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A model is proposed for studying exotic cluster radioactivities. This model is general and realistic
that one can test the actual main treatments of clustering and penetration phenomena in nuclear
many-particle systems. A reliable and rather simple approximation derived in this model is found
on the continuum hopping treatment of clustering and on an integral formalism of decay dynamics

including resonance scattering effects.

The half-life estimates are performed for experimentally

detected cluster radioactivities and for the most interesting cases under the current experimental

search.

PACS number(s): 21.60.Gx, 23.70.+j, 21.10.Tg

I. INTRODUCTION

During recent years, the cluster radioactivity (CR)
phenomenon has been intensively studied both theo-
retically and experimentally. The pioneering work of
Refs. [1,2] has opened a new interesting field in low-
energy physics with many exciting possibilities. Contin-
uing refinements of the theory and computing techniques
have brought considerable advances. It is now possible
to explain the effects of the “fine structure” [3,4] and ex-
cited states [5] in close relation with single-particle and
collective excitations, multiple resonances formed in col-
lective excitations [6,7], and even soliton excitations at
the nuclear surface [8]. The results are interesting for
two reasons. On the one hand, they give new life to the
old problem of nuclear stability with respect to a decay
and fission; on the other hand, they suggest that CR may
be due to the onset of static and dynamic instabilities.

The theories are based on (i) models for the nuclear
Hamiltonian that generate bound, resonance, and clus-
ter states; (ii) methods to treat the tunneling in many-
particle systems, namely, the dynamics in the classically
forbidden region.

In this work we propose an unified model for the cluster
degrees of freedom in nuclei. The model is constructed as
follows. Using a simple description of the nuclear struc-
ture we construct the decay amplitudes of resonances
states into free channel states. At this point we apply the
continuum hopping model (CHM) to construct the clus-
ter formation amplitude (CFA) in the harmonic-oscillator
basis with a Gaussian probability distribution.

The tunneling process is described with the integral
formalism (IF) [6,7] derived within the Feshbach theory
of nuclear reactions. The resulting approach reduces the
calculation of decay rates to the problem of finding the
eigenvalues of a collective Hamiltonian. Furthermore, the
model including the CHM amplitude and pairing resid-
ual interaction shows signatures of superfluid effects in
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the clustering and resonance effects in the fragment scat-
tering.

This paper is organized as follows. We review the basic
formalisms necessary for the calculation of decay rates in
Sec. II. The methods for obtaining the cluster formation
probabilities are discussed in Sec. III. The connection of
the basic formalism with the model cluster amplitudes
is the object of Sec. IV. Details of the used computing
methods are given in Sec. V. Results and conclusions are
summarized in Secs. VI and VII.

II. INTEGRAL FORMALISM

The microscopic approach of cluster decay phenom-
ena starts from a mean field or from mean field wave
functions of the many-particle system. The system is
described with Slater determinants associated with ab-
solute and relative minima of the energy corresponding
to the equilibrium shape of a nucleus. The wave func-
tions are modified in the barrier-penetration process by
the residual interaction which then provides the dynam-
ics of tunneling. In order to be applicable and physically
interesting, the wave functions should describe the inter-
play between the nuclear structure and reaction mecha-
nism. In this section we review the essentials of reducing
the many-particle Hamiltonian to a “one-body” Hamilto-
nian. This new Hamiltonian provides a reliable model de-
scription for clustering and tunneling. The first problem
is to separate the structure part from the part describing
the decay dynamics. The microscopic description [6,7]
of the decay process needs a complete set of basic states,
namely, the bound states | ¥) of the system and scatter-
ing states | x%) describing the relative motion in channel
c. The states | ¥;) may be obtained by diagonalizing
a model Hamiltonian and then the scattering states are
obtained by solving the integral equation
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(H—-E)|xs) = (Y| H|x%) | Tk) , (1)
k

where H is the Hamiltonian of the system, E is the en-
ergy, c is the channel index, and k denotes a set of dis-
crete quantum numbers. We consider here a system of A
particles that can decay into a two-body channel ¢ with
fragments having A; and A, nucleons. For a system of
interacting nucleons the Hamiltonian of the system is de-
composed as

H=H1+H2+T(’I')+V(7‘)=H1+H2+Hc011, (2)

where H; (¢ = 1,2) are the internal Hamiltonians of the
fragments and the collective part includes the kinetic and
potential energies.

