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Nonrelativistic reduction of the S matrix for the quasifree electron scattering process A (e, e'p) A—
1 is studied in order to understand the source of differences between nonrelativistic and relativistic
models. We perform an effective Pauli reduction on the relativistic expression for the S matrix in
the one-photon exchange approximation. The reduction is applied to the nucleon current only; the
electrons are treated fully relativistically. An expansion of the amplitude results in a power series
in the nuclear potentials. The series is found to converge rapidly only if the nuclear potentials are
included in the nuclear current operator. The results can be cast in a form which reproduces the
nonrelativistic amplitudes in the limit that the potentials are removed from the nuclear current op-
erator. Large differences can be found between calculations which do and do not include the nuclear
potentials in the different orders of the nuclear current operator. In the high missing momentum
region we find that the nonrelativistic calculations with potentials included in the nuclear current
up to second order give results which are close to those of the fully relativistic calculation. This
behavior is an indication of the importance of the medium modifications of the nuclear currents in
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this model, which are naturally built into the relativistic treatment of the reaction.

PACS number(s): 24.10.Jv, 25.30.Fj

I. INTRODUCTION

Electromagnetic probes provide invaluable information
about nuclear structure. The quasifree process (e,e’p)
has been used extensively to study proton-hole states
and to determine single-particle spectroscopic factors [1].
This reaction is advantageous because the electromag-
netic interaction is known; the relative weakness of the
reaction permits the probe to interact almost uniformly
through the entire nucleus, and the first order of pertur-
bation theory should provide an adequate description of
the process. Coincidence measurements of the (e, e'p) re-
action can provide detailed information about the single-
particle structure of the nucleus over a wide range of
momentum transfer.

The (e, e’'p) reaction has been widely studied both non-
relativistically [2,3] and relativistically [4-6], and there
are some discrepancies between the results of these in-
vestigations. Both analyses begin with a Lagrangian
which allows for the interaction of the photon with both
electrons and protons. Nonrelativistic analyses involve
the reduction of the free electron-proton interaction to
a form involving two-component spinors for the nucleon.
This results in a Hamiltonian which is expanded in pow-
ers of 1/M where M is the nucleon mass [2]. The re-
sulting interaction Hamiltonian is sandwiched between
Schrédinger wave functions describing the nucleons in or-
der to form the nuclear current. Relativistic analyses are
based on the Feynman diagram for one-photon exchange
between the projectile electron and a proton which is em-
bedded in the nucleus. The electrons and nucleons are
all described relativistically as spin-1/2 objects via the
Dirac equation containing appropriate potentials [4-6].
A long-standing problem in quasifree electron scattering
has been that the spectroscopic factors extracted from
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nonrelativistic analyses are smaller than expected from
shell model calculations. Spectroscopic factors which are
found on the basis of the relativistic approach are gen-
erally larger than those found via the nonrelativistic ap-
proach [4,6].

Several groups have attempted to understand the
underlying differences between these two approaches.
This mainly involved looking at the sensitivity of
quasifree electron scattering calculations to different
optical potentials and renormalizations of the contin-
uum wave function [7-9]. This concentration on op-
tical potentials was largely a result of the improve-
ment in the description of proton elastic scattering
observables via Dirac phenomenology over the stan-
dard nonrelativistic optical model description. Boffi
et al. [7] have multiplied the nonrelativistic contin-
uum wave function by a potential-dependent factor
{1+[S(r) =V (r)]/(E+ M)}? where S(r) is the
Dirac scalar potential and V (r) is the vector potential.
This modification essentially changes the two-component
Schrodinger wave function into the upper component of
the Dirac wave function, while no other change is made in
the nonrelativistic calculation. They find that extracted
occupation probabilities are larger than those obtained
from the unmodified nonrelativistic analysis. The anal-
ysis of Udias et al. [8] replaces the nonrelativistic bound
state wave function with the upper component of a Dirac
wave function, and the nonrelativistic continuum wave
function is modified by factors of the same shape as the
factor used by Boffi et al. The continuum wave function
in this case is generated from Schrédinger-equivalent po-
tentials [10]. The nuclear current operators are obtained
in the standard way by expansion to order 1/M*. Their
“nonrelativistic” calculations then involve nonrelativistic
nuclear current operators surrounded by the upper com-
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ponents of Dirac wave functions. With these choices little
difference is found between the relativistic and “nonrela-
tivistic” calculations. Jin and Onley [9] have presented a
model which can take either relativistic or nonrelativis-
tic optical potentials while keeping other aspects of the
calculation the same. They find that different optical
potentials can change the results by as much as 14%.

