Configuration of $^{18}O(7.12 \text{ MeV}, 4^+)$

H.T. Fortune and D. Koltenuk

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104

(Received 30 November 1994)

Alpha-particle widths calculated in a potential model demonstrate that the 7.12-MeV, 4^{+}_{2} state of 18 O has about the right alpha width for the dominant four-particle-two-hole 4^+ state.

PACS number(s): 21.10.3x, 21.60.Cs, 23.40.Hc, 27.20.+n

In 18 O, it has been known for a long time [1,2] that all the positive-parity states [3] below 8 MeV excitation can be understood as those arising from an $\left(\frac{sd}{r}\right)^2$ shell-model space plus one collective state of each $J^{\pi} = 0^{+}$, 2^{+} , and 4^+ . The dominant configuration of these collective states is four-particle-two-hole $(4p-2h)$, even though there is some evidence [2] that they may be even more collective than that configuration would suggest. The $4p-2h$ states have been identified as the 0_2^+ , 2_3^+ , and 4_2^+ states at 3.63, 5.25, and 7.12 MeV, respectively. Of course, mixing occurs between $2p$ and $4p-2h$ states, but that mixing can be understood [2].

Recent $B(E2)$ measurements [4,5] cast doubt on the dominant $4p-2h$ assignment for the 4^+ at 7.12 MeV. A new measurement and the implications are discussed in an even more recent paper [6]. It now appears that $B(E2)$ for $4^+_2 \rightarrow 2^+_3$ is only about a third of the value expected for a pure $4p-2h$ transition. We explore this fact in light of other available information.

A $(0+2)\hbar\omega$ calculation of ¹⁸O contains only three lowlying 4^+ states: $(d_{\frac{5}{2}})^2$, $(d_{\frac{5}{2}})(d_{\frac{3}{2}}^3)$, and $4p-2h$. The absence of a large S_n in ${}^{17}\mathrm{\tilde{O}}(d,p)$ limits the $2p$ amplitude for the 7.12-MeV state. The dominantly $(d_2^{\frac{5}{2}})(d_2^{\frac{3}{2}})$ 4⁺ state has been suggested [7] to lie near 9 MeV. The $\overline{\text{lowest-lying 4p-}}$ 2h states should have large parentage for ${}^{14}C+\alpha$. The α particle amplitudes for the lowest three 0^+ , three 2^+ , and two 4^+ states are in the literature [8], reproduced here as Table I. We note that the expected $(sd)^4$ α amplitude is about the same for $0_2^+, 2_3^+,$ and 4_2^+ .

Experimentally, [5,9] the quantity $\frac{\Gamma_{\alpha}\Gamma_{\gamma}}{\Gamma}$ for the 7.12-MeV state is 51 \pm 7 meV. The newest value [6] of $\frac{\Gamma_{\gamma}}{\Gamma}$ is 0.561 \pm 0.013. The ratio of the two gives $\Gamma_{\alpha} = 91 \pm 13$ meV. We compare this value below with that expected for the $4p-2h$ 4⁺ state.

In $20\overline{Ne}$, the 0^+ , 2^+ , and 4^+ members of the g.s. band are bound, but the 6^+ is unbound, with $\Gamma_\alpha=0.11~\pm$ 0.02 keV [3]. The single-particle α width calculated in a Woods-Saxon well of radius $R = 3.53$ [= 1.40(16)^{$\frac{1}{3}$}] and diffusivity $a = 0.60$ is 0.511 keV. (This calculation assumes $2N + L = 8$, where N is the number of nodes in the radial wave function.) Combining the experimental Γ_{α} for ²⁰Ne(6⁺) with our calculated $\Gamma_{\rm s.p.}$ gives $S_{\rm c}$ 0.215 ± 0.039 . The theoretical α -particle amplitude [10] for this state is $(\frac{20}{16})^4(\frac{3}{128})\sqrt{70}$, giving an expected S_{α} of 0.229 — in quite good agreement. Of course, the value of $\Gamma_{\text{s.p.}}$ depends sensitively on the chosen value of $R,$ but

we intend to use a consistent radius for 18 O and 20 Ne.

If we scale the ¹⁴C+ α and ¹⁶O+ α radii as $A_0^{\frac{1}{3}}$, then For a 4⁺ $sd)^4$ state $(N = 2)$ at 7.117 MeV is calculated to be 266 meV. If we use the same radius in 18 O as in ²⁰Ne (instead of the same radius parameter, $r_{0\alpha}$) we get $\Gamma_{\rm s.p.}$ = 335 meV. We thus adopt $\Gamma_{\rm s.p.}$ = 300 \pm 34 meV, leading to $S_{\alpha}(7.12) = 0.30 \pm 0.05$ - in good agreement with the maximum of 0.287 expected for a pure ¹⁴C $\otimes \alpha$ state. [The value is larger in ¹⁸O than in ²⁰Ne because of the $(\frac{A+4}{A})^4$ factor [10] in the amplitude.] Actually, combining the α amplitudes from Table I with $\Gamma_{\rm s.p.}$ for the two pure configurations gives $\Gamma_{\alpha}(\text{mixed}) =$ 84 ± 9 meV as the width expected for the 4^{+}_{2} state of [2], in comparison with the experimental value of 91 \pm 13 meV. We thus see that ${}^{18}O(7.12)$ has at least as much α strength as expected (Table II) for a dominantly 4p-2h state. We thus consider the $4p-2h$ character of this state confirmed.