The width associated with the decay of state k into the
channels ¢ is given by [6,7,13]

Tp=2m) | (| H|xE) I

=2 Y (¥ | Xo,0)/ (T | X5,0)[”

=Y Ter, (3)

where | X% & 0) ) are solutions of the system of equations
(H — E) | xx) =| ¥s) and (H — B) | x5) = 0.

The partial width I'c;, can be obtained by using a model
Hamiltonian for the scattering states. First, by integrat-
ing over the internal coordinates of the fragments and
also angular coodinates of relative motion, we extract in
Eq. (3) the cluster formation amplitude (CFA)

Lee(r) = 7(Uk | A{[@1(n1)@2(n2)Yim (F)].}) (4

as an antisymmetrized projection of the parent wave
function on the channel wave function |®.) =
[ [@1(71)P2(n2)Yim (7)],). In Eq. (4) A is the interclus-
ter antisymmetrizer, ®; (¢ = 1,2) are the internal wave

d
Hcoll("') =

d
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functions of the fragments, and the ( | ) means integra-
tion over internal coordinates and angular coordinates of
relative motion.

Second, the partial width is obtained by integrating
over the radial distance (collective varia.ble):

fo L (r)ud r)dr
Tet fo Iy (r)uk(r)dr )
where u® (©) are solutions of the system of equations
[T(r) + V(r) = Qug(r) = IF(r) , (6)
[T(r)+V(r) - Qlul(r) =0, (7)

describing the dynamics of the system evolving in the
channel ¢ (with the emission energy Q = E — E; — E>) at
small and large separations, respectively. Note that the
CFA appears as the inhomogeneous term in Eq. (6) and
therefore the general solution of the system of Egs. (6),(7)
depends on CFA. Thus, in the integral formalism it is
impossible to distinguish exactly between the cluster for-
mation and barrier penetration processes. However, the
formation stage may be understood as a part of the pro-
cess of barrier penetration itself.

III. CONTINUUM HOPPING MODEL

In order to separate the cluster degree of freedom from
the single-particle motion we define the collective Hamil-
tonian in Eq. (2). Applying the CHM approximation to
the Hamiltonian equations (2.2) and (2.3) of Ref. [9], we
represent the collective Hamiltonian by the continuous
operator

(N/2 — Nk*M?/2)

+ [2N?/24+ (A= [ X )N?/2] [1 = r?/(s2N?)] + (A= | A )N

d 2 d
=-a Ar v(r)$ + Eo + V(r) + 2v(r). (8)

The Hamiltonian (8) describes the collective motion of N
distinguishable particles. Each of these particles is char-
acterized by a spatial coordinate z; as well as an internal
spin coordinate. The collective coordinate r is the in-
tercluster distance which is obtained from the collective
dimensionless variable  used in Ref. [9] by transforma-
tion 7 = kNz = (z)/N. The model parameters are x
and A. The first parameter k represents the strength of
the two-body interaction which couples the total spatial

coordinate z = Zf;l z(7) to the expectation value of the

azimuthal spin operator M = (YN 0.(i)). The sec-
ond parameter A is the strength of the residual pairing
interaction which breaks the Hartree symmetry and con-
nects only the neighboring configurations. For simplicity
we only consider even N harmonic oscillators (HO) and

confine the states which only include M = £N. The
configuration space is truncated to the number of excita-
tion quanta v < 4 of the shifted HO which only connects
states M with M=+4.

