Anal plane wave
states for the ejected nucleon are considered.

The calculations are performed in a fully-off-shell mo-
rnentum space representation:

(2.7)

Here G pt(»7, »7', E) is calculated from the fully off-shell
relativistic optical potential as derived from multiple
scattering theory. The optical model Green's function
is calculated as the solution of the Lippmann-Schwinger
equation in momentum space to give the fully-off-shell
nucleon-nucleus T matrix. The equations are solved in
partial wave form so as to include the spin-orbit contri-
butions in a convenient way:

3 ~ 3 ~/
T" (q, ~) =), (tlat —q) J"( q) G.,t(p, » '; E)—

» (p') (P' —qli) .

G.„(p,P';E)= G.(p; E) S~'l(P P-')

+o.t;z)fv.„(r,s ")G.„(p",r ';z)a'r"

= Go(p; E) b~ l (p —»7') + Go(p; E)
x T.„(p,p '; E) Go(p'; E), (2.8)

t (p p'I E) = +opt(p p )
'p" &.,t(P, p") Go(»"; E)

xT.„(p",p'; E). (2.9)

and (2.10)

( 2) „ F2(q') ~„

= Fi(q )p" + i o.""q„,F2q.
2m

In the above equation the free Dirac propagator can be
separated into a positive-energy projecting part and a
negative-energy projecting part, so that contributions to
Eq. (2.7) involve coupling to the negative-energy Dirac
sea. It has been shown that such efFects can play a major
role in the calculated response functions [4,6—8].

The negative-energy contributions referred. to above
require some discussion, since these contributions dif-
fer from those that arise from relativistic RPA calcu-
lations [9]. The negative-energy contributions in rela-
tivistic RPA arise from the summation of ring diagrams
through a one-particle one-hole subspace. This comes
about due to the approximation of the single particle
propagator with a mean field propagator, which includes
the Hartree mean field and RPA correlations. In the
model presented in this paper the single particle propa-
gator is approximated by the optical model Green's func-
tion. As shown in Ref. [10] contributions derived from an
optical potential in this case are equivalent to n-particle
n-hole contributions, where n & 2. RPA effects are not
included in this paper, and the negative-energy contribu-
tions implied in Eqs. (2.8) and (2.9) arise from couplings
to the reactive content of the optical potential and are
outside of the pure one-particle one-hole picture.

In the PWA and FSI calculations a single particle de-
scription is used. Bound state wave functions are taken
from a Dirac-Hartree calculation [11]and are represented
in Dirac four-spinor form. Since the Dirac-Hartree calcu-
lation performed in Ref. [11]assumes spherical symmetry
and Fe is not a doubly magic closed shell nuclei, approx-
imations are used to represent the valence nucleons. In
this case the valence shell is represented as a closed shell,
but with fractional occupation numbers to give 26 pro-
tons and 30 neutrons. The current operators are treated
in relativistic form, and no nonrelativistic reduction is
performed.

The analysis presented in this paper will be performed
for both (a) the relativistic plane wave approximation
and (b) with the Green's function doorway approach to
include the FSI. The form of the electromagnetic nucleon
current inside of the nucleus is unknown, hence two differ-
ent functional forms of the free electromagnetic current
operator are used:

q2
J,"„=Fi(q )p" + i o.""q„,

m
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where G = Ei+ E2 is the familiar Sachs magnetic form
factor and K = A: + A.". The bars over K and q indi-
cate that k and k' are fixed to the on-shell values, e.g. ,

k = +gk2 + m2, where the sign is dependent upon the
(6) energy character of the Dirac spinor. The definitions

of J, 2 and J„i correspond to the cc2 and col operators
defined in Ref. [12]. These two operators are identical
on-shell and hence give the same free nucleon electromag-
netic representations. In the off-shell case where one scat-
ters from bound nucleons or when one includes FSI, these
operators give differing results. The most general form
of the current operator contains 12 independent terms,
in which only two independent terms survive in the on-
shell limit. To be able to construct the complete operator
with the accompanying form factors one would require a
reliable off-shell nucleon structure model, for example, a
@CD-based model. Hence the calculated differences be-
tween the t"cl and cc2 operators can only be understood
in terms of the underlying nucleon structure. For a de-
tailed analysis of the effects and uncertainties represented
by these two operators, please see Refs. [7,13,14].

