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Dynamical norm method for nonadiabatic macroscopic quantum tunneling
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We present a method for macroscopic quantum tunneling, named dynamical norm method, which
works over a very wide range of situations between the adiabatic and the sudden limits. We examine
the validity of the method by studying the effects of linear oscillator coupling on the tunneling rate
through an Eckart barrier. We then apply the method to discussing the effects of a nuclear intrinsic
excitation on 6ssion. This method shows that the adiabaticity of the tunneling process is governed
not only by the relative time scale of the tunneling degree of freedom and of environmental degrees of
freedom, but also by the properties of the coupling between them. We also show that the dynamical
norm factor which represents nonadiabatic effects in our method is closely related to the dissipation
factor in the Caldeira-Leggett theory for dissipative quantum tunneling.

PACS number(s): 03.65.Sq, 25.70.Jj, 25.85.Ca, 74.50.+r

I. INTRODUCTION

The quantum tunneling in a multidimensional system,
which is often called macroscopic quantum tunneling, has
been a very popular subject during the past decade in
many fields of physics and chemistry [1,2]. In nuclear
physics, heavy-ion fusion reactions at energies below the
Coulomb barrier are caused by a quantum tunneling of
the relative motion between heavy ions. It is now well es-
tablished that the fusion probability is enhanced by sev-
eral orders of magnitude by the coupling of the relative
motion to nuclear intrinsic motions such as surface vi-
brations of spherical nuclei, rotations of deformed nuclei,
and the neck formation between the colliding nuclei [3].
Spontaneous fission is a typical example of a quantum
tunneling in multidimensional space consisted of appro-
priate shape degrees of freedom [4].

One of the major interests in macroscopic quantum
tunneling is to assess the effects of environmental degrees
of freedom on the tunneling rate of a macroscopic vari-
able. If the time scale of the tunneling degree of freedom
and that of environments considerably differ, one can ap-
ply either the adiabatic or the sudden approximation,
and the problem can be reduced to a one-dimensional
problem by introducing the concepts of potential and
mass renormalizations or a barrier distribution [5—8]. In
most of the realistic cases, however, deviations from these
limits play an important role. In heavy-ion. fusion re-
actions, one can use a direct numerical solution of the
coupled-channels equations to handle such intermediate
situations. However, this method can be applied to lim-
ited problems such as to studying the effects of vibra-
tional excitations.

In this paper we present a method which can be ap-
plied to the problems lying between the adiabatic and the
sudden tunneling. In this Inethod, we use the adiabatic
tunneling as a reference, and represent the deviation &om

that limit in terms of the reduction of the norm of the en-
vironmental space during the tunneling process. We call
our method the dynamical norm method. The idea of this
method has been introduced by Brink, Nemes, and Vau-
therin [9] by using an extended WKB method [10—12].
Here, we reformulate their approach based on the path
integral method. This approach clarifies the underlying
assumptions of the method.

The paper is organized as follows. In Sec. II, we briefIy
review the path integral approach [5] and introduce the
dynamical norm factor, which plays the central role in
our method. We show that the dynamical norm fac-
tor reduces the penetration probability estimated in the
adiabatic approximation. In Sec. III, we give an ex-
act expression of the dynamical norm factor for the case
of linear oscillator coupling. In Sec. IV, we consider a
nearly adiabatic situation and show that the adiabatic-
ity of the tunneling process is governed by both the time
scale and the details of the coupling. In Sec. V, we in-
vestigate the applicability of our method by considering
the effect of linear oscillator coupling on the tunneling
probability through an Eckart potential barrier. Com-
parison with direct numerical solution shows that our
method works very well when the energy is much below
the barrier. In Sec. VI, we apply our method to study-
ing the effects of a vibrational excitation on the rate of
spontaneous fission of U. We also compare the fission
rate calculated by the dynamical norm method with that
calculated by an alternative approach, i.e., in terms of a
tunneling in multidimensional space [13]. In Sec. VII, we
show that a constant coupling approximation can provide
a good prescription for some cases at energies near and
above the barrier, where our method loses its accuracy.
In Sec. VIII, we consider the Caldeira-Leggett model in
condensed matter physics and show that the dynamical
norm factor in our method is very closely related to the
dissipation factor found in Ref. [14]. We summarize our
paper in Sec. IX.
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II. DYNAMICAL NORM FACTOR

Our interest is to calculate the tunneling rate of a
macroscopic variable in the presence of environments.
We denote the macroscopic variable by B and consider
the case where the environment has only one degree of
freedom, which is denoted by (. It is straightforward to
generalize the results to the cases where the environments
have many degrees of freedom. In heavy-ion fusion reac-
tions, R and ( correspond to the coordinate of the rel-
ative motion between heavy ions and that of a nuclear
intrinsic motion, respectively. We assume the following
Hamiltonian:

h2 0
H(R, () =—,+ U(R) + H, (() + V(R, () . (1)

Here, M is the mass for the macroscopic motion, U(R)
which we call the bare potential is the potential in the
absence of the coupling, Ho(() is the nonperturbative
Hamiltonian for the internal motion, and V(R, () is the
coupling between them.