In the Hamiltonian (8) the matrix elements of the
residual interaction lead to a kinetic term T(r) =

—£4 | X | (k®N% —r?)£ with an inertial mass. The
inertial mass is
N)?2 n?
D(kN)? = K2 (x S
(=) 8| X | (K2N? — r2) 2w O

a result first derived for the cluster decays by Baranco,
Broglia, and Bertsch [10]. Notice that the inertial mass

(10) D, = A2 [8|A| (1 —:cz)]"l = —h%n?/2v only de-
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pends on the matrix element of the pairing interaction
v and the reduced mass number of the system n =
A1Az/(A;1+ Az). Most interesting applications of Eq. (9)
in Refs. [10,11] are based on the constant matrix element
of the pairing interaction v = —(A2 + A2)/4G, where
the nucleon pairing gapes A, and A, and the pairing
strength G are given by the standard superfluid model
[11].

We solve the Hamiltonian (8) numerically using as a
basis the states ¢, (r) of the Hamiltonian without the
residual interaction. The Hartree Hamiltonian is then
given by a shifted oscillator Hamiltonian, and the collec-
tive wave functions are just the oscillator states centered
appropriately:

[T(r)+V(r) - Qleu(r) =0, (10)

where Q@ = E — E, — E3 — Ey and Ey is the collective
ground state energy [the second term in Eq. (8)].

We want to determine the matrix elements of the
Hamiltonian for a number of excitation quanta v # 0
and for a chosen decay channel making use of phase shifts.
Let 6o be the phase shift calculated for the potential V' (r)
of range r; at the emission energy Q = A%¢q%/2D, where
q is the relative momentum and, let § be the phase shift
known from experiment. As we shall see one may use
the wave function ¢g4(r) for scattering by the diagonal
potential V(r) with the usual asymptotic normalization
@q(r) — r~1sin(gr — Iw/2 + o) to deduce the matrix
elements 2v(r) of the potential in the set of functions
@q(r) as q varies. The wave function ¢g(r) in r < ry will
coincide with the solution ¢, (r) of Eq. (10) apart from
normalization. We therefore write in r < r;

pq(r) = Apy(r) , (11)

where A is a constant which depends on the diagonal
potential and the boundary conditions (see Sec. V).

According to the perturbative treatment of v(r) [12],
we recover the result (9) in terms of phase shifts

/‘0°° ©q(r)2v(r)pq(r)dr = —(k*q/D)tan(é — &) . (12)

The close expression for the diagonal and most im-
portant off-diagonal matrix elements of the Hamiltonian
is obtained if we choose V(r) as a cutoff oscillator with
depth V., shape parameter b, and range r;, and if we use
Egs. (11) and (12):

/0 T o) V() + 20(r)] 0 (r)dr

= /(;“ @2(r)Vos [1L — 72/b*] dr
—(K%q/D)(A)"2 tan(d — do) -

This choice is equivalent to using an energy-dependent
and channel-dependent potential.

In the next section we use Egs. (9)—(11) to treat the
barrier dynamics.

IV. CONNECTION OF IF AND CHM

The rates associated with the cluster degree of freedom
are described in IF by the dynamic equations for some
nuclear integral characteristics which may be obtained
without difficulties in the CHM. Let us proceed to derive
the CFA as we discussed in Sec. II. We would like to
superpose only positive energy solutions (11), the only
physically interesting ones at the formation stage. We
start introducing the wave functions (11) in Eq. (4) by a
sharply peaked even wave function §(r — ;) (normalized
Gaussian centered in “range” a = r — r; at the touching
configuration r;) of argument a? = Dw/k

Loy (r) = 7(@c(r ™ g (r)8(r —10)) | A| @)
= /mA(aa/m)? exp [-a?a®/2] o, (r) , (13)

where we take (&, | A | ®.) = 1. The result (13) shows
that the decay in the Schrédinger picture is analogous
to what happens with the Gaussian wave packets con-
structed by superposing plane waves, and seems satisfac-
tory. However, there is an inconsistency in the assump-
tion of superposition of positive energy solutions only.
Using Eq. (13) in Eq. (6), we obtain from Eq. (5)