Current conservation is imposed by means of the stan-
dard replacement of q J by q J /~qg. In general the cur-
rent is not conserved by these two operators, since there
typically is not a consistent Hamiltonian treatment of the
initial state, the final state, and the electromagnetic cur-
rent interactions. The form factors used in this paper are
taken from Ref. [15]. An analysis of current conservation
is presented at the end of the following section.

Two relativistic complex optical potentials derived
from multiple scattering theory are used to represent
the FSI. In this case nucleon-nucleon [KX] t matrices
are folded with local densities in the optimum factor-
ization approximation [16] to give the optical potential.
The negative-energy part of the optical potential is con-
structed using an approximate approach [17]. For one op-
tical potential the NN t matrices are calculated from the
fully-oK-shell full Bonn potential [18], which include the
effects of relativistic kinematics, retarded meson propa-
gators as given by time-ordered perturbation theory, and
crossed and iterative meson exchanges with NN, NA,
and AA intermediate states. For ejectile energies greater
than 300 MeV, an extension of the Bonn meson exchange
interaction above pion production threshold is used [19].
The second optical potential uses the NN interaction of
Ref. [20]. The proton densities are taken from electron
scattering measurements [21],while the neutron densities
are those calculated from the Hartree-Fock-Bogolyubov
calculation of Ref. [22]. In calculations of elastic nucleon-
nucleus scattering, the use of the Bonn potential tends to
give a better representation of the data than the Franey-
Love amplitudes, probably due to the superior off-shell
behavior of the Bonn potential.

In this paper the nonrelativistic calculations of FSI are
constructed from the relativistic calculations with the
exception that all of the negative energy contributions
which result from the Dirac dynamics are neglected. This
includes those negative energy contributions that arise
from the construction of U pt and in the calculation of
G pt This is the manner in which the nonrelativistic cal-

culation is calculated here, where relativistic kinematics
are maintained.

III. RESULTS AND COMPARISONS
WITH THE DATA
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FIG. 1. The inclusive quasielastic separated response func-
tions are shown for scattering from Fe at ~qg

= 410 MeV/c.
The longitudinal response is shown in the upper panel. The
transverse response function calculated using the cc2 (Dirac)
and the eel electromagnetic nucleon current operators is
shown in the middle and lower panels, respectively. The
short-dashed curves represent the PWA calculation. The
solid and long-dashed curves correspond to the nonrelativis-
tic FSI calculation using optical potentials calculated with the
full Bonn potential and Franey-Love amplitudes, respectively.
The data do not include any Coulomb distortion corrections
and are from Ref. [23].

To gauge the accuracy of the theoretical model, com-
parisons with quasielastic Fe(e, e') data are made at
~qg

= 410 and 550 MeV/c. These comparisons are made
both with nonrelativistic FSI and with relativistic FSI in-

cluding Dirac dynamical degrees of freedom. The PWA
results with no FSI (V ~t

——0), and the nonrelativistic
FSI calculations are shown in Figs. 1 and 2 for ~qt

= 410
and 550 MeV/c, respectively. The PWA calculation
places the peak position for Bg in the upper panels at
an energy transfer of about 15 —25 MeV larger than the
experimental data. Note that these data do not include
any Coulomb distortion corrections, which may shift the
experimental result. After including the nonrelativistic
FSI, one can see the peak position is much better repre-
sented with the error in Bl. being negligible.

The use of the Bonn potential in the solid curve gives
a slightly different result than the long-dashed curve,
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FIG. 2. The same as Fig. 1, except at CqC
= 550 MeV/c. FIG. 3. The same as Fig. 1, except the FSI are calculated

using the relativistic model including Dirac dynamical effects.

which uses the Franey-Love amplitudes. In this case the
Bonn potential gives a slightly better representation of
the data.

