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The generalized momentum distribution n(p, Q), related to the half-diagonal two-body density
matrix p2)„(ri, r2, ri) by Fourier transformation in the variables ri —ri and ri —r2, plays a key role
in the description of final-state interactions in the nuclear medium and other strongly interacting
many-body systems. The function n(p, Q) is explored for two Jastrow-correlated models of infinite
nuclear matter within a Fermi hypernetted-chain procedure. Significant departures from ideal Fermi
gas behavior in certain kinematic domains provide signatures of the strong short-range correlations
contained in these models. However, such deviations are less prominent than in earlier calculations
based on low-order cluster truncations; correspondingly, violations of the sequential relation are
greatly reduced. Simple prescriptions for improved low-cluster-order approximations to n(p, C})
are suggested by analysis of the results of the Fermi hypernetted-chain evaluation. These results
are also used to assess the quality of Silver's approximation n(p, Q) = n(p)[S(q) —1] for the
generalized momentum distribution in terms of the ordinary momentum distribution n(p) and the
static structure function S(Q), with findings that have potential implications for the interpretation
of data from inclusive electron scattering by nuclei at high momentum transfers.

PACS number(s): 21.65.+f, 67.40.Db, 25.30.Fj, 24.10.Cn

I. INTRODUCTION

Substantial efforts have been directed toward both ex-
perimental determination and microscopic evaluation of
the momentum distribution n(p) and the associated one-
body density matrix pi(ri, ri) of nuclear matter and fi-

nite nuclei [1—3]. As a logical next step, variational theory
has been extended to permit tractable investigation of
the half-diagonal two-body density matrix p2&(ri, r2, ri)
of the ground states of infinite symmetrical nuclear mat-
ter and other uniform Fermi systems in strong inter-
action [4]. For some purposes, it is advantageous to
work instead with a Fourier-space counterpart n(p, Q)
of p2g. Initial calculations of the generalized momentum
distribution n(p, Q) have recently been performed [5]
for simple models of nuclear matter defined by Jastrow-
correlated wave functions, applying low-order cluster ap-
proximations within the theory of Ref. [4].

There is growing interest in n(p, Q) and pzh(ri, r2, ri)
as descriptors of the correlation structure of finite nu-
clei. This interest is stimulated by a variety of recent
and projected experimental studies of inclusive quasielas-
tic (e, e') scattering [6] and exclusive (e, e'N) or (e, e'21V)
reactions [7,8], as well as proton scattering [9], pion ab-
sorption [10], etc. Proper interpretation of the results of
these experiments and reliable extraction of useful infor-
mation on momentum distributions, spectral functions,
and transparency entail quantitative "post-mean-field"
treatment of the propagation of ejected nucleons and

their final-state interactions. Treatments of this kind in-
clude, for example, extensions of Glauber theory [11—17],
and adaptation of Silver's hard-core perturbation theory
to the nuclear medium [18], along with other proposed
approaches [3,19]. The half-diagonal and diagonal por-
tions of the two-body density matrix figure prominently
in most of these analyses. The function p2h(ri, r2, ri),
or alternatively n(p, Q), is also involved in fundamental
sum rules that furnish insights into the nature of the ele-
mentary excitations of quantum many-body systems [20].

We consider uniform, isospin-symmetrical, spin-
saturated nuclear matter at density p, with correspond-
ing Fermi wave number k~ = (6vr p/v) ~, where v = 4 is
the level degeneracy of plane-wave single-particle states.
For a given state vector l)II), the generalized momentum
distribution n(p, Q) of the system is defined by

Here, k labels the single-particle orbital with wave vec-
tor k and spin/isospin projections cr, r, while k + Q=
(k+ Q, o, 7). The function n(p, Q) is connected to the
half-diagonal two-body density matrix

xil'I(ri, rz, rs, . . . , rA)drs . . . dr~ (2)
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by the Fourier transformation

n(p, Q) = ——1 p

xdrqdr2dri

—iP (r1 —r1) —ig (r1 —r2)p2h(ri) r2) ry) &

[In writing (2), we suppress spin/isospin labels, as well
as a sum over all spin/isospin variables. ] For the nonin-
teracting system, n(p, Q) reduces to