These results clearly demonstrate the variability due
to final state interactions; however, the issue is clouded
by the occasional use of upper components of Dirac wave
functions in a nonrelativistic calculation. We believe that
the essential difference between relativistic and nonrela-
tivistic approaches is not just in the changes in the op-
tical potentials; these are usually phenomenological and
equivalent potentials can always be found. Rather the
essential difference is in the appearance of the nuclear
potentials in the nuclear current operators when the rel-
ativistic amplitude is reduced to a nonrelativistic form.
Such medium effects on the nuclear currents are absent
in standard nonrelativistic calculations.

In this paper we study the differences between the rel-
ativistic and nonrelativistic approaches in calculating the
amplitude for the (e,e’p) reaction. We do this through
an effective Pauli reduction of the relativistic transition
amplitude [11]. An expansion of the amplitude in powers
of (E + M)~ " allows us to recover a nonrelativistic limit,
which matches the standard nonrelativistic calculations,
with the difference that optical potentials used to gen-
erate the distorted waves are exactly equivalent to those
used in the relativistic calculations. The main difference,
as mentioned above, is that the nuclear currents are po-
tential dependent. We compare the two approaches and

thus explain why they can still give different values for
the extracted spectroscopic factors, even when equivalent
optical potentials are used.

We introduce the relativistic amplitude for quasifree
electron scattering in Sec. II. Section III outlines the
Pauli reduction of the amplitude and some of its rele-
vant features are discussed in Sec. IV. The nonrelativis-
tic limit is discussed in Sec. V. In Sec. VI we compare
our nonrelativistic calculations with and without nuclear
potentials in the nuclear current operators, to the results
of the fully relativistic calculations. Our conclusions are
given in Sec. VII.

II. RELATIVISTIC AMPLITUDE

We consider the one-photon exchange model for the
(e, e'p) process [6], in which a photon is exchanged be-
tween the incident electron and a target proton. The
struck proton is detected in coincidence with the final
state electron. In this paper we are interested in the dif-
ferences between the relativistic and nonrelativistic treat-
ment of the hadronic part the (e,e’p) reaction. In the
course of this discussion we do not include the Coulomb
interaction in the leptonic part of the S matrix since this
will only be important for heavy nuclei [4,12]. We will
therefore not discuss any nuclei heavier than %°Zr in this
work.

The relativistic expression for the S matrix describing
the quasifree electron scattering process (e,e’p) in the
distorted-wave Born approximation (DWBA) is [6]

—ie? [ Momz )" (J5,IB; My, Mp|Js, Mi)[S5.5,(I8)]"? [ diz d*y d*q J.u( )wﬂ( ), (2.1)
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where Sj,7,(JB) is the spectroscopic factor and J¥ and . 2
iJf . € . " 2 2 (q ) v
J& are electron and nuclear currents, respectively. M is iN=Fi(q )Y+ WU" 9. (2.4)

the nucleon mass and E. is the energy of the outgoing
proton. The electron current is given by

TE(Y) =Y, (U) V*Ye: (v) (22)

where 1., and 1., are the initial and final Dirac spinors
for electrons. The electron wave functions are taken to
be free Dirac spinors and the integration at the electron
vertex can then be done analytically. This also allows
the momentum integration for the photon propagator to
be done, leaving one four-dimensional integration at the
nucleon vertex. The nuclear current is similarly given by

In (x) =¥y, () in¥N, (2), (23)
where the nuclear current operator ji'(, is the choice cc2
discussed by de Forest [13],

F (qz) and F, (qz) are nucleon form factors and are func-
tions of the four-momentum squared of the exchanged
photon, which couples to the nucleons. We have ¢g* =
k¥ — k% where k! and k% are the momenta of the ini-
tial and final electrons, respectively. The matrix o*¥ is
formed from the Dirac v matrices in the standard way as
[14

i
ot = S (Y =)

: (2.5)

The integration over d%q in Eq. (2.1) is associated with
the propagator of the exchanged photon.