We are interested in the inclusive process. The barrier
transmission probability from the initial position R; on
the right side of the barrier to the final position By on
the left side is then given by [5]

dT (x/r)Ez dT (a/r)Ez—') 0 0
Rf —+ —oo

x rR~ VR~ ~('~"»'(" )-'(" )Ip~ R~, V B~ r (2)

where E is the total energy of the system, P,. and Py are
the classical momenta at R; and Ry, respectively. We
assumed that the energy dissipation is small compared
with the total energy and ignored the change of Py with
respect to each final state. Sq(R, T) is the action for the
translational motion along a path R(t), and is given by

T
S, (R, T) = dt[~MR(t) —U(R(t))] .

0

I

eral cases is provided by finding the dominant tunneling
path R(t) in the stationary phase approximation without
regarding the influence functional, and then calculating
it along the dominant path. We should, however, like to
take the effects of coupling on the tunneling path into
account.

To this end, we first introduce the adiabatic states by

[Ho(() +' V(R ()](p (R () = ~ (R)p (R () . (6)

The eKects of the internal degree of freedom are included
in the two time influence functional pM, which is defined
by

We then redefine the action for the translational motion
by incorporating the adiabatic potential shift eo(R(t)),
such that

pM(R(t), T; R(t), T) = ) (n'lu'(R(t) T) In')

x (ntlu(R(t) T) In; ) (4)

T
S, (R, T) = dt[2MR(t) —U(R(t)) —eo(R(t))] .

0

with

ih —u(R, t) = [Ho g') + V(R, $)]u(R, t) .
0

(5)

Correspondingly, the time evolution operator for the in-
trinsic motion and the influence functional in the adia-
batic kame are defined by

u(R, t) is the time evolution operator of the internal mo-
tion along a given path R(t). n; and ny are the initial
and final states of the internal motion at position R; and
By, respectively.

The path integral in Eq. (2) cannot be evaluated ex-
actly except for some simple cases or limiting situations,
where the excitation energy is strictly zero, i.e. , sudden
tunneling limit, or where the quantum tunneling occurs
infinitely slowly, i.e., adiabatic tunneling limit. A first
step towards evaluating the barrier penetrability in gen-

0
ih —u~(R(t), t) = [Ho(() + V(R, () —ep(R)]

Ot

xu~(R(t), t),

/ &(R(t), T; R(t), T) = ) (n; ~u„(R(t), T)~nZ)
A f

x(n, in~(R(t), T)in;) .

We then rewrite the barrier penetrability as

f
i

dT ( /h)ET dT —( /h)ET'
) 0

Rf —+ —oo

Z) R ~ ~ R ~ ~(/h)[St (R,T)—st (R,T))p~ R g, T;B g, T (10)
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We introduce the stationary phase approximation at this stage by disregarding the efFects of the modified influence
functional p~ on the dominant tunneling path. The inHuence functional evaluated along the dominant path R, ~ (t)
now becomes

.*.p. R'. T'v) = ).1(n~ln~(R'. (!)In')I'
A f

d u~Bp, n; (12)

This is nothing but the norm of the internal wave function at the time when the tunneling process is completed. We
therefore call it "dynamical norm factor" and denote it by Nb, i.e.,

JVg ——p~ (R, p, T;;R, p, T, p ) .

The barrier penetrability for the inclusive process is 6nally given by

P(E) = lim
l 2 l

dTe' ~ 17[R(t)]exp — dt
l

MR ——U(R(t) ) —
ep (R(t) )'zr r (1

R, h () (2
Ry —+ —oo

= Pp(E; U g)JVg,

2

JVg (14)

where Pp(E; U ~) is the barrier penetrability through the
one-dimensional adiabatic potential barrier U(R) +ep(R)
with the total energy E. Nonadiabatic efFects are taken
into account by the dynamical norm factor.

The norm of the internal wave function is, of course,
normalized to one in the classically allowed region. This
is, however, not the case during the tunneling process.
This is because the stationary phase evaluations of the
integrals over the path and the time in Eq. (10) lead to
the evolution of the tunneling process along the imagi-
nary time axis. The time evolution operator for the in-
ternal degree of freedom thus obeys

Bg(R(T) & () —[Hp(() + V(R(T) & () ep(R(7 ))]
xu~(R(~), () .

The time derivative of the norm of the space of the in-
ternal motion is then given by

= —~(n;ln„(Hp+ V —ep)uAln;) .
2 -t

Hence the norm keeps on decreasing during the tunnel-
ing process except for the case of extreme adiabatic limit,
where the internal state always remains in the ground
state during the tunneling process. In general, Aj, & 1
when the tunneling process is accomplished. The dynam-
ical norm factor therefore reduces the barrier penetration
probability estimated in the adiabatic limit.