Ristig and Clark have developed techniques for evalu-
ating n(p, Q) and p2g(ri, r2, ri) at the variational level
of correlated-basis-functions (CBF) theory, for both Bose
and Fermi systems [21,4]. The detailed analyses are
based on trial ground-state wave functions of Jastrow or
Jastrow-Slater type,

f(r,, ) C(1, . . . , A), (11)

ny'(p, Q) = hqp(A —l)O(ky —p) —(1 —h'qo)

X0 (k~ —p) O(k I; —
~ p —Q ~) (4)

The role played by the generalized momentum distri-
bution in final-state interactions becomes more evident if
definition (1) is recast as

(5)

A ' ) n(p, Q) = Abgp + S(Q) —1 (6)

where pg is the density fluctuation operator P& a"
k+& ak

and n(p) is the single-particle momentum distribution.
The first term on the right may be viewed as a transition
matrix element for scattering of a particle from orbital
p = (p, o', ~') into another orbital p —Q = (p —Q, o', 7'),
this process being induced by a density Buctuation of
wave vector Q.

Along with time-reversal invariance, the generalized
momentum distribution n(p, Q) has the following for-
mal properties. The relation p2i, (ri, r2, ri) = p g(ri2)
between the half-diagonal two-body density matrix and
the radial distribution function g(r) leads to the so-called

p sum rule [4,21]

where 4 is a constant (Bose system) or a Slater deter-
minant of plane-wave orbitals filling a Fermi sea (Fermi
case), f(r,~) is a two-body correlation function healing
to uiuty at large separations v;i, and A is a normal-
ization constant. Cluster-diagrammatic decomposition
was followed by graphical resummations to yield struc-
tural formulas for p2g(ri, r2, ri) and for n(p, Q) (which in
fact are of general validity in the Bose case, transcending
the Jastrow choice of correlated ground state). In par-
ticular, the function n(p, Q) is cast as a sum of terms
that can be physically associated with various scatter-
ing processes in the medium. The form factors, momen-
tum distributions, and other quantities specifying these
terms can be computed either by cluster expansion to
some (low) order or by Bose or Fermi hypernetted-chain
(HNC) techniques [25—28]. The renormalized (Bose or
Ferini) expression for n(p, Q) exhibits a sum-of-products
structure built up from certain irreducible-diagram sets
of HNC theory.

In Ref. [5], numerical calculations of n(p, Q) within
this framework were begun for nuclear matter described
by a Jastrow-Slater wave function. Two approximation
schemes were investigated:

where S(Q) is the static structure function. In the case
of strong short-range repulsions, n(p, Q) also obeys the
Q sum rule [4,21]

) n(p, Q) = 0

(i) IO Approximation Evaluation . to lowest (two-
body) cluster order in the raw cluster expansion
generated for n(p, Q) directly from the definition
(1) (see Fig. 2 of Ref. [5] or Fig. 4 of Ref. [4] for
a diagrammatic representation of this approxima-
tion).

The sequential relation

p2~(», r2 ri) dr2 (A —I)pl(rl ri) (8)

(ii) I OICi Approximation Lowest-clust. er-order eval-
uation of the form factors (and other ingredients) of
the renormalized structural expression for n(p, Q)
appropriate to the Fermi problem [see Eq. (12) be-
low].

n(p, Q = 0) = (A —1)n(p)

Three simple approximations [22—24] have been pro-
posed for estimating n(p, Q). In particular, Silver's ap-
proximation [23] reads

n(p, Q) = n(p)[S(Q) —1] (10)

This form obeys the p and Q sum rules and meets the
sequential relation, but violates time-reversal invariance.

between p2g and the one-body density matrix pi(ri, ri)
may be transformed to momentum space to yield a con-
nection between the generalized momentum distribution
and the familiar momentum distribution n(p):