The electrons are described by positive energy Dirac
spinors, and the integration over coordinates at the elec-
tron vertex, in the S matrix of equation in Eq. (2.1), can
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be done analytically to yield a Dirac § function giving
energy and momentum conservation at the vertex, and
so ¢ = k§ —k$. The resulting § function fixes the momen-
tum of the intermediate photon, and so the integration

Syi= —ie? 1 [Mm?3

1/2
- + Ep — By —
(2m)"/% &5 EEfE] $(Be+ By = By~ Bi)

2
> (Js,J8; My, Mp|Ji, M;) [S5.0,(J5)]"/* 2 M5
JpMpg

over that momentum is done trivially. The integration
over the time coordinate at the nucleon vertex can then
be done to yield a § function providing overall energy
conservation. The S matrix can then be cast in the form

(2.6)

vivi

where Z#M5 is a function of the initial and final spin projections, momenta, etc. Specifically we have at this point

viv;

Zl‘,‘fl‘,’ff = e,“,‘ful_ /d3$ 1/,':2 (kpy2) Loy, My () exp (iq - ), (2.7)
where the 4 X 4 matrix operating on the nucleon spinors is
ikF3(q%)
T, = 2) N 4 B2 ] )
'YO|:F1(Q)'Y + 5 Tt (2.8)
The four-vector which comes from the electron vertex is
1
Ef+meEi+me /2 U-kf
a 1/2, 1, ——7 * - ki 1/2,v;), .
€ [ om.  2m. J (1/2,v¢] B +m. | E¢+m 11/2,v:) (2.9)

and this depends on the energies and momenta of the
initial and final electrons as well as their spin projec-
tions. Useful details of the Fock space calculations and
the expansion of the Dirac wave function in partial waves
can be found in the paper by Johansson and Sherif [15].
When the appropriate factors of # and ¢ are included,
the relativistic expression for the triple differential cross
section is related to Z,‘,‘:ﬁ’-“’ by

d3c _ 2 a_2 (m,gcz)ch2 PpCpsc
dQededEp (271')3 hic (q_yc)4 piC
S_]._]f (JB) M 2

B e Vet 2.10
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where v; and vy are the spin projections of the incoming
and outgoing electrons, respectively, while Mp and u are
the spin projections of the bound and continuum protons.

The cross section for quasifree electron scattering in
the plane-wave impulse approximation can be written in
a factorized form as the product of three parts [13,2]:
a kinematic factor, the cross section for the elementary
process e + p — €' + p’, which is evaluated off shell,
and finally a function of the energy and momentum of
the nucleon inside the nucleus referred to as the spectral
function.

In the following we will discuss results of calculations of
the spectral function, proton polarization, and an asym-
metry parameter. The spectral function is obtained from
the cross section given above by dividing by a kinematic

factor and the cross section for the elementary process
for e + p — e + p. We write [13,2]

dio
S(pm) = ﬂi‘mjﬁ_ (2‘11)
Ecpc ﬁ

free

where E. and p. are the energy and momentum of the
final state proton, and p,, is the missing momentum, i.e.,
the momentum of the bound nucleon in the initial state.
The free cross section is calculated using the nucleon cur-
rent operator of Eq. (2.4), and is evaluated using the
kinematics of the quasifree process, i.e., off shell. Note
that the experimental data are divided by the elemen-
tary cross section ccl of de Forest [13], while we use the
nuclear current operator which leads to his cross section
cc2, throughout this work. We are not concerned with
detailed comparison with experimental data in this work,
and so we retain a consistent approach by using the same
form for the current operator in the calculation of the
quasifree S matrix and the elementary process.
The polarization of the final state proton is given by

1/2M —1/2Mg]"
1 S 0ty Zopin ™ [ 2240

P=—2 5 . (212)

Z#MB

viv;

ZMBI“’}V:'

We also define an asymmetry parameter in the missing
momentum which is calculated from the differential cross
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sections of Eq. (2.10) as

_ 30 (pm > 0) — d®0 (pm < 0)
APm) = d30 (pm > 0) + d30 (prm < 0)°

(2.13)

This asymmetry is similar to the parameter defined by
Bianconi, Boffi, and Kharzeev [20].

|

JH (z) = EN,- (kp,x) [Fl (qZ) AH 4

The Dirac spinors may be written in terms of their
upper components as

1
o = cr |
M+ E+S(r)—V(r)

where S (r) and V (r) are the scalar and vector poten-
tials, respectively, for either the bound or final state nu-
cleons. The energy of the nucleon is E, and the associ-
ated momentum operator is p. The upper component of
the Dirac spinor u is related to a Schrodinger-like wave
function ¥g., by [16]

(3.2)

_E+M+S(r)-V(r)

u=D? Usen, where D (r) B4 M

(3.3)

J* = ol
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III. PAULI REDUCTION

We now perform the effective Pauli reduction [11] on
the hadronic part of the amplitude only; the electrons are
treated relativistically throughout. Consider the nuclear
current of Eq. (2.3) above. Using Eq. (2.4) one can write

ikFy(q?)