III. ANALYTIC EXPRESSION OF
DYNAMICAL NORM FACTOR

FOR LINEAR OSCILLATOR COVPLING

A popular example of the macroscopic quantum tun-
neling is the linear oscillator coupling. In this case one
can obtain an analytic expression of the dynamical norm
factor in terms of the coupling form factor.

Let us express the Hamiltonian for the internal motion
and the coupling Hamiltonian as

If we expand the internal wave function by the adiabatic
basis defined by Eq. (6)

T

6x]~x;) = ) e (x)exp —li de'(e (e') —ee(e')])
0

x l~-(R(~))), (is)

we can obtain

= —-).a-(~)
2

T

xexp —h d7' e
0

Hp(() + V(R, () = Ru(ata + 2) + o(p f (R) (at + a),
(2o)

where hen, a (at), np, and f(R) are the oscillator quanta,
the annihilation (creation) operator of the oscillator, the
amplitude of the zero point motion of the oscillator, and
the coupling form factor, respectively.

The two time influence functional for this problem is
given by [5]

pM(R(t) T.R(t) T) = e

( ~2
xexp

l

——'(yi+y2+ys)
l ( )

x[.„(R)—e, (R)] & O. (19) with
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T t
yi —— dt ds f(R(t))f(R(s))e

0 0
T t

ds f(R(t)) f(R(s))e' ' '
0 0

T
iu (T T) —

dt f(R(t)) i(at

0

(22)
The first term in Eqs. (25) and (26) contributes to

the adiabatic potential renormalization. The inQuence
functional in the adiabatic kame is therefore obtained
by

lf ~2
)o~(R(t)»R(t) &) = exp

I

——,'(»+~2+ ~s)
I

(»)
r

T
x dt f(R(t))e

0
(24)

By performing a partial integration once, we obtain

(26)

1
y, = — dt f(R(t))'

Nd 0

dt d f(R(t)) -'-('-') (25)
l4) p p d8

T
y2

————. dt f(R(t))
XCd p

T t
+— dt ds f(R(t))

0 0 d

with
T t

ds f (R(t)) ( ( )) '~(& ~)
z(d p p ds

A At

d- f (R( ))
f ( ( )) sea&(t —8)

f40 p 0 ds

(28)

(29)

Z3 = g3 (30)

t M —17', s M —zr2, T M —tT0,
t —+is;, s —+ i72, T W iT0.

We thus obtain

(31)

(32)

Since we are considering a tunneling process, we replace
the real time with the imaginary time, and assume that
the tunneling time is uniquely determined to be Tp.

Clp 1 (df(R(r2))
JVs = exp —2 — — dpi f(R(~i))e ' d72 e

4J p () ( d~2

xexp — e ' d7y B 7y e (33)

This is the analytic expression of the dynamical norm factor which we tried to derive. We will use Eq. (33) in Sec.
VI to discuss the effects of a vibrational mode of excitation on Gssion.

IV. PERTURBATIVE EXPRESSION OF DYNAMICAL NORM FACTOR
AND CRITERION OF ADIABATICITY

A method to calculate the dynamical norm factor in general cases is to determine the expansion coefBcients a in
Eq. (18) by solving the coupled linear difFerential equations,

T" —) a (y„~ ~(p )exp ( fi ' d~'(e (7') —a„—(~')]) = 0 . (34)

In this section we solve this equation perturbatively by considering a nearly adiabatic situation. We then use the
resultant expression of the dynamical norm factor to discuss the parameters governing the adiabaticity of the tunneling
process.

The first order solution of Eq. (34) is given by [8]

a(')(~) = b„p + (1 —b„p)R(~)
0 -n (

x((p„(R(~) &)I leap(R(~), ()) exp
I

«'[& (&') —&p(7')]/&
I(9R ~ 7 —60 T p

where the matrix element on the right-hand side of Eq. (35) can be rewritten as

(~-(R(~), () I &R le p(R(~), &)) =—0

If the coupling Hamiltonian is separable

(( -(R(~) &)I ~R
'

I~p(R(~) &)) .
1 (9V(R(~), ()

t~ 7 —ep 7
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V(R, () = f(R)g((), (37)

then this matrix element reads

(p (R(r), () ~
~po(R(r), ()) =—0 1 Bf(R(r))

e„(r) —eo (r) BR(r) (38)

with

a o = (V' (R(r) ()la(&)l«(R(r) &)) .