The pilot studies of Ref. [5] show very substantial de-
viations &om the baseline case (4) of the noninteracting
Fermi gas. A detailed examination and comparison of
individual contributions to these deviations, for models
of nuclear matter with different correlation strengths, in-
dicates that neglected cluster terms of higher order may
be quite important. This conclusion is supported by the
occurrence of large violations of the sequential condition
(9). It therefore seems advisable to proceed to a Fermi
hypernetted-chain (FHNC) treatment of n(p, Q). The
purpose of this paper is to carry out such an evaluation
at the FHNC/0 level in which elementary or bridge di-
agrams are omitted. Section II recapitulates the frame-
work' of our calculation. Two simple nuclear-matter mod-
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els are specifi. ed in Sec. III, and the numerical results
for these models are presented and discussed in Sec. IV.
Some directions for future work are identified in Sec. V.

II. FERMI HYPERNETTED-CHAIN ANALYSIS

For a Fermi system described by a Jastrow-Slater wave
function, well-known techniques [28] may be used to
develop a cluster expansion of the generalized momen-
tum distribution n(p, Q) in the thermodynamic limit

I

(A oo, p = const). One obtains an infinite series whose
addends are generally reducible, in that they are repre-
sented as products of cluster diagrams. Resummation of
graphical subseries leads to a closed-form expression for
n(p, Q) in terms of a small number of irreducible quan-
tities [4]. The resummation processes are most readily
carried out in configuration space, taking advantage of
simple asymptotic behaviors and transparent relations to
the Bose problem [21]. Returning to Fourier space, the
resulting structural expression is

n(p, Q) = (A —1)8gpn(p) + (1 —bgo)Idd(Q) fn(p) + "(Ip —Ql)] + (1 —~go)+~. (Q) [iiai(p) + "L)i(lp —QI)]
-n, (i —S«) [O(k~ —p) —~..(s)][O(k& —Ip —Ql) —+..(Ip —Ql) l

+(1 —bgo)n~ (p, Q) + (1 —&go)n l (p, Q) (12)

The ingredients of this formula, namely no, n(k),
iiDl (k), F.,(k), ~"' (p Q) and ~" (p Q)
susceptible to calculation by Fermi hypernetted-chain
(FHNC) procedures [4]. In this list, no is the strength
factor that occurs in the structural formula [25—27] for
the ordinary momentum distribution n(k) (itself a re-
ducible quantity). The modified momentum distribution
nDi(k) (likewise reducible) is defined by

ep((p) = —j
pep�(r)t(r)

e' 'dr

where pili(r) is the direct-direct (dd) component of the
full Fermi one-body density matrix pi(ri, ri). In addi-
tion, we have the "two-point" quantities I' „(k) (with
xy = dd, de, or cc), which serve as forin factors, and the
"three-point" quantities n~ l (p, Q) and n~ l (p, Q). The
designations "two-point" and "three-point" refer to the

graphical topology of the corresponding configuration-
space functions entering Fourier transformations such as

P,r(k) = p f P' „(r)e'"' dr (14)

The form factors F „(r) have the composition

+-~(r) = I"ci*w(&) = ~q*w(&) + ~~*~(r)

and thus can be evaluated in terms of the nodal (Kq) and
non-nodal (Xq) diagram sets that arise in the FHNC
analysis of the one-body density matrix [26,27]. (The
Q index appearing in Eq. (15) is introduced temporar-
ily to make the necessary connection with Ristig's no-
tation [27]; it should not be confused with the momen-

tum variable q. ) The three-point quantity n~ l (p, Q)
is given by a three-dimensional integral over a sum of
products of two-point functions,

n~ ) (p, Q) = —— K(ri, r2, ri) e ' ' " " e '~'(" "dridr2dri (i6)

where (with r—:~ri —r2~ and r' = ~ri —r2~)

K(rl, r2, ri) = ppl(rl, ri)Fdd(r)Fdd(r ) + pP1D(rl, 11)t(1'1,1'i)[Fdd(P)Fd (P ) + Fdd(r )Fd (P)]

-~~l»D( i i) —~~o][~ ' (r) —+-(r)][~ ' (r') —+-(r')l (17)