I =WT,, (14)
where
W = (aa/ /) exp(—a’a?) (15)

is the probability of finding the cluster in the classically
allowed region, and

J& oo (ryud(r)dr |’

Fo = F,,C =27 %)
Jo eu(r)ug(r)dr

(16)

is the so-called “one-body” decay width. The functions

uz(o)(r) in Egs. (16) are the solutions of the system of
differential equations

[Te(r) + Ve(r) — QIud(r) = Apu(r) , (17)

[Te(r) + Ve(r) — Qug(r) =0, (18)

describing the dynamics of the system evolving in the
channel ¢ at small and large separation, respectively. No-
tice that if we chose a = 1 fm in Eq. (15) we obtain for
the formation probability the result of Ref. [13]. The cre-
ated excitation by the nucleon clustering in the first stage
evolves in the latter stage according to the one-body de-
scription given by Egs. (17) and (18). In the first stage we
used the independent single-particle description which is
approximately valid only in the very low energy region.
On the other hand, at positive subbarrier energies the
unstable nucleus exhibits the resonance structure charac-
teristic for strongly interacting many nucleons. Our aim
was to show how these apparently opposing concepts can
be reconciled by means of the Feshbach resonance theory
of nuclear reactions, and further, by relating the param-
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eters of the scattering potential to those describing the
characteristics of the resonance levels, at least implicitly.
The connection of CHM to IF is illustrated in Fig. 1.
The geometry of the scattering potential in Egs. (17)
and (18) is fixed for each fragment combination by us-
ing an additional condition for the resonance scatter-
ing. This latter condition is connected with the tradi-
tional inverse scattering problem at fixed energy, based
on the homogeneous Eq. (18), namely, the calculation of
the resonance potential and the resonance wave functions
from the phase shifts as a function of one parameter (see
Sec. V). Choosing the depth of nuclear potential as a res-
onance parameter, we first determine u? as the resonance
wave function u!, which fulfills the asymptotic boundary
conditions for Gamow scattering states. We evaluate
in a form similar to that proposed in Refs. [14] and [15].
A most important point of the solution of Eq. (18) is the
calculation of the asymptotic CFA. The result depends

v(r)
(a)
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FIG. 1. (a) Schematic representation of the Hartree-Fock
potential used in the continuum hopping model in Ref. [10]
as a function of dimensionless deformation parameter z. At
z = 0 the parent nucleus is assumed to be in a spherical
ground state and at = 1 the touching configuration of spher-
ical fragments is shown. (b) Schematic representation of po-
tential for clustering and resonance scattering as a function
of distance between the fragments. The solution 4% and u2
describing the decay dynamics are compared to solutions for
elastic scattering and bound states.

to some extent on the boundary conditions at distances
larger than the touching configuration. Since at these
distances the fragment interaction is dominated by the
Coulomb term, the solution ¢, of Eq. (10) can be sub-
stituted by u? = u2 in Eq. (17). Then we obtain from
Eq. (16) a one-body decay width formula which exactly
coincides with the integral decay width formulas given
by Breit [14] and Feshbach [15]. In this case, it is inter-
esting that the elastic channel solution u? (or the elas-
tic channel CFA) appears as an inhomogeneous term in
Eq. (17) which determines the “inelastic” channel solu-
tion u¥. This may produce the mechanism for enhanced
excitation of the resonance states when the corresponding
wave functions are simultaneously resonating with their
resonance states in the potential.