—“'2M—le]u ¥, () -

Note that the two-component wave function Ug., is a
solution of the Schrodinger equation used in ordinary
nonrelativistic calculations, i.e., containing central and
spin-orbit potentials, but these potentials are “equivalent
potentials,” meaning that they are functions of the vec-
tor and scalar potentials of the original Dirac equation,
as well as containing explicit energy dependence. For the
continuum nucleon the Dirac potentials result in an im-
proved description of nucleon-nucleus elastic scattering
data [17], while for the bound state the Dirac potentials
offer a slightly better description of the spin-orbit split-
ting than those used in earlier nonrelativistic calculations
[18].

The relativistic nuclear current of Eq. (3.1) can, with
the help of Eq. (3.3), be written in the form

1

X |: o-p ] D;/z (7')} ‘I’Sch,b-
M+Eb+Sb(r) ——Vb(T‘)

We now perform an expansion of the object between the braces of Eq.

1/2
Sch,C{ D (r) [1’ M+ E.+ S.(r) — V.(r)

0 K v
Fiy* + Fy——0o*¥q,
]’Y [ 1Y+ 22MU q

(3.4)

(3.4). The usual representation of the

Dirac v matrices is used [14] to write the 4 x 4 operator in terms of 2 x 2 Pauli matrices. The matrix multipli-
cations are performed and a 2 x 2 operator results. The radial function D'/2(r) from Eq. (3.3) and the factor

[E+ M+ S(r) =V (r)]”" coming from both the bound and continuum wave functions are then expanded in powers
of (E + M)~"'. This procedure leads to a sum of reduced nuclear current operators for each of the contributing orders:

md . L
JH (a:) — “chh,c (m) []#( ) + ];1.(1) 4 g 2) 4. ] ‘I’Sch,b (m) i (3.5)

The reduced current operators can be written in terms of timelike and spacelike components as
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where we have defined
S(r)—'V(r)
=7 r7 3.7
Qr) = 20—, (3.7)

and the labels b and c refer to the bound and continuum states, respectively. Using the current operators from Eq.
(3.6) up to first order in (E + M)~ ', in the S matrix (2.1), we find that for the (e, e'p) reaction the S matrix to first

order in (E + M) ™" reduces to

) 2 1/2
1 —ie M m: . 1/2
s = (o)1 [E EfE,] > Uy, I My, Mp|Ji, M:)[S1,1,(JB)]
c 7 JeMpg
e—ta(z—y)

d*z d'y d*q ———
x/ zd'y qq2+ie

—Je(y)- [iwaFz (@°) 577

Note that we have written this equation in a form in
which the integrations over the electron coordinate and
the intermediate photon momentum have not been done.
The expansion method does not depend on the plane-
wave approximation for the electrons, and electron dis-
tortions could be included if desired. The S matrix to
second order in (E + M )_1 is similarly found by includ-
ing the second-order nuclear current as well.

Note the dependence of the nuclear current operators
on the Dirac vector and scalar potentials (through the
functions @;). This dependence appears in all orders of
the reduction scheme. Thus as we go to a description
in terms of the Schrodinger-like wave function for the
nucleon, the currents undergo a medium modification af-
fected via the nuclear potential. This point is central
to the present work. We shall discuss the traditional
nonrelativistic limit of the amplitude in Sec. V, but will
concentrate in the following section on clarifying the role
of the nuclear potentials in the convergence properties of
the Pauli expansion of the S matrix.

IV. CONVERGENCE OF THE EXPANSION

In this section we discuss the convergence of the expan-
sion obtained above to the fully relativistic calculation.

Tl (@) {JS (v) F1 (¢%) [1 + %(Qc + Qb)]

o X q +F1(q2)<aa'p

o-po
Ts. .
M+Eb+M+EC)]} senb (@)

In these convergence calculations, all of the factors in the
expansion are the original relativistic ones. This is not
yet equivalent to a standard nonrelativistic calculation.
The nonrelativistic calculations are discussed below.