The first order solution is therefore given by

a„"(r)= 4,o+ (1 —~.,o), g-oexp
~

«'(~-(r') —«(r')]/h
I

.hR(r) 8f (R(r))
(40)

Equations (19) and (40) lead to the following expression for the dynamical norm factor:

T0

JVb = 1 — dr —) a„exp
~

—h dr'[e (r') —eo(r )] ~
[E (r) —eo(r)] (41)

Tp B2 2

[e„(r)—eo(r)]s (dR)

R' (df 5'
() ()], I dR I

(42)

In order to more explicitly see the physical implications
of Eq. (43), we consider now a problem of double linear
oscillator coupling, i.e. , the case where

Ho(() + V(R, () = bur(a a+ 2) + cnoR(a + a) . (44)

The dynamical norm factor in the lowest order perturba-
tion approximation is then given by

vr t'nocRo ) ' 0
b = exp

2 E h ) (45)

In obtaining Eq. (45) we approximated the bare potential
barrier U(R) by a parabolic function 2MA2R2 and the
tunneling path R(r) by RocosOr, Ro being the thickness
of the tunneling region.

Equation (45) implies that the adiabaticity of the tun-
neling process depends not only on the ratio of the en-
ergy scale 0/u, in other words the ratio of the time scales
of the tunneling process and of the intrinsic motion, but
also on the ratio of the coupling strength to the excita-
tion energy of the nonperturbative system nocRo/hcu As.
we see in Eq. (43), the radial dependence of the cou-
pling form factor is also an important factor to govern
the adiabaticity of the tunneling process. This has been
pointed out also in Ref. [15]. We will use Eq. (45) in
Sec. VIII to show that the dynamical norm factor in our
method is intimately related to the dissipation factor ob-
tained by Caldeira and Leggett in their seminal work on
the macroscopic quantum tunneling [14].

V. APPLICABILITY OF THE DYNAMICAL
NORM METHOD

In this section we examine the accuracy and the use-
fulness of our dynamical norm method by applying it to
a problem, where a macroscopic variable which tunnels
through an Eckart potential barrier linearly couples to a
harmonic oscillator [see Eq. (20)]. We assume that the
coupling form factor is a square root of the Eckart po-
tential. This makes our calculations simpler, because the
adiabatic barrier then becomes also an Eckart potential.
Notice that the barrier transmission probability can be
written analytically for an Eckart potential [16].

The bare potential and the coupling form factor are
given by

U(R) =
cosh (R/a)

(46)

f(R) =
cosh(R/ay)

(47)

where the parameters were chosen such that, UD

10 MeV, a = 5 fm, M = 2000 MeV/c2, fo = 1
MeV/fm, af = 5 fm, and no ——1 fm. The curvature of the
potential barrier hO is 2.8 MeV. The oscillator quanta of
the intrinsic vibration was assumed to be ~ = 1 MeV.
Our example therefore corresponds to the case of a fast
quantum tunneling, where the formula of the quantum



192 N. TAKIQAWA, K. HAGINO, AND M. ABE 51

tunneling in the sudden limit will oKer a good zeroth or-
der estimate, but where a sizable deviation kom it can
be expected. The values of the intrinsic excitation energy
and the barrier curvature correspond to typical values in
realistic heavy ion fusion reactions. We notice that the
comparison of the results of the exact analytic expres-
sion for the transmission probability through the bare
Eckart potential with those in the WEB approximation
confirms that semiclassical approach is accurate enough
to describe the present problem.

In solving Eq. (34), to determine a we truncated
at some maximum oscillator quanta N „.Also, we as-
sumed that the tunneling path can be well approximated
by

OB 2—[U(R) + eo(R) —E] .
0~ M (48)

Using the values of thus obtained expansion coeKcients
a at the end of the tunneling, i.e., at 7. = To, we calcu-
lated the dynamical norm factor by

The result for the tunneling probability is shown in
Fig. 1 as a function of the bombarding energy for energies
below the potential barrier. The dotted line is the tun-
neling probability for the bare potential barrier, and cor-
responds to the case without coupling. The dot-dashed
line represents the results of the direct numerical solution
of the coupled-channels equations. The thin solid line is
the result of the adiabatic approximation, where only the
adiabatic potential renormalization due to the coupling
was taken into account. It clearly overestimates the en-
hancement of the tunneling probability due to the cou-

+max ( v. 2

JVs = ) a„(To)exp —h d~[e„(7) —ep(7)]
n=0 o )

(49)

pling to the environment. By taking the dynamical norm
factor into account, we obtain the thick solid line, which
agrees very well with the exact numerical results. For
comparison, the barrier penetrability calculated in the
limit of sudden approximation (the dashed line) is also
included in Fig. 1. As we remarked before, the present in-
put parameters correspond to a sudden tunneling rather
than to an adiabatic tunneling. Consequently, the result
in the sudden approximation (the dashed line) is closer
to the accurate result (the dot-dashed line) than that
in the adiabatic approximation (the thin solid line), but
still deviates significantly from the accurate result. It is
remarkable that the dynamical norm method provides a
much better reproduction of the accurate result than that
in the sudden approximation even in an unfavorable situ-
ation, which belongs to a fast quantum tunneling rather
than to an adiabatic tunneling.