In the middle and lower panels of Figs. 1 and 2 the
transverse response is calculated. In this case there are
two possible predictions for the same data due to the
ambiguity about the J q and J, 2 current operators in
Eq. (2.10). These two operators give formally identical
longitudinal results, but differ in the transverse channel.
For the nonrelativistic case this difI'erence is very small.
Since the L resonance is not included in this calculation
the comparisons with the data can only be made quali-
tatively. From the tail of the 4 resonance in the curves,
it appears that the nonrelativistic FSI predictions will
underestimate the data.

The relativistic FSI results for ~qC
= 410 and

550 MeV/c are shown in Figs. 3 and 4, respectively. Here
the predictions of BI. are very close, where the Bonn po-
tential gives a slightly larger Bl, than the Franey-Love
amplitudes. The peak positions are accurate and the
overall peak is well represented.

For the transverse case the cc2 or Dirac current re-
sults shown in the middle panels greatly underestimate
the data, while the ccl current results are very close to
the data, although the inclusion of the L-resonance de-
grees of freedom may easily alter this agreement. The
large differences between Dirac current and cc1 current
predictions for the relativistic transverse response cal-
culation are related to the definition of the cc1 current
operator. The difference between the two current op-
erators used here is that the cc1 operator uses g„or

and thus requires the on-shell energies to be used.
For the negative-energy states these on-shell energies are
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FIG. 4. The same as Fig. 1, except at Cqt
= 550 MeV/c and

the FSI are calculated using the relativistic model including
Dirac dynamical efFects.

k = —V k2 + m2. Hence the off-shell difference between
the Dirac current and the cc1 current become much more
exagerated for the negative-energy states, since here u
becomes very difFerent from ~.

Prom the BI. comparisons the relativistic dynamical
effects are very important in providing good theoretical
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FIG. 5. The same as Fig. 1, except at iqi = 1.14 GeV/c and
the data are from Ref. [1j. The data represented by the circles
account for Coulomb distortion efFects by using an efFective

q, while the squares omit this correction.

predictions of the data at these intermediate momentum
transfers. For greater momentum transfers one would
expect that relativistic effects to be an important and
necessary ingredient for any accurate theoretical descrip-
tion of the data.

The quasielastic Fe(e, e') results for a momentum
transfer of iqt = 1.14 Gev/c are shown in Figs. 5 and 6 us-

ing nonrelativistic and relativistic FSI, respectively. Here
the PWA result for BL, places the peak positions at an
energy transfer which is about 55 MeV greater than the
peak in the data. With nonrelativistic FSI, the peak po-
sition is closer to the data but still about 30—45 MeV too
high. With relativistic FSI in Fig. 6 the Dirac dynamical
effects move the predicted peak further away to be about
40 —50 MeV higher in u than the data. In this case the
shapes of the peak in BL, are well represented, although a
bit too wide, while the peak position is not as accurately
placed. The relativistic FSI calculation gives a smaller
amplitude peak than the nonrelativistic FSI calculation
and is closer to the circled data, which take into account
in an approximate fashion the Coulomb distortions. It is
interesting to note that the relatively large errors are not
truly able to discern clearly between the relativistic and
nonrelativistic FSI calculations. The Coulomb corrected
data appear to favor the need for relativistic FSI. The
predicted peak position in Fig. 6 is actually closer than
the most sophisticated results of Ref. [3], which places the
peak position at an ~ of about 85 MeV higher than the
data. It is clear from Fig. 6 that FSI are very important
effects at even this high momentum transfer, although
one would like to obtain a more accurate prediction of
the peak position.
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FIG. 6. The same as Fig. 1, except at Iqi = 1.14 GeV/c and
the FSI are calculated using the relativistic model including
Dirac dynamical eKects and the data are from Ref. [1). The
data represented by the circles account for Coulomb distortion
efFects by using an efFective q, while the squares omit this
correction.