The calculations of the relativistic S matrix requires
knowledge of the Dirac wave functions for the bound and
continuum states. For the bound state, Hartree bound
state wave functions are used [18]. The continuum wave
functions for the knocked-out proton are obtained using
the energy- and A-dependent optical potential of Cooper
et al. [17]. We restrict our discussion to the case of par-
allel kinematics [1]. In the diagrams referred to in the
following discussion the curves are labeled according to
their order in (E + M) ™" for the expansion calculations,
and whether or not the Dirac potentials are included in
the nuclear current operators: dotted curve, first order in
(E+ M)~1 without Dirac potentials; dashed curve, first
order with potentials; dot-dashed curve, second order
without potentials; dot-dot-dashed curve, second order
with potentials; solid curve, fully relativistic calculation.
In doing these comparisons we are attempting to clarify
the convergence of the expansion and the role of the nu-
clear potentials (as they appear in the nuclear currents)
in the rate of convergence of this expansion.

Figure 1 shows observables as a function of missing mo-
mentum for the reaction 80(e, e'p)°N; Fig. 1(a) is the
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spectral function while Fig. 1(b) is the proton polariza-
tion. The ground state of the residual nucleus, °N, is as-
sumed to be a 1p 1 hole. The energy of the incident elec-
tron is 456 MeV, and the kinetic energy of the detected
proton is fixed at 90 MeV with parallel kinematics. The
relativistic calculations of the spectral function are fitted
to the peak of the data [21]; the resulting “spectroscopic
factor” is then used in all the other calculations for that
particular state. (We adopt this simple fitting procedure
because our main concern here is comparison between the
different calculations, rather than a judicious determina-
tion of the spectroscopic factors.) Note that the calcu-
lations with potentials included converge rapidly toward
the fully relativistic results in this case, with the curve
for the second-order calculations being very close to the
relativistic results over the range of momentum transfers

102 |
< 10!
>
©
&)
g
g 10° 16 15
g O(e,e’p) N
= E, = 456 MeV
=] = . NIKHEF data
§_ ) TP =90 MeV 1% order noa pot.
= 107" ========: 1% order with pot. E
- + 2% order no pot. ]
r —————— 2™ order with pot.
5 Full relativistic
[(a)
" L il L L L
0.5
=
.8
s
E
3 0
[2¥
=
8
<]
& I
-0.5
[ (b)
N NS S KSR Sl S SR S B S SR
-300 -200 -100 0 100 200 300

missing momentum ( MeV/c)

FIG. 1. Observables for the reaction °Of(e, e'p)'°N where
'®N is in the 1p; state. The energy of the incident electron
is 456 MeV, andzthe kinetic energy of the detected proton is
fixed at 90 MeV with parallel kinematics. Hartree bound state
wave functions are used [18] and the proton optical potentials
are from [17]. The data are from Ref. [21]. (a) Spectral func-
tion and (b) proton polarization. Curves labeled according
to their order in (E + M)™' and whether or not the Dirac
potentials are included in the nuclear current operators: dot-
ted curve, first order in (E 4+ M)~! without Dirac potentials;
dashed curve, first order with potentials; dot-dashed curve,
second order without potentials; dot-dot-dashed curve, sec-
ond order with potentials; solid curve, fully relativistic calcu-
lation.
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shown. In calculating the spectral function, the inclusion
of the potential in the first-order interaction terms brings
the results closer to the fully relativistic calculation than
the second order without potentials. It must be stressed
that the inclusion of potentials in the interaction brings
the results close to the fully relativistic results, while the
calculations without potentials are quite far from the rel-
ativistic results and do not show a strong indication for
convergence to the relativistic result. We have also done
similar calculations for the same target but leaving the
residual nucleus in an excited state, as well as using dif-
ferent targets, namely, °Ca and °°Zr, with the residual
nucleus left in both ground and excited states. These
calculations show the same behavior as the calculations
shown in Fig. 1. The above results are of course ex-
pected on simple mathematical grounds. The essential
point, however, is to shed light on the role of the appear-
ance of the potentials in the nuclear currents. We have
seen no evidence that expansions that are based on free
vertices (i.e., no nuclear potentials) will converge to the
fully relativistic results, even if calculations are done to
higher order in the inverse of the nucleon mass [2]. This
will have implications for comparisons with the standard
nonrelativistic calculations, which we discuss next.