I

The remaining three-point quantity n( ) (p, Q) is an
integral over a sum of terms, each of which involves at
least one irreducible three-point function [4]. At any rate,
by extracting various results from FHNC analyses of the
one-body density matrix and of the radial distribution
function, one may assemble the corresponding FHNC re-
sult for n(p, Q). The FHNC equations that must be
solved are too lengthy to repeat in this presentation;
the interested reader may fi.nd the detailed expressions
in Refs. [4,26,27]. Here we implement FHNC theory at
the level in which elementary diagrams (also called bridge
diagrams) are not included (FHNC/0). The elementary

contributions are generally expected to be important only
at higher densities and are commonly ignored in calcu-
lations on nuclear systems [28,29]. By similar reasoning,
the three-point quantity n( ) (p, Q) should. be small com-
pared to the other terms in the Q g 0 portion of (12) and
will be omitted in our calculations.

We pause in the development to point, out that the re-
summed structural formula (12) gives clear expression to
the physical content of the generalized moment'im dis-
tribution, by collecting into separate addends the con-
tributions from various virtual scattering processes. The
first term recaptures the trivial result for dynamically
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and statistically uncorrelated particles, with the impor-
tant distinction that the momentum distribution func-
tion n(p) of the fully correlated Fermi system is to be
used. The correlations existing in the interacting Quid
allow a fermion to scatter (virtually) from orbital p to
another orbital p —Q, through the (virtual) creation of
a momentum-conserving phonon of wave vector Q. This
process and its time-reversed counterpart are represented
analytically by the second term in (12), which involves
the direct form factor Fdd(Q). The associated exchange-
scattering eKects are incorporated by the third term, in-
volving instead the exchange form factor Fd (Q) Th. e
fourth term takes account of the kinematic eÃect of the
Pauli exclusion principle. This e6'ect is also present in
noninteracting cases [cf. Eq. (4)], but it is now corrected
by the dynamical correlations in Jastrow approximation.
More specifically, the circular-exchange function F„(k)
corrects for the population of states outside the Fermi sea
by the interactions. The strong dynamical correlations
are also responsible for an overall reduction of the Pauli
kinematic effect via the strength factor no (0 & no ( 1),
which re6ects the depletion of the Fermi sea. The last
two terms of (12) account for virtual processes of more
complicated types.

In detail, the renormalized expression (12) assumes
that the sequential relation (9) is satisfied. In terms of
the ingredients of Eq. (12), this condition is equivalent
to

2+dd(0)n(u) + 2&de(0)na&(P) —~o[8(&& —P) —+cc(P)]

The FHNC/0 evaluation necessarily compromises the se-
quential relation (9) [and hence Eq. (18)] to some extent,
due to the absence of elementary diagrams. For the same
reason, it also fails to meet the p sum rule (6) (although
the violation may be small). On the other hand, the
FHNC/0 approximation does conserve time-reversal in-
variance and obeys the Q sum rule (7).

with parameter values Cq ——1.7 fm, C2 —— 1.6 fm
and C3 ——0.1 fm. This form was adopted in a varia-
tional Monte Carlo treatment [31] of the ground state of
symmetrical nuclear matter based on the v2 potential,
which is given by the central part of the Reid soft-core
interaction in the S~—Dq channel, acting in alt par-
tial waves [28,29,31]. The stated parameter values cor-
respond to a minimization of the Jastrow-Slater energy
expectation value.

The "Gaussian" model (designated G2) is defined by
the choice

f(r) = 1 —exp( —P r ) (20)

I I I I I I ~ I I I I I I

1.0

with P = 1.478 fm . This model has no direct con-
nection with any familiar two-nucleon interaction. Evi-
dently, however, it should be associated with a potential
containing a soft repulsive core softer than the Yukawa
core present in the v2 interaction.

Both models were employed in the study of Flynn et
al. [32], which compared various methods for numeri-
cal evaluation of the momentum distribution n(p) for
a Jastrow-Slater wave function; these models were also
used in the recent low-cluster order calculations [5] of the
generalized momentum distribution n(p, Q).