V. COMPUTING METHODS
A. CHM wave functions

Modeling the decay process we used three energy
scales. The first is the energy of collective single-particle
motion. We identify this energy with the energy of giant
quadrupole vibrations which has the order of magnitude
of 10-15 MeV and sets the unit scale of the oscillator
frequency in Egs. (8)—(11) and (13). The second phys-
ical energy scale is the barrier height. For spontaneous
decay processes from ground states a typical value of the
barrier height is 5 MeV. Thus the model Hamiltonian
(8) should have [9] an effective barrier height of about
[K2N3/2+ (A= | A |)N?/2] ~ (1/2 — 1/3)/ hwo. We set
the scale for A by requiring a value [11] v ~ 2.8-3.0 MeV
for the matrix elements of connecting adjacent configura-
tions. We solve Eq. (10) by a numerical diagonalization.
The normalization constant A in Eq. (11) follows from
the matching ¢, (and its derivative) with the free solution
pq(r) = q[ji(gr) cos(dn + 6.) — ni(gr) sin(d, + d.)] at the
boundary value r = d (j; and n; are the Bessel and Neu-
mann functions and §,, and d. are nuclear and Coulomb
phase shifts). For the outer region the asymptotic nor-
malization is assumed: ¢q(r) = r~'sin(gr —In/2 + 8, +
0c). At the resonance energy @Q the wave functions ¢, in
r < ry will exactly coincide with the usual bound state
wave functions of an infinite oscillator apart from nor-
malization.

B. Fragment interaction

The potentials relevant for the decay process can be ob-
tained assuming that (i) the mean square radius (r%)'/?
describes the spatial size of a nucleus with A nucleons;
(ii) effects due to the Pauli principle appear at distances

less than (r? >1/2 where the fragments lose their identity.
The effective local potential between the two fragments,
close to the mean square distance <1‘t2>1/2, is given by the
oscillator, Coulomb, nuclear, and centrifugal terms [16]
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Ve(r) = mw2r2/2 - mwtz(rtz) + Ue(r)
+V0.f(7', To, aO) + ‘/;f(r) ) (19)

where m is the reduced mass of the system and w,w;
are the oscillator frequencies at the distances r and r;.
The Coulomb term is calculated with the fragment charge
radii R; and R, and the form factor of nuclear potential
f is chosen of the Woods-Saxon type with the optical
model parameters [17 — 20] as input parameters. The
depth of the nuclear potential V, is adjusted to repro-
duce accurately the experimental decay energy @ as an
eigenenergy of the radial Schrodinger equation (18) for
the elastic channel. Making the depth of nuclear po-
tential broad or high, the scattering state u2(r) can be
transformed into a resonance state of the discrete spec-
trum. This adjusted value, usually called the resonance
depth, is denoted by V§*©s.

C. Wave functions of relative motion

The fragment interaction contains two ingredients, a
daughter-cluster potential and the requirement of orthog-
onality of the wave function of relative motion to Pauli
forbidden states. A most important effect of the orthog-
onality condition is that the radial wave function of rel-
ative motion must have at least m; nodes, where n; is
the number of forbidden states in the Ith partial wave
[21]. This damps the relative motion wave function in
a region extending from the origin to the outermost of
these required nodes, i.e., to the n;th node. The position
of the n;th node can be accurately approximated by the
outermost node of the first allowed oscillator function of
the relative motion (see Fig. 2). The number of nodes is
given by the Wildermuth condition

N,
=Y (2n+ 1), (20)
i=1

where N, is the number of nucleons of the emitted cluster
and n;,[; are the principal and angular momentum quan-
tum numbers of nucleons in the oscillator shell model de-
scription [6,7]. In this way it resembles qualitatively the
WKB wave function with a fixed number of excitation
quanta.