The convergence of solving Eq. (34) with respect to the
maximum oscillator state, i.e. , N, was fairly fast. This
convergence feature is shown in Fig 2 by taking the bar-
rier penetrability and N as the ordinate and the ab-
scissa, respectively. The corresponding bombarding en-
ergy is 7.1 MeV in the center of mass system. The results
of our dynamical norm method are shown by filled circles
and are connected by thick solid lines. The penetrability
obtained by the adiabatic approximation is denoted by
the dotted line and the result of the exact numerical in-
tegration of the coupled-channels equations is denoted
by the cross. This figure shows that only two states
are needed to converge the calculation of Eq. (34). It
also shows that the excited states with oscillator quanta
higher than three do not play a very important role in
enhancing the tunneling probability at this energy [17].
This example clearly shows the power of our dynamical
norm method to obtain an accurate estimate of the tun-
neling rate under inBuence of environments.
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FIG. 1. Barrier penetration probability as a function of
the center of mass energy. The dotted line is the barrier pen-
etrability in the potential model without coupling, while the
dot-dashed line is the results of the direct numerical solution
of the coupled-channels equations. The thin solid line and the
dashed line are the results in the adiabatic and in the sudden
approximations, respectively. The results of the dynamical
norm method are given by the thick solid line.

FIG. 2. Convergence behavior of the barrier penetrability
calculated by the dynamical norm method (the solid circles)
as a function of the number of included states N „, where
N „=0 corresponds to the case without coupling. The
bombarding energy is 7.1 MeV. The barrier penetrability cal-
culated in the adiabatic approximation is denoted by dots,
and the result of the exact numerical integration of the cou-
pled-channels equations is given by the cross.
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VI. APPLICATIGN TG SPGNTANEGUS FISSION
GF 2$4U

1+—m(u ( + cR(,
2

(50)

As an application of our method, we study in this sec-
tion the model of Brink et al. for the spontaneous fission
of U [9] by our dynamical norm method. In this nu-
cleus there is a series of low lying excited states, which
could be understood as a beta-vibrational band built on
the 0+ state at 0.85 MeV. In addition, there are 0+ and
2 states at 1.05 MeV and at 1.09 MeV, respectively,
which have appreciable transition strengths to the states
in the beta-vibrational band [18]. Brink et al. considered
these additional states to represent a vibrational mode
of excitation orthogonal to the beta vibration, and dis-
cussed their efFects on the spontaneous fission of U
by treating the beta vibration and the additional states
as the coordinate of the fission R and an environmental
coordinate (, respectively. The Hamiltonian which they
assumed reads

1Os—

n. 10'-
CL

1 0':-
-.----- Adiabatic Approximation

Dynamical Norm Method
Analytic Solution eq.(33)
Perturbative Solution eq.(43)

X Schmid's Method

I I I

1 2 3 4 5 6
~max

FIG. 3. The efFects of environment on the spontaneous fis-
sion of U. The fission rate calculated by the dynamical
norm method is shown as a function of the number of states
(W „)considered in solving Eq. (34) (the solid circles). It is
plotted in the ratio to that without coupling. The result in the
adiabatic approximation, that obtained by using the analytic
expression of the dynamical norm factor Eq. (33), and that
obtained in the perturbation theory Eq. (43) are denoted by
the dots, the open triangle, and the open square, respectively.
The cross denotes the fission rate calculated by the method
of Schmid by treating the same problem as a two-dimensional
quantum tunneling.

with

U(R) = —,'MQ R (1 —R/Rs) . (51)

where A is the atomic number of the parent nucleus U
and Rp its equivalent sharp surface radius.

Figure 3 shows the fission rate plotted as the ratio to
that in the absence of the coupling. The dotted line is
the fission rate estimated in the adiabatic approximation.
The results of our dynamical norm method are given by
the solid circles and are connected by thick solid lines.
The abscissa is the number of states used to solve the
coupled linear differential equations (34) to determine the
expansion coefBcients a . For comparison, we also added
the results af the perturbatian salution (43) by an open
square and of analytic expression (33) by an open trian-
gle, respectively. One can draw several conclusions Rom
this figure. It suggests that the fission rate is strongly

Following Ref. [9] we assume that the beta band and the
ad.ditional states mentioned above are originally degener-
ate to each other with the excitation energy hO = ~ =
0.97 MeV and are split by the coupling. The coupling
strength is then determined to be Age~/MmA = 0.25
MeV. The range of the tunneling region in the bare po-
tential Rg was chosen to be 12.83 fm so as to reproduce
the experimental spontaneous fission width in the case
when one considers only the bare potential U(R), though
more consistently, it should be determined by taking the
eKects of coupling into account. We consider the symmet-
ric fission. The mass of the tunneling motion is therefore
M = 234M~/4, M~ being the nucleon mass. We esti-
mate the mass of the intrinsic motion ( based on the
liquid drop model to be

|9Hp dp

Op~ d7

BHp
8 (53)

enhanced by nuclear intrinsic motions. It is important to
take into account nonadiabatic eKects in order to prop-
erly estimate the magnitude of this enhancement. The
agreements between the solid circle at N „= 1 with
the open square and between the solid circles for large
N „with the open triangle ensure the accuracy of our
numerical procedure to determine the dynamical norm
factor. The figure also shows that the eKect of the intrin-
sic motion ( quickly saturates as a function of the maxi-
mum number of states N incorporated in determining
the dynamical norm factor. Incidentally, our estimate
of the fission rate including the dynamical norm factor
agrees very well with the result of Brink et at. obtained
by a slightly difFerent method. In calculating the exact
dynamical norm factor (the open triangle), we used the
parabolic approximation for the path of the macroscopic
degree of &eedom R.