The two models for the Jastrow two-body correlations
are depicted in Fig. 1. The MC and G2 correlation func-
tions show significant diR'erences in behavior both in the
inner region and at medium distances. Most notably, the
MC function has a considerably larger "correlation hole. "
A salient measure of the difference between the two mod-
els is the wound parameter rd;, = p J[f(r) —1] dr,
whose magnitude quanti6es the strength of the correla-
tions in terms of their effectiveness in depleting the Fermi
sea [25,28,32]. For the two models we have rd;, = 0.297
(MC) and O.ill (G2).

III. MODELS OF THE NUCLEAR MEDIUM

1 —e"/c
f(r) = exp —C, e (MC) (19)

Numerical calculations of the generalized momentum
distribution are carried out for two simple models of nu-
clear matter near its saturation density. These models
provide a representative picture of the short-range repul-
sive correlations present in nuclear systems. However,
the intermediate- and long-range correlations are at best
described in an average-propagator approximation [30],
which cannot adequately account for the strong state de-
pendence of the realistic nucleon-nucleon interaction and
especially the noncentral components of the force. Both
models refer to the density value p = 0.182 fm, corre-
sponding to k~ ——1.392 fm

The "Monte Carlo" (MC) model is specified by the
correlation function

/

0
0 1 2 3

r (fm)

FIG. 1. pair correlation functions f(r) defining the Monte
Carlo (MC) and Gaussian (G2) models of the correlation
structure of nuclear matter, plotted against radial distance
r [see Eqs. (19) and (20)].
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TABLE I. Values of the generalized momentum distribution n(p, Qp/p) of nuclear matter at
nucleon density p = 0.182 fm obtained for the MC choice of correlations using the FHNC/0
method.

Q/kF
0+

0.5
0.5+
1.0
1.0+
1.5
1.5+
2.0
2.0+
2.5
2.5+
3.0
3.0+
3.5
3.5+
4.0
4.0+

0
-0.7858
-1.2396

-1.2625
-0.1763
-0.1532

-0 ~ 1048

-0.0591

-0.0293

-0.0117

-0.0022

0.5
-0.7768
-1.2326

-1.2603

-1.1824
-0.1255
-0.0876

-0.0477

-0.0217

-0.0073

0.00003

1.0
-0.7517
-1.2226

-1.2634

-1.1876

-1.0633
-0.0610
-0.0293

-0.0092

0.0006

0.0043

p/kF
1.0+

0.0909
-0.2337

-0.1772

-0.2067

-0.0611
-0.0088
-0.0009

0.0019

0.0028

0.0032

1.5
-0.0067
-0.0233
-0.1628
-0.1910

-0.1551

-0.0901

-0.0304
-0.0066
-0.0016

0.0004

0.0012

2.0
-0.0015
-0.0085

-0.0142
-0.1943
-0.1664

-0.1078

-0.0502

-0.0113
-0.0032
-0.0006

0.0003

2.5
-0.0002
-0.0028

-0.0053

-0.0077
-0.1719
-0.1178

-0.0630

-0.0251

-0.0022
-0.0017
-0.0003

3.0
0.0001
-0.0008

-0.0018

-0.0032

-0.0134
-0.1227
-0.0702

-0.0337

-0.0113

0.0012
-0.0009

see Fig. 6). Indeed, the terms tl and ts are of comparable
size, though of opposite sign because of the opposite signs
of the form factors Igg(Q) and Id, (Q). Like t2 and t4,
the term ts exhibits a discontinuity at Q = p+kF = 2kF,
in this instance because of the presence of the step func-
tion O(kF —

~p
—Q~). It is to be recalled that ts is not

purely dynamical in origin, as it incorporates the second
term of the result (4) for noninteracting fermions.