V. NONRELATIVISTIC LIMIT

The expansion of the S matrix in powers of (E + M) ™'
discussed above does not quite yield the amplitude used
in standard nonrelativistic calculations. Some care must
be taken at this point in the discussion to differentiate
between the correct nonrelativistic limit and the stan-
dard operator used in nonrelativistic calculations. There
are three things that must be done in order to obtain the
proper nonrelativistic limit from the relativistic ampli-
tude.

(i) The bound state wave function must be normalized
to unity. In the expansion obtained above, the Dirac
bound state wave function is normalized to unity and
the related Schrodinger-equivalent wave function is not.
In the nonrelativistic calculations it is the Schrodinger-
equivalent wave function that must be normalized.

(ii) The continuum wave function must be normalized
correctly. The factors arising from the Dirac field and
the normalization of the Dirac wave function result in
a factor of (E + M) /2E being set equal to 1 to obtain
the nonrelativistic expression for the cross section [this
is equivalent to multiplying the right-hand side of Eq.
(2.10) by the inverse of this factor].

(iii) Finally, to obtain nonrelativistic expressions for
the nuclear current operators from the relativistic ex-
pressions of Eq. (3.6), the nucleon energies (both con-
tinuum and bound) are set equal to the nucleon mass,
e, E - M.

It is important to note that these changes still have not
yielded the standard nonrelativistic amplitudes because
the nuclear current operators at this stage contain the
Dirac potentials explicitly. This is an essential difference
between the relativistic and nonrelativistic approaches,
and the presence of these potentials can lead to large dif-
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ferences in the observables obtained via relativistic and
nonrelativistic approaches. In order to obtain the usual
nonrelativistic expression, the Dirac potentials must be
removed from the nuclear current operators. When this
is done, the nonrelativistic equivalent of the S matrix
of Eq. (3.8) yields the usual first-order nonrelativistic
transition amplitude used by many authors {2,3]. When
terms to second order are included in the nonrelativis-
tic S matrix, and in the limit of no nuclear potentials,
there are some differences between our expression and
the usual nonrelativistic second-order S matrix, which
is obtained via a Foldy-Wouthuysen transformation of
the interaction between electrons and free nucleons [2].
Fearing, Poulis, and Scherer [19] have compared Foldy-
Wouthuysen and Pauli reductions of a Dirac Hamiltonian
containing a generic potential with harmonic time depen-
dence. They found that differences do occur beyond first
order in 1/M. Detailed calculations show that these dif-
ferences between the Pauli and Foldy-Wouthuysen reduc-
tions are small when the nuclear potentials are ignored in
the nuclear current operators. This seems the only con-
sistent way to compare the operators since we use two
different Hamiltonians for the Pauli calculations.

We discuss below the effects that the presence of the
potentials in the nonrelativistic current operators have
on calculated observables.

VI. RESULTS OF NONRELATIVISTIC
CALCULATIONS

We now discuss results of numerical calculations us-
ing the proper nonrelativistic reduction presented above.
In Fig. 2 we show results for the reaction on an 60O
target with the same kinematics as in Fig. 1. Figure
2(a) shows the spectral function while Fig. 2(b) shows
the proton polarization. The nonrelativistic calculations
show the same effects due to the inclusion of the nuclear
potentials in the interaction operators that we saw in the
corresponding convergence calculations of Fig. 1. The
first- and second-order calculations without potentials in
the nuclear currents (dotted and dot-dashed curves, re-
spectively) yield very similar results. This is generally
true in the cases we have considered; going from first to
second order in 1/M does little to move the results in the
direction of the relativistic calculations. When potentials
are included in the nuclear currents, a large change is no-
ticeable in going from first-order to second-order calcula-
tions, particularly at larger values of missing momentum.
Note that the nonrelativistic calculations for the spectral
function converge to a lower value than the simple ex-
pansion in powers of (E + M) ™" (i.e., below the relativis-
tic calculation). This is because of the normalization of
the Schrédinger-equivalent bound state wave function to
unity. This results in the nonrelativistic expansion con-
verging at a point which is not the relativistic one, but a
factor of the square of the inverse normalization constant
lower than the fully relativistic result. This amounts to
a reduction of the spectral function from the relativistic
result by a factor typically in the range 1.2-1.4. Spin
observables are not affected by changes in overall nor-
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malization, and so the proton polarization calculations
shown in Fig. 2(b) are very similar to those shown in
Fig. 1(b), with slight differences coming from the re-
placement £ — M in the nonrelativistic nuclear current
operators.