VI. RESULTS

The half-lives obtained in the present approximation
for C, Ne, Mg, and Si cluster radioactivities are shown
in Table I and also in Fig. 3 in a Geiger-Nuttall plot. In
order to check the validity of the method employed, we
compare our results with the available experimental data
including also upper-limit estimations for decay rates (see
the review of Ref. [22]). We see in Table I and Fig. 3 that
the difference between our results and experimental data
is within about one order of magnitude. In general, this
situation is quite satisfactory with actual data, of course
in the limit of accuracy of the model for ground state

CR. If we compare our results with those calculated [for
the same mass parameter given by Eq. (9)] within the su-
perfluid model of Ref. [13], we observe differences. These
differences may arise only due to an additional enhance-
ment of emission caused by resonance scattering which
is neglected in Ref. [13]. Also, we can see in Table I that
the corrections arising from resonance scattering effects
are quite important. However, the calculated lifetimes
are in several cases larger than the experimental ones.
Despite relatively good agreement with previous Gamow
models [1,2,5,22,23] and cluster shell models [6-8,24-26],

L U2 10? i 2uev V2 /
LI %

FIG. 2. (a) The cluster formation amplitude I..(r)
[~ ©.(r)] and the solutions of relative motion. u¥(r), ud(r)
given by Eq. (13) and Egs. (17) and (18) respectively, for
alpha decay of ?'°Po (Q.=5.304 MeV). The parameters of
the scattering potential are taken from Ref. [22] (set A:
Vo = 96.44 MeV, ro = 1.376 fm, and ao = 0.625 fm™').
The resonance depth V§®® = 127.59 MeV is obtained with
the procedure described in text. The number of nodes in the
scattering wave function u2(r) is n; = 20 and the set (cv)
refers to the ground state alpha decay. The matrix element
(W | o) = for ul(r) . (r)dr as a function of the radial dis-
tance r between the fragment is represented by the shaded
area. (b) The matrix element (u? | ¢.,) = for u?(r)p.(r)dr
is represented by the shaded area. (c) The absolute value
of the ratio of the matrix elements for ud(r)p.(r)dr and
for u?(r)pu (r)dr as a function of the radial distance between
the fragments. We see that the major contribution to the
decay width is coming from the region of the nuclear surface
(6-8 fm) marked by the double hatched area.
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TABLE I. The calculated half-lives associated with cluster radioactivities in the actinide region.
The decay is specified in the second column and the energy of the emitted cluster in the cen-
ter-of-mass system is given in the third column. The fourth and fifth columns show the relative
angular momentum and the one-body decay constant A\o=I'o/A. The present results are displayed
in the sixth column. The seventh column lists the results of Ref. [13] and the last column shows
the experimental half-lives taken from the review of Ref. [22].

Initial Emitted FEcm. 1 Ao log10Th /2 (sec)
nucleus cluster (MeV) (R) (sec™) Present Ref. [13] Experiment
1 R (**C) 29.28 3 0.579%x107°  14.63 13.5 > 15.77
2 ??'Ra **C) 30.34 2 0.101x10"%?  12.39 11.7 > 14.35
3 222Ra (**c) 30.87 0 0.306 10.91 10.6 11.02 + 0.06
4 ?*Ra (**c) 29.85 4  0.346x107°  15.85 13.2 15.2 +0.05
5 ?*Ra (**c) 28.63 0 0.130x107°  16.27 16.3 15.9 +0.12
6 2%Ac (**c) 28.57 4 0.116x107% 17.33 17.7 > 18.34
7 22°Ra (**c) 26.46 0  0.159x107'°  21.20 22.0 21.334+0.2
8 ?'pa (**F) 46.68 0 0.108x107%  24.51 > 24.61
9 2°Th (**Ne) 51.75 0 0.390x107'°  24.89 26.2 24.64 +0.07
10 232Th (**Ne) 49.70 0 0.101x107** 29.07 31.7 > 27.94
11 ?'Pa (**Ne) 54.14 0 0.103x1077  22.48 22.8 23.38 + 0.08
12 %y (**Ne) 55.86 0 0.112x107°  20.44 21.0 21.06 £ 0.1
13 233y (**Ne) 54.27 0 0.106x107'° 24.52 24.3 24.83 £0.15
14 3y (**Ne) 54.32 0 0.765x107%  24.41 24.83+0.15
15 U (**Ne) 52.81 0 0.705x107''  25.86 27.5 25.25 £ 0.05
16 23U (*°Ne) 52.87 0 0.211x107'° 2577 28.0 25.25 + 0.05
17 U (*®*Mg)  65.26 0 0.785x107'° 26.16 28.2 25.75 + 0.06
18  *"Np (**Mg) 65.52 2 0.151x107'°  27.19 29.1 > 27.27
19 %8Py (**Mg)  67.00 0 0.603x107'° 25.87 27.5 25.7 4 0.15
20 %8Py (*®*Mg) 67.32 0 0.793x107'°  26.51 28.8 25.7 £0.25
21  8py (*2si) 78.95 2 0.116x107°  26.02 28.6 25.3+0.16
22 Am (3*si) 80.60 0 0.618x107°  25.75 26.4 > 25.3