The term ts (corresponding to n( ) ) is seen to be vir-
tually negligible. In fact, it is found to be much smaller
than unity in all kinematic combinations so far consid-
ered. Moreover, in those cases where t6 is not a negli-
gible contributor to n(p, Q), all the terms are small and
prone to numerical error. These Gndings aÃord some sup-
port for the omission of n~ ~ from the calculation. If the

density and correlation strength are such that the sim-
pler of the two three-point quantities (nonseparable, but
built entirely from two-point quantities) is small, then,
by virtue of its density dependence and its involvement of
intrinsically three-point functions, the more complicated

t

object n~ ~ can be expected to be even less important.
In comparing the detailed composition of FHNC/0,

LO, and LOIC1 approximations for n(p, Q), what is
most important is that neither of the "lowest-order" clus-
ter treatments [5] includes any contribution from the
exchange-scattering portion of Eq. (12), since I"g, (Q)
contains no two-body part. In other words, the earlier

I I I I I I I I I I I I I I I I I I I I

MC P=kF

I I I I I I I I I I I I I I I I

-', t3

0,2—
t,60—

0. 1

I I I I I I I I I I I I I I I I I I I

0.0
I I I I I I I I I I I ! I I I I

Q/1&F

FIG. 4. As in Fig. 3 but at p = 2k'.

FIG. 5. Contributions tq, ts, t5, and ts to n(p, Q), eval-
uated in FHNC/0 approximation as functions of Q () 0)
for Q~~p and p = kF, based on the MC model and density
p = 0.182 fm . The full n(p, Qp/p) for this case is plotted
for comparison.
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1.0

n(k)
Oa —n (k)

0.4—

h

F„(k) x 10

I I I I I I

3~
LO

LOIC ',

I I I I I I I I I I I I I I

MC p=k~

0.0 I
I

0—
I I I I I I I I I I I I I I I I I I I I

k/kF

FIG. 6. Momentum distribution n(k), modified momentum
distribution nrii(k), and circular-exchange form factor F, (k),
as functions of k, calculated in FHNC/0 approximation for the
MC model and density p = 0.182 fm . The function E„(k)
vanishes for k ( k~.

calculations omit the quantity t3 + t4, which, as in the
example of Fig. 5, can be substantial. Indeed, in that
example t~ + t4 largely compensates tq + t2 for p ( 2k~
and quenches an otherwise inordinately large departure
from the Fermi-gas result. Detailed inspection of the
numerical values of the other terms in Eq. (12) shows
no dramatic disagreement between FHNC/0 and cluster
evaluations, other than in cases where the terms involved
are very small. This statement applies to both MC and
G2 models across the range of kinematic conditions ex-
amined, although a sensitivity to the size of the wound
parameter Kd;, is certainly apparent, higher-order correc-
tions being smaller for G2 than for MC.

The overall numerical discrepancies between the Fermi
hypernet ted-chain and cluster-truncation results for
n(p, Q) are exemplified in Figs. 7 and 8 for the MC model
at p = k+ and 2k~, respectively. Higher-order contribu-
tions present in the FHNC/0 treatment [and due pre-
dominantly to the exchange-scattering term of Eq. (12))
evidently have a net large positive effect at low Q (Fig. 7)
or low Q —k~ (Fig. 8) which greatly reduces the ampli-
tude of the correlation correction to the Fermi-gas limit.

The quantitative inadequacy of the LO and LOIC1
calculations of Ref. [5] is signaled by large violations of
the sequential relation (9). Discrepancies from this basic
condition are conveniently measured by a quantity LS,
obtained by adding n(p) to the left side of Eq. (18), di-
viding the result by n(p), and expressing the quotient
as a percentage. To cite typical examples, the three
approximation schemes show the following violations at
p = k&. AS = —272.6%%up (LO), —192% (LOIC1), and
+7.2% (FHNC/0) for the MC model and AS = —62.9%%uo

(LO), —47.3% (LOIC1), and 2.2% (FHNC/0) for the G2
model.

FIG. 7. Comparison of lowest-order cluster (LO), low-
est-order irreducible cluster (LOIC1), and Fermi hypernet-
ted-chain (FHNC/0) approximations to the generalized mo-
mentum distribution n(p, Qp/p), displayed as functions of
Q (& 0) at p = k& for the MC model and density
p = 0.182 fm . The long- and short-dashed curves are in-
distinguishable for Q & 2k'.