In some sense in Fig. 6, 40 MeV does not seem like
a large number, but on the scale of Figs. 3 and 4 this
value becomes significant. The incorrect peak position
seen in Fig. 6 cannot be interpreted in terms of an aver-
age binding energy shift, since this would also affect the
intermediate energy range results by the same amount,
where the peak positions are accurately reproduced. The
shift in the peak position must arise from a dynamical ef-
fect ~ There are a number of possible candidates for such
an effect, such as the restoration of current conserva-
tion, meson exchange effects, ambiguities in the off-shell
structure of the electromagnetic current, FSI effects not
included in an optical model description, better treat-
ment of the Coulomb distortions, or even the need for a
fully causal or Lorentz invariant description. With the
advent CEBAF, comparisons with other more accurate
experimental results, especially in the (e, e'p) case, may
prove to be very enlightening.

Although the model used here provides a realistic for-
malism for including FSI, there remains the question as
to whether the lack of current conservation would al-
ter any of the results of this calculation. As a mea-
sure of the violation of current conservation the longi-
tudinal response can also be calculated using the third
component of the current operator instead of the time
component. In this case by using J instead of J the
longitudinal response can be calculated as BL (q, ~) =

2
W (q, w). The results comparing the two ver-
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sions of the longitudinal response are shown in Figs. 7
and 8 for Iqi = 550 and 1140 MeV/c, respectively. In
the upper panels of these two figures the plane wave ap-
proximation calculations are shown. In this case the two
current operators used give identical expressions for the
zeroth component, but give difFerent z-component ex-
pressions. The calculations for the two current operators
in the PWA result in almost identical results. For R&
at Iqi = 550 MeV/c the current conservation violation in
the PWA appears to be rather large. This can be un-
derstood in the sense that the initial state Hamiltonian
involves the Dirac Hartree potential, while the Anal state
is the free Hamiltonian and thus the current conservation
violation should be large. It is interesting to note that
this violation is reduced greatly at Iqi = 1.14 GeV/c.

In the lower panels of Figs. 7 and 8 the results with the
current conservation test are shown where both relativis-
tic and nonrelativistic FSI are included using the Bonn
potential and the standard Dirac form of the current op-
erator. In Fig. 7 in the lower panel the relativistic results
using both the zeroth and the third component of the
current operator are close together, less than the error in
the data, indicating the violation of current conservation
is probably negligible. The di8'erence between the two
nonrelativistic results is curiously larger than that ob-
served for the relativistic comparison. For energy trans-
fer, w ( 100 MeV the violation of current conservation
grows dramatically. This is also seen in the results at
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FIG. 7. The longitudinal response function is calculated by
using both the zeroth and third components of the current op-
erator for ~qi

= 550 MeV/c. The upper panel shows the PWA
result where the solid line uses the zeroth component, while
the short-dashed and long-dashed curves use the third com-
ponent of the current, using the cc2 and ccl versions of the
current operator, respectively. In the lower panel the results
which include FSI and use the cc2 version of the current op-
erator are shown. The solid and short-dashed curves include
relativistic FSI calculated with the zeroth and third compo-
nents of the current operator, respectively. The long-dashed
and dot-dashed curves include nonrelativistic FSI calculated
with the zeroth and third components of the current operator,
respectively.
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FIG. 8. The same as Fig. 7, except for ~qg
=- 1.14 GeV/c.

IV. CONCLUSION

The longitudinal and transverse response functions for
the inclusive quasielastic electronuclear scattering reac-
tion from Fe are calculated using a relativistic finite
nucleus model with FSI and Dirac dynamical degrees
of freedom. FSI are included using the optical model
Green's function doorway formalism, which for the case
of a one-body electromagnetic current operator provides
a physical description of the final states resulting from the
reactive content implied by the imaginary part of the op-
tical potential. The optical model Green's function is cal-
culated. in a fully-ofF-shell momentum space calculation
using optical potentials derived from first-order multiple
scattering theory using two difFerent nucleon-nucleon in-
teractions.

It is found that at intermediate momentum transfers
of 410 and 550 MeV/c, the relativistic FSI calculation
gives a very good theoretical description of the data, re-
producing well the position, shape, and amplitude of the
quasielastic peak. At ~qg

= 1.14 GeV/c comparisons with
recent data And that the shape and amplitude of the
peak are well produced, but that the peak is placed at
an energy transfer of about 40 MeV higher than the ex-
perimental result. The source of this discrepancy is not
clear and may provid. e a motivation for future investiga-
tions.