One interesting thing is to compare our result with
the result of a totally difFerent way of estimating the fis-
sion rate, i.e. , the fission rate estimated by considering
the same problem as a quantum tunneling in the two-
dimensional space spanned by R and (. We use the
method of Schmid [13,19,20] in order to obtain this al-
ternative estimate of the fission rate. This is a general-
ization of the WKB method to the quantum tunneling in
a multidimensional space.

In this method, the so-called escape path in the mul-
tidimensional space plays the central role. It is a kind of
classical path. If we use generalized notations for the co-
ordinates, such that rz ——R and r2 = ( for our problem,
then the escape path is obtained by solving
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(54)

The M and V in Eq. (54) are the mass tensor and the
potential in the multidimensional space. In the problem
given by Eq. (50), M is a diagonal 2 x 2 matrix and V
is given by

15

10

5
E

0

V(r) = U(R) + 2m(u ( + cR( . (55)
-10

One often represents the decay width as a product of
the exponential factor and a prefactor -15

I' A~
—2sEP /0 (56) R (fm)

30 15

where

SEp = ) r ,M;;i', d~ .
EP

(57)

As indicated in these equations, the exponential factor is
given by the action integral along the escape pat . eth. The
procedure to find the prefactor A for multidimensional
tunneling problems is much more complicated than the
case for one-dimensional problems. In this paper, we
approximated it by the prefactor for a one-dimensional
problem along the escape path, which is further simu-
lated by the escape path through a quadratic plus a cubic
function potential. The actual formula which we used is
given by [13]

(58)

VII. CONSTANT COUPLING APPROACH
TO NEAR AND ABOVE BARRIER PROBLEMS

We have shown in Sec. V that the dynamical norm
method can accurately estimate the tunneling rate in-
cluding the effects of environments at energies well below

The result obtained by the method of Schmid is de-
noted in Fig. 3 by the cross. It agrees fairly well with
the result obtained by the dynamical norm method. Fig-
ure 4 shows the potential energy surface and tunneling
paths for our problem. We can see that only one escape
path (the thick dashed line) is found. All the other paths
are refIected before they reach the boundary to the clas-
sically allowed region, which is denoted by a thick solid
line.

FIG. 4. The potential energy surface in the (R, () space
(the thin solid lines) and the escape path (the thick dashed
line) for the spontaneous fission of U. Several c assica234 l

paths are also shown by dotted lines. The thick solid line
divides the classically allowed and the classically forbidden
regions.

the potential barrier. We thus expect that it becomes a
powerful method in treating especially those problems
which cannot be easily handled by standard coupled-
channels calculations.

W found however that the dynamical norm method
~

lloses accuracy at energies near and above the potentia
barrier. The problem is more serious at energies above
the barrier. We derived our key formula Eq. (15) by
assuming that there exists a dominant tunneling path,
which is common to all the final states of the intrinsic
motion. In principle, however, the dominant tunneling
path will depend on each final state. It might become
important to take this efI'ect into account, especially at
energies above the barrier, because the change of the en-
ergy of the macroscopic motion for each final state of the
intrinsic motion delicately infj.uences at energies above
the barrier to make the barrier transmission either clas-
sically allowed or classically forbidden.

Another possible reason of the failure is that the multi-
ple refIections under the barrier must be properly treated
at energies near and above the potential barrier [21]. The
uniform approximation [21] must be used there. How-
ever, the uniform approximation for multidimensional
tunneling problems has not yet been developed.

A possible way to circumvent this difBculty is to resort
to a constant coupling model, i.e. , to approximate the
coupling Hamiltoriian by its value at a fixed position of
the macroscopic variable B = A0. The transition ampli-
tude of the internal motion can then be calculated as

t

(nyIu~(R(t), ()In; ) = (nyIexp
I

(t/5) dt[Ho(() + V(Ro, () —e(Ro)] I In; )
0

= ) (nt ln(Ro)) exp (—(t'/h) [s (Ro) —eo(Ro)]t) (n(Ro) ln;) (6o)