Figure 3 emphasizes the behavior of the spectral func-
tion for the high missing momentum region of Fig.
2(a), with the missing momentum in the range 150-300
MeV /c. In this region the first- and second-order calcula-
tions without potentials lie above the relativistic calcula-
tions, while the inclusion of potentials in first and second
order moves the results to lie below the relativistic re-
sults. Note that the relativistic calculations were fitted
to the data in the low missing momentum region, but
still do rather well for high missing momenta. Similar
results are obtained for “°Ca and °°Zr targets, whether
the residual nucleus is left in the ground or excited state.
When the potentials are not included in the nuclear cur-
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FIG. 2. Observables for the reaction ®O(e, e'p)'*N where
5N is in a lp% proton hole state. The kinematics are those
of Fig. 1. Curves labeled according to their order in 1/M and
whether or not the Dirac potentials are included in the nuclear
current operators: dotted curve, nonrelativistic calculations,
first order in (E + M)™! without Dirac potentials; dashed
curve, first order with potentials; dot-dashed curve, second
order without potentials; dot-dot-dashed curve, second order
with potentials; solid curve, fully relativistic calculation. Po-
tentials and data from the sources of Fig. 1.
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FIG. 3. Spectral function for *°O(e,e'p)'*N where '°N is
in the 1p1 state. The kinematics are those of Fig. 1. Curves

labeled as in Fig. 2. Potentials and data from the sources of
Fig. 1.

rents the results diverge from the relativistic calculations
as the magnitude of the missing momentum is increased.
On the other hand, calculations which include potentials
in the nuclear current operators remain close to the rel-
ativistic results over a wide range of missing momenta.
Note that we are only including terms to second order in
the inverse mass.

Figure 4 shows nonrelativistic calculations of the spec-
tral function and proton polarization for the same reac-
tion discussed in the previous figures; however, in this
case the energy of the incident electron is 2000 MeV, and
the kinetic energy of the detected proton is fixed at 400
MeV. The larger energies allow for a much larger range of
missing momenta than considered previously. It is impor-
tant to note that the first- and second-order calculations
of the spectral function, without potentials included in
the nuclear current operators, differ from the relativis-
tic calculations by up to an order of magnitude for large
missing momenta, while inclusion of the nuclear poten-
tials results in convergence to the fully relativistic results
in the high missing momentum region. In addition we
see that for low missing momenta the convergence point
is lower than the relativistic (see insert). The (v, p) re-
action shows behavior consistent with these observations
for (e,e’p) at high missing momentum [11]. The mo-
mentum transfer in the (v, p) reaction is generally in the
range 400-600 MeV /c, and so these two reactions can
both probe this part of the single-particle bound state
wave function.

The proton polarization is shown in Fig. 4(b). In
the region of large missing momentum there are large
differences between the polarization calculated with and
without nuclear potentials in the current operator. The
polarization calculated with first- and second-order cur-
rents containing nuclear potentials yields results close in
magnitude and shape to the results of the fully relativis-
tic calculations. Note, in particular, that in the region
of the minimum and maximum in the relativistic calcu-
lations close to p,, = —400 and 400 MeV /c, respectively,
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FIG. 4. Observables for *O(e, e'p)!*N where '°N is in the
1p% state. The energy of the incident electron is 2000 MeV,
and the kinetic energy of the detected proton is fixed at 400
MeV with parallel kinematics. Curves labeled as in Fig. 2.
Potentials from the source of Fig. 1.

the calculations without potentials included do not re-
produce the shape of the relativistic calculations at all.
The potentials must be included in the nuclear current
operators in order to get close to the relativistic results.
In particular a measurement of the proton polarization
near p,, = —400 MeV /c provides a clear opportunity to
differentiate between relativistic and nonrelativistic mod-
els.