one should not underestimate the uncertainties and lim- ted vs Q~1/2, where Q is the emission energy, roughly

itations of the present approach.

Next, we report our results concerning the possibil-
ity of CR in the trans-tin region where the experimen-
tal activity is now concentrated [27,28]. The emissions
energies in this region are calculated from actual nu-
clear masses [29] with the exception of the 1'*Ba nucleus.
For this we choose the extrapolated values of Ref. [30]:
Qo = 3.601 MeV and Qi2¢ = 20.62 MeV. The significant
results for 'O emission from '22Ce, 114Ba, 12°Ce, and
114Cs nuclei and for '2C emission from !'“Ba and '4Cs
nuclei are shown (in the order of increasing half-lives) on
the right side of Fig. 3.

The shortest half-life in Fig. 3 (Ty/2 = 105*3 s) cor-
responds to the 2C emission from '4Ba. Here we get
a superallowed 2C emission with an unexpected large
branching ratio relative to alpha decay of B = 10~37.
We mention that this branching ratio was completely es-
timated in the present model by calculating the absolute
rates of @ and 12C emissions (with expected errors within
about one order of magnitude). This branching ratio is
in good agreement with the rough experimental value of
about B =2 10~ [27] . Our half-life estimates in the trans-
tin region are smaller by four orders magnitude than the
first systematic predictions of Ref. [31] and agree with
some predictions of Ref. [23].

In Fig. 3 we observe that the data for logi0T} /> plot-

fall on a straight line for a series of different parent
nuclei emitting the clusters with the charge numbers
Z. =6,8,10,12,14 (the dashed lines correspond to the
charge number of the clusters). This trend is the same
with the Geiger-Nuttall systematic trend well known for
the alpha half-lives. However, energy constant B from
the Geiger-Nuttall law (log10T}/>=BQ~'/2 + C) seems
to be the same for all CR, while the constant C seems to
depend strongly on the structure of the emitted cluster.

We can see in Table I that the measured half-lives of
CR leading to the magic-plus-two-neutrons fragments are
larger in average by four orders of magnitude than half-
lives of CR leading to the magic core gaPbiz6. Such dif-
ferences that which suggest strong pairing correlations
are well reproduced by the present model, as is expected.
In general, large CR half-lives of actinide nuclei are evi-
dently correlated with large neutron excess. On the other
hand, with the increasing of neutron deficit in “exotic”
trans-tin nuclei, a very strong proton-neutron interac-
tion [32] comes into play due to the fact that the protons
and neutrons occupy identical or energetically close-lying
shell orbits. So, the neutron deficient trans-tin nuclei ex-
hibit unusual properties such as new decay modes (pro-
ton, alpha, and cluster) [15, 27, 28], extremely large decay
energies, very short half-lives, and now, new magic nu-
cleon numbers far from stability.
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FIG. 3. Calculated and experimental half-lives of cluster
radioactivities as a function of Q7 '/2 in a Geiger-Nuttall
plot. The results of this work are shown by asterisks. The
dashed lines, representing calculated cluster radioactivities,
are drawn to guide the eye. The results of Ref. [13] are shown
by open squares. The experimental data taken from the re-
view of Ref. [22] are shown by full triangles.