51 DYNAMICAL NORM METHOD FOR NONADIABATIC. . . 195

We then obtain

P = ):l(~(Rp) l~') I'

x Pp(E —[e11(Rp) —ep(Rp)]; U~g)

studied by Dasso et al. in Ref. [i5] to discuss the adi-
abaticity of a tunneling process. The bare potential is
given by a Gaussian function and the intrinsic motion
has only two states. The coupling form factor is given
also by a Gaussian function

In Fig. 5 we compare the barrier penetrability calcu-
lated by the exact numerical solution of the coupled-
channels equations (the dot-dashed line), in the adia-
batic approximation (the thin solid line), in the potential
model without coupling (the thin dotted line), and in the
constant coupling model (the thick dot-dashed line) for
the same system as that for Fig 1. There could be two
difFerent versions of the constant coupling model. In one
of them, which we call the adiabatic constant coupling
model, we introduce the constant coupling approxima-
tion after we incorporate the adiabatic potential shift in
redefining the potential barrier and hence after redefin-
ing the coupling Hamiltonian. In the other, which we
call the bare constant coupling model, the constant cou-
pling approximation is introduced for the original cou-
pling Hamiltonian [22]. Since one cannot distinguish the
results of the adiabatic and the bare constant coupling
approximations on the scale of Fig 5 for this model, the
figure contains only one of them. Figure 5 shows that
the constant coupling models provide a fairly good de-
scription of the eKects of channel coupling over the whole
energy range. We have chosen Bo to be the position of
the potential barrier.

The quality of the two constant coupling approxima-
tions depends on the system. It is likely that the adia-
batic constant coupling model has a wider applicability
than the bare constant coupling model, because an im-
portant part of the coupling is included without approx-
imation in renormalizing the potential barrier through
the adiabatic potential shift. Figure 6 shows one such
example, where the two constant coupling models have
fairly diferent accuracy. The system is the same as that

1.0

U(R) = Upexp( R —/2o ), F(R) = Fpexp( R—/2o&) .

(62)

Following Dasso et al. we chose Uo = 10 MeV, Eo = 3
MeV, cr = 3 fm, and cr~ = 2 fm. The mass and the Q
value, i.e., the splitting between the two intrinsic states,
were chosen to be twice the proton mass and —1 MeV,
respectively, to mimic the fusion of a light nuclear system
[i5].

Figure 6 shows that the adiabatic constant coupling
approximation (the thick dot-dashed line) is more ac-
curate than the bare constant coupling approximation
(the thick dotted line). Namely, the former better re-
produces the results of the exact numerical integration
of the coupled-channels equations (the thin dot-dashed
line). The figure also contains the results of the dynami-
cal norm method (the thick solid line). Although it is the
best among all the approximations in the energy range
shown in the figure, it largely deviates &om the results
of the coupled-channels calculations at higher energies,
while the agreement between the coupled-channels calcu-
lations and the results of the adiabatic constant coupling
approximation persist even at high energies similarly to
Fig 5. Figure 6 also contains the result of the sudden
approximation (the dashed line). Though globally it is
better than the result in the adiabatic approximation, it
significantly deviates kom the exact result. This is the
same situation as in Fig. 1.
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FIG. 5. Comparison of the barrier penetrability calculated
by several methods. The system is given by an Eckart po-
tential barrier and a linear oscillator coupling. The thin
dot-dashed line is the results of the exact numerical solution
of the coupled-channels calculations. The thin dotted and
the thin solid lines are the results in the potential model and
in the adiabatic approximation, respectively. The results of
the constant coupling approximation are shown by the thick
dot-dashed line.

FIG. 6. Comparison of the barrier penetrability calculated
by several methods. The system is given by a Gaussian po-
tential barrier and an intrinsic motion with two levels. The
thin dot-dashed line is the results of the exact numerical so-
lution of the coupled-channels calculations. The thick solid
line is the results of the dynamical norm method. The thin
dotted line is the result in the potential model. The thin solid
and the dashed lines are the results in the adiabatic and in
the sudden approximations, respectively. The results of the
adiabatic and the bare constant coupling approximations are
shown by the thick dot-dashed and the thick dotted lines,
respectively.
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Figures 5 and 6 show that the constant coupling ap-
proximation is superior to the dynamical norm method at
energies near and above the barrier. It also works fairly
well at low energies. This seems to indicate that there
is not much sense in using the dynamical norm method.
The constant coupling approximation has, however, a se-
rious drawback in that the results could strongly depend
on the choice of Rp, i.e., on the place at which we evalu-
ate the strength of the coupling Hamiltonian. This prob-
lem becomes serious if the coupling form factor changes
rapidly. This is the case in heavy-ion fusion reactions be-
cause of the cancellation between the Coulomb and the
nuclear coupling. The dynamical norm method is &ee
&om this problem.