Calculation of the asymmetry parameter of Eq. (2.13),
for small values of angular momentum L of the bound nu-
cleon (L < 2) yields similar results for all the calculations
whether fully relativistic or nonrelativistic first or second
order, with or without potentials in the nuclear current
operator. When the angular momentum of the bound
nucleon is increased, the differences between these calcu-
lations of the asymmetry become larger, as is evident in
Fig. 5. The asymmetry is calculated for a %°Zr target,
with the residual state in 3°Y assumed to be a 1fs proton
hole. The incident electron has an energy of 461 MeV,
and the kinetic energy of the detected proton is fixed at
100 MeV. In this case the differences are particularly ap-
parent for missing momenta in the neighborhood of 20
MeV /c.
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FIG. 5. Asymmetry in missing momentum
for °°Zr(e, e'p)®®Y where ®°Y is in the 1fs state. The en-
ergy of the incident electron is 461 MeV, and the kinetic en-
ergy of the detected proton is fixed at 100 MeV with parallel
kinematics. Curves labeled as in Fig. 2. Potentials from the
source of Fig. 1.

VII. CONCLUSIONS

In order to clarify the differences arising from relativis-
tic and nonrelativistic descriptions of quasifree electron
scattering [4,6], we have discussed an expansion of the S
matrix for the reaction (e, e’p) in powers of (E + M)_1
through the effective Pauli scheme. The resulting S ma-
trix depends on Schrodinger-like wave functions for the
bound and continuum nucleons, and nuclear current op-
erators which contain the strong Dirac potentials at the
different orders. When the Dirac potentials are included
in the nuclear current operators, the series essentially
converges to the fully relativistic results at second or-
der for the light- to medium-mass nuclei we have consid-
ered. This indicates the importance of the role played by
the nuclear potentials in the modification of the currents.
When the potentials are not included in the nuclear cur-
rents, the calculations can be far from the relativistic
results particularly for larger missing momenta.

These points were further studied in setting up a
comparison between relativistic and nonrelativistic cal-
culations. A proper nonrelativistic calculation is ob-
tained through several steps: normalization of the bound
Schrédinger-like wave function to unity, proper normal-
ization of the continuum Schrédinger-like wave function,
and replacement of the energy by the nucleon mass (i-e.,
take the limit £ — M) in the nuclear current operators.
An additional step of removing the Dirac potentials from
the resulting nuclear current operators yields the stan-
dard nonrelativistic amplitude. This results in a con-
sistent and fair comparison between the relativistic and
nonrelativistic calculations. The potentials used for the
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bound and continuum protons yield both the relativistic
and nonrelativistic wave functions, with normalizations
handled appropriately.

The nonrelativistic calculations we have shown for
first- and second-order nuclear current operators with-
out potentials give the same results that a standard non-
relativistic calculation would give if provided with the
Schrédinger-equivalent wave functions derived from the
Dirac equation. Inclusion of the nuclear potentials in
the nonrelativistic nuclear current operator results in a
large change in the calculated observables. In particu-
lar, calculations of the spectral function and final pro-
ton polarization using second-order nuclear current op-
erators which include the Dirac potentials can reproduce
the magnitude and shape of the fully relativistic calcula-
tions. This is true even at large missing momenta where
the nonrelativistic calculations without potentials in the
nuclear current operators yield very different results than
the fully relativistic calculations. The polarization of
the final proton is particularly sensitive to differences in
the calculations, and measurements of this observable at
large missing momenta could assist in the choice between
the relativistic and nonrelativistic approaches.

We have also calculated the asymmetry defined in the
text for the different orders, with and without potentials,
and found that in cases in which the angular momentum
of the bound nucleon is less than 2, there are no no-
ticeable differences between these calculations and the
full relativistic ones. When the orbital angular momen-
tum of the bound nucleon is greater than 2 differences
between the resulting asymmetry in missing momentum
of these calculations will appear. This observable thus
will be useful in differentiating between relativistic and
nonrelativistic models only for nuclear states with large
orbital angular momentum.

Other groups have examined the sensitivity of the
models to changes in the optical potentials and mod-
ifications of the wave functions [7-9], and have found
sensitivities at the level of 15%. However, the essential
differences between the relativistic and nonrelativistic ap-
proaches do not lie in modifications of the wave functions.
The essential difference comes from the appearance of the
nuclear potentials in the nuclear current operators, a re-
sult of the reduction of the relativistic amplitude. We
emphasize that these nuclear medium effects, character-
istic of the present model, will not appear through a non-
relativistic impulse description of the process. They are,
however, inherent in the relativistic description.
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