VII. SUMMARY AND CONCLUSIONS

The main facts that a theory of CR must explain are
(1) the empirical Geiger-Nuttall law; (2) a strong depen-
dence of decay of decay rates on the periodicities in the
nuclear structure, emission energies, and fragment inter-
action as a result of the clustering with valence nucleons;
(3) “fine structure” effects related to the dissipation of
the energy and angular momentum. These facts can be
understood in terms of the semiclassical approximation
for the penetration factor and the microscopical approx-
imation of the clustering process. We present here an
approach which accounts for all of these, and in addition
gives a reasonable quantitative agreement with available
decay rate data. Furthermore, we prove that the ma-
jor contribution to the one-body width is given by the
resonance amplitude of the Breit-Wigner type associated
with the fragment scattering. This indicates that the
scattering of two macroscopic superfluid objects may ap-
proximate the decay by emission of complex clusters.

The present calculations, based on a rather general
and idealized model containing all the ingredients rele-
vant for clustering and tunneling in the many particle
nuclear system, give a good account of decay properties
of nuclei. When the parameters of the theory are deter-
mined from the reaction cross section, we get an agree-
ment with experimental decay rates within about one
order of magnitude. This agreement, as well as the fact
that we can describe the main features of natural decays,
is clear evidence that our approach is essentially correct.
The present approach contains, in very transparent form,
all the basic elements for treatment of the interplay be-
tween the nuclear structure and reaction dynamics. The
information on the clustering is contained in the CFA,
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which is deduced in the CHM approximation by using
an harmonic-oscillator basis. The tunneling dynamics is
treated in IF by solving numerically the motion equations
containing the realistic potentials. These potentials are
mainly deduced from scattering data at Coulomb ener-
gies. The relative wave functions relevant for the res-
onance tunneling are the resonance wave functions. In
fact, we calculated the rates of the cluster production by
the resonance decay, combining the CHM and IF. The
width formula is presented in a final form that is inde-
pendent of arbitrary channel radius parameter or surface
terms (as a reduced width and penetrability), which de-
pend on boundary conditions at this radius. This formula
may be generalized to include more elaborated cluster
shell model amplitudes [24-26].

Note particularly that the proposed numerical proce-
dure requires a minimum of programming and makes use
of the elementary codes for the nuclear structure and
standard codes for the reaction dynamics. The comput-
ing time for the CHM cluster formation amplitude was
substantially reduced in comparison with the usual shell
model calculations.

We have shown that there is a very close connection be-
tween the CFA, the effective potential of the Schrodinger
equation, and the node structure of the wave function of
the relative motion of the fragments. Perhaps the most
important conclusion of this study is that the cluster-
ing and resonance scattering phenomena in CR are very
closely related to the occurrence of some specific very
compact structures. Such structures frequently occur in
other nuclear reactions [8], namely, in cold fission and
different fusion processes. We estimated the probability
of formation of these structures by solving a problem in
which few nucleons interact via constant negative ma-
trix elements in a small shell above the Fermi surface.
In more accurate calculations one should take into ac-
count the anisotropy in the Fermi surface and redefine
the matrix elements of pairing interaction in terms of
microscopic quantities. The model can be improved by
incorporating some features of the pairing dynamics.

The present study of CR in the lead and trans-tin re-
gions allows one to gain new insights into nuclear struc-
ture and reaction mechanism aspects. In further inves-
tigations one should study in detail the mechanism of
formation and decay of nuclear quasimolecules. It is to
be expected that new accurate measurement of resonance
properties of CR will give a precious information about
the reaction mechanism.

We hope these results will provide some guidance in
the study of cluster decay phenomena.
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