VIII. CONNECTION OF THE DYNAMICAL
NORM FACTOR TO

DISSIPATION FACTOR IN MACROSCOPIC
QUANTUM TUNNELING

Before we close the paper it would be worth relat-
ing our dynamical norm method to other approaches to
macroscopic quantum tunneling. Caldeira and Leggett
have considered a model, where the environment consists
of many harmonic oscillators having the spectral distri-
bution of an Ohmic dissipation. They have thus shown
that the tunneling rate is reduced &om that in the adi-
abatic limit by a dissipation factor [14]. In this section,
we consider the same model and discuss the connection
between the dynamical norm factor in our method and
the dissipation factor in Ref. [14].

Equation (45) leads to the following expression for the
dynamical norm factor in the case where the environment
consists of many independent harmonic oscillators:

. (nocRO) 02

~ = exp
2 ( Rd~ ) (d~

Following Caldeira and Leggett, we now consider the case
of an Ohmic dissipation, where the spectral density is
given by

J((u) = ) —c,'no, b(cu —(u;) = q(u . (64)

The dynamical norm factor is then given by

( R'0 1 )A'g = exp
~

—g der —,
~

(65)

(66)

The dynamical norm factor in our method is thus inti-

The integration in Eq. (65) diverges at the lower limit.
Here we introduce the cutoff w = ~p at the low frequency
side and set it to be 0, because Eq. (65) has been de-
rived based on the assumption that the tunneling is slow
compared with the intrinsic motion. We thus obtain

mately related to the dissipation factor in Ref. [14]. They
have the same dependence on the &iction coefBcient g
and the range of the tunneling region Rp. They differ
only by a factor of the order of 1 in &ont of the gRp
in the argument of the exponential factor. A similar re-
sult has been obtained in Ref. [9] with again a slightly
different coeKcient of the order of 1.

IX. SUMMARY AND FURTHER
DEVELOPMENTS

We presented a method to calculate the tunneling rate
of a macroscopic variable which couples to other degrees
of &eedom resorting to neither the adiabatic nor the sud-
den approximations. We named this method the dynam-
ical norm method. This method uses the adiabatic po-
tential barrier as a reference to calculate the tunneling
rate and takes the effects of deviation &om the adiabatic
limit into account through a dynamical norm factor.

Using an example, where a macroscopic variable tun-
nels through an Eckart potential barrier in the presence
of a linear oscillator coupling, we have shown that the
dynamical norm method provides an accurate estimate
of the tunneling rate at energies well below the barrier.
We have discussed the parameters which govern the adi-
abaticity of a tunneling process based on a perturbative
solution of the dynamical norm factor. We have shown
that the adiabaticity is governed not only by the ratio
of the time scales of the tunneling process and of intrin-
sic motions, but also by the coupling strength, and have
pointed out that the radial dependence of the coupling
form factor influences the adiabaticity. The same argu-
ments hold also for the validity of the sudden approxima-
tion and will be published elsewhere [23]. In this paper
we have discussed also the connection between the dy-
namical norm factor in our method and the dissipation
factor in macroscopic quantum tunneling by considering
the Caldeira-Leggett model. As an example of the appli-
cation of the dynamical norm method to realistic prob-
lems, we discussed the rate of the spontaneous fission
of U and have shown that the fission rate is strongly
influenced by high-lying states which strongly couple to
the beta vibrational states. In this problem, we have also
shown that the fission rate calculated by the dynamical
norm method agrees very well with that calculated by
treating the same problem as a quantum tunneling in
two-dimensional space. To the latter end, we used the
method of Schmid. A problem concerning the fission of

U is that it is not clear whether our model following
[9] to describe the high-lying vibrational states in terms
of an additional oscillator is reasonable or not. A more
realistic model is now under investigation.

In this paper, we considered problems to which stan-
dard coupled-channels calculations can be rather easily
applied. This is because one of the main aims of this pa-
per is to examine the accuracy of our method by compar-
ing its result with that of the coupled-channels calcula-
tions. The real power of the dynamical norm method will
be exhibited in problems where the standard coupled-
channels calculations cannot be easily applied. There
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are many interesting problems, which could be tackled
by the dynamical norm method. The muon catalyzed fu-
sion [24], atomic screening effects in nuclear astrophysical
reactions, alpha and heavy particle decays, and fusion of
neutron rich nuclei, especially the molecular bond effects
[25,26], are some of such examples. The effect of neck
formation on heavy-ion fusion reactions is another exam-
ple, which could be reexamined from quantitative point
of view by the dynamical norm method. The extension of
the microscopic adiabatic time dependent Hartree-Pock
theory is also another example, which could be tackled
by our method.

A problem is that the dynamical norm method in the
present version does not work well at energies near and
above the potential barrier. We have shown that the
adiabatic constant coupling model can be an alternative
for some problems. It is an interesting future problem
to extend our method so that it can be applied to the

whole energy range. In this paper, we used the adiabatic
quantum tunneling as the reference, i.e., as the zeroth
order approximation, by introducing the adiabatic action
and the adiabatic in8uence functional in Eqs. (7) and (9).
A better approximation will be obtained by optimizing
the choice of the reference fLame. This is another problem
that requires further study.
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