An analysis of the efFects of current conservation viola-

~qg
= 410 MeV/c. This indicates that the Hamiltonian

descriptions of the initial and final states used here be-
gin to differ significantly for these energies. In Fig. 8
a simlar result is found, although the differences are a
little smaller than those observed at Iqi = 550 MeV/c.
The result is that there are apparent violations of cur-
rent conservation, but it appears that these violations
are probably smaller than the uncertainty in the data
and can be neglected. At some time in the future this
issue needs to be studied thoroughly.
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tions indicates that for the energy transfers of interest in
this paper these violations are probably not important.

ACKNOWLEDGMENTS

Appreciation is extended to J. P. Chen and
Z. E. Meziani for sharing their data and to R. M. Thaler
for helpful discussions. This work was performed in part

under the auspices of the U. S. Department of Energy
under Contracts No. DE-AC05-84OR21400 with Mar-
tin Marietta Energy Systems, Inc. , and No. DE-FG05-
87ER40376 with Vanderbilt University. This research
has been supported in part by the U.S. Department of
Energy, OfFice of Scientific Computing under the High
Performance Computing and Communications Program
(HPCC) as a Grand Challenge project titled "the Quan-
tum Structure of Matter. "

[1] J. P. Chen et aL, Phys. Rev. Lett. 66, 1283 (1991).
[2] M. R. Frank, Phys. Rev. C 49, 555 (1994).
[3] H. Kim, C. J. Horowitz, and M. R. Frank, Phys. Rev. C

51, 792 (1995).
[4] C. R. Chinn, A. Picklesimer, and J. W. Van Orden, Phys.

Rev. C 40, 790 (1989).
[5] Y. Horikawa, F. Lenz, and N. C. Mukhopadhyay, Phys.

Rev. C 22, 1680 (1980).
[6] C. R. Chinn, A. Picklesimer, and J. W. Van Orden, Phys.

Rev. C 40, 1159 (1989).
[7] C. R. Chinn and A. Picklesimer, Nuovo Cimento 105A,

1149 (1992).
[8] C. R. Chinn, Phys. Rev. C 50, 1509 (1994).
[9] See, for example, S. A. Chin, Ann. Phys. (N.Y.) 108, 301

(1977); C. J. Horowitz and J. Piekarewicz, Nucl. Phys.
A511, 461 (1990); J. R. Shepard, E. Rost, and J. A. Mc-
Neil, Phys. Rev. C 40, 2320 (1989).

[10] See, for example, R. D. Smith and J. Wambach,
Phys. Rev. C 38, 100 (1988); G. Co', K. F. Quader,
R. D. Smith, and J. Wambach, Nucl. Phys. A485, 61
(1988); S. Fantoni and V. R. Pandharipande, ibid. A473,
234 (1987).

[11] C. J. Horowitz and B. D. Serot, Nucl. Phys. A368, 503

(1981).
[12] T. de Forest, Nucl. Phys. A392, 232 (1983).
[13] H. W. L. Naus and J. H. Koch, Phys. Rev. C 36, 2459

(1987).
[14] P. C. Tiemeijer and J. A. Tjon, Phys. Rev. C 42, 599

(1990).
[15] M. Gari and W. Krumpelmann, Phys. Lett. B 173, 10

(1986).
[16] A. Picklesimer, P. C. Tandy, R. M. Thaler, and D.

H. Wolfe, Phys. Rev. C 30, 1861 (1984).
[1?] M. V. Hynes, A. Picklesimer, P. C. Tandy, and R.

M. Thaler, Phys. Rev. C 31, 1438 (1985).
[18] R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep.

149, 1 (1987).
[19] Ch. Elster and P. C. Tandy, Phys. Rev. C 40, 881 (1989).
[20] M. A. Franey and W. G. Love, Phys. Rev. C 31, 488

(1985).
[21] H. D. Wohlfahrt, Habilitationsschrift, University of

Mainz, 1976, unpublished.
[22] J.-F. Berger, M. Girod, and D. Gogny, Nucl. Phys. A502,

85c (1989).
[23] Z. E. Meziani et al , Phys. Rev. . Lett. 52, 2130 (1984).