What, then, are we to make of the $B(E2)$'s? Our only conclusion is that the mixing must be somewhat difFerent from that in LSF or in the $(0+2)\hbar\omega$ shell-model calculations [6]. Of course, small amplitudes in wave functions can, through destructive interference, cause significant reduction in $B(E2)$ strengths. Such a situation is less likely for α strengths because basic states not already included have little or no ¹⁴C+ α strength. In addition, the two largest α amplitudes for the 7.12-MeV state are in phase (opposite signs in Table I are constructive).

A similar situation is now well known in a nearby nu-

TABLE I. Alpha-particle spectroscopic amplitudes (from [8], using wave functions of [2]) for ${}^{14}C+\alpha \rightarrow {}^{18}O$.

J^{π}	E_x (MeV)	$A_6{}^a$	As^a
$\overline{0^+_1}$ 0^+_2 0^+_3	0.0	0.2011	-0.1592
	3.63	-0.0030	0.4405
	5.33	-0.1275	-0.2604
$2^{+}_{1}_{2^{+}_{2^{+}_{3^{+}_{3^{+}}$	1.98	-0.1723	0.1859
	3.92	0.0590	-0.2685
	5.25	-0.1087	-0.4249
$\frac{4}{4}^{+}_{2}$	3.55	0.1092	-0.0348
	7.11	-0.0563	0.4887

 ${}^{\rm a}$ Subscripts on A are 6 for the two-particle component of the 18 O wave function and 8 for the $4p-2h$ component.

TABLE II. Alpha widths (meV) for $^{18}O(7.12 \text{ MeV})$.

Source	
Experimental	91 ± 13
Theory:	
Pure $4p-2h$	$86 + 9$
Mixed 2p and $4p-2h^a$	$84 + 9$

 n^* From [2,8] as in Table I.

cleus, ¹⁹F, for the $\frac{11}{2}$ states. There, the dominantl ${\rm N} \otimes \alpha \,\, \frac{11}{2}^{-}$ state has too little $E2$ strength $[11],$ but the proper amount of α spectroscopic strength [12–14].

The combined $(sd)^2$ and $4p-2h$ $4^+ \rightarrow 2^+$ $B(E2)$ strength is conserved with any mixing. A smaller value for

 $7.12 \rightarrow 5.26$ implies a larger value somewhere else. The most likely location for the missing strength is in $2^+_3 \rightarrow 4^+_1$ and/or $4^+_3 \rightarrow 2^+_3$. The former $B(E2)$ is poorly known, the latter totally unknown. In fact, a measurement of both Γ_{α} and Γ_{γ} for the third 4⁺ state (suggested at \sim 9 MeV) would be welcome. This state is also unbound to n decay, so that the total width is probably mostly neutron width, but perhaps some combination of experiments such as ¹⁴C(α , γ), ¹⁷O(n , γ), and ¹⁷O(n , α) can clarify the situation.

This work was supported in part by the National Science Foundation. We are grateful to E. K. Warburton for challenging us with this problem.

- [1] P.J. Ellis and T. Engeland, Nucl. Phys. A144, 161 (1970); T. Engeland and P.J. Ellis, ibid. A181, 368 (1972).
- [2] R.D. Lawson, F.J.D. Serduke, and H.T. Fortune, Phys. Rev. C 14, 1245 (1976).
- [3] F. Ajzenberg-Selove, Nucl. Phys. A475, ¹ (1987).
- [4] M. Gai, S.L. Rugari, R.H. France, B.J. Lund, Z. Zhao, D.A. Bromley, B.A. Lincoln, W.W. Smith, M.J. Zarcone, and Q.C. Kessel, Phys. Rev. Lett. 62, 874 (1989).
- [5] J. Gorres, S. Graf, M. Wiescher, R.E. Azuma, C.A. Barnes, and T.R. Wang, Nucl. Phys. A548, 414 (1992).
- [6] B.Meltzow, E.K. Warburton, C. Ender, J. Gerl, D. Habs, U. Lauff, J. Schirmer, D. Schwalm, and P. Thirolf, Phys. Rev. C 49, 743 (1994).
- [7] H.T. Fortune, L.C. Bland, and W.D.M. Rae, J. Phys. ^G

ll, ¹¹⁷⁵ (1985).

- [8] H.T. Fortune and D. Kurath, Phys. Rev. C 18, 236 (1978).
- [9] M. Gai, R. Keddy, D.A. Bromley, J.W. Olness, and E.K. Warburton, Phys. Rev. C 36, 1256 (1987).
- [10] M. Ichimura, A. Arima, E.C. Halbert, and T. Terasawa, Nucl. Phys. A204, 225 (1973).
- [11] W.R. Dixon, D.W.O. Rogers, R.S. Storey, and A.A. Pilt, Phys. Rev. C 32, 2205 (1985).
- [12] S. Mordechai and H.T. Fortune, Phys. Rev. C 29, 1765 (1984).
- [13] S. Mordechai and H.T. Fortune, Phys. Rev. C 32, 2207 (1985).
- [14] H.T. Fortune, Phys. Rev. C 35, 1141 (1987).