For all cases examined, use of the FHNC/0 algorithm
in place of the lowest-order cluster prescriptions leads to
dramatic improvement toward satisfaction of the sequen-
tial relation. The remaining violations are of modest size
and depend on rg;, in the expected manner (i.e. , larger
deviations are associated with the larger vd;, ). These dis-
crepancies may be traced to the neglect of all elementary
diagrams and of the n(s) term of Eq. (12). At this point
it is not clear which omission is the more serious.

I

)) LO

I
',

(

o.z—

0.0
I I I I I I I I I I I I I I I I I I I

1 2 3 4
Q/kF

FIG. 8. As in Fig. 7 but at p = 2k~. The long- and
short-dashed curves are indistinguishable for Q ) 2.5k~.
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MC

1.0
FHNC

Silver ~

0.0— I

[ I I I I

FIG. 9. Generalized momentum distribution n(p, Qp/p) as
a function of Q (& 0) at p = k+, as calculated from Sil-
ver's formula (10) aud in FHNC/0 approximatioii, for the
MC model and p = 0.182 fm

On the basis of the above findings, we may propose
simple extensions of the LQ and LOIC1 approxima-
tions that will substantially broaden their applicability.
The LO approximation should be supplemented by the
leading nonzero cluster contribution to the exchange-
scattering component of Eq. (12) (i.e. , to the ts+t4 term),
implying the addition of certain three-body cluster dia-
grams. Similarly, the LOIC1 approximation as defined in
Ref. [5] should be modified to allow for a nonzero form
factor Ed,,(Q) by including its three-body cluster contri-
butions.

It is of interest to compare the FHNC/0 evaluation
of the generalized momentum distribution with the sim-
ple formula (10) employed by Silver [23] in his hard-core
perturbation theory of final-state interactions. For the
inputs n(p) and S(Q) to the Ansatz (10) we take the
FHNC/0 versions of these quantities calculated for the
MC model. In Fig. 9 the comparison is made for Q~~p
at p = k&. The Silver estimate of —n(pl+) lies con-
siderably below the FHNC/0 result in the "Fermi gas"
regime specified by p & k~ and ~p

—Q~ & k~, and it
misses the discontinuities implied by the Pauli kinematic
e6'ect. Moreover, as already indicated, this approxima-
tion breaks time-reversal invariance, which is manifestly
preserved in the FHNC/0 treatment. Figure 10 provides
further insight into the shortcomings of approximation
(10), along with information on the behavior of the sum
of form factors Edd(k) + Eg, (k). In Silver's estimate, the
latter sum is replaced by S(k) —1, which is clearly a poor
assumption for small k.

For a Fermi system modeled by a Jastrow-Slater wave
function, the Fermi cancellation phenomenon [28] leads
to the conditions [4] Egg(k = 0) + Ed, (k = 0) = 0 and
S(k = 0) = 0. The deviations from these exact relations
observed in Fig. 10, which may be ascribed to the omis-

I I I I I I I I I I I I

0.0

—0.5— ,' S(k) —1

I I I I I I I I I I I I

k (fm )

FIG. 10. Comparison of FHNC/0 results for the quantities
Edd(k) + Fq, (k) and S(k) —1, computed for the MC model
and p = 0.182 fm . Here, Fqq(k) and Fq, (k) are form factors
entering the structural expression (12) and S(k) is the static
structure function.

sion of elementary diagrams in the FHNC/0 calculations,
are consistent with the relatively minor violation of the
sequential relation quoted above for the MC Diodel.

Along with the aforementioned replacement, Silver's
formula (10) for the generalized momentum distribution
entails identification of the full Fermi momentum distri-
bution n(p) with the modified distribution nLiI(p) and
replacement of the circular-exchange form factor E'„(p)
by the step function O(k~ —p) (see Ref. [4]). The latter
simplification amounts to omission of the Pauli-exclusion
correction to n(p, Q). The merits and demerits of these
two aspects of approximation (10) may be judged from
Fig. 6.

Finally, it is useful to consider a coordinate-space view
of the information contained in Fig. 10. The Fourier
inverses Ed~(r) + Ed, (r) and g(r) —1 of the quantities
in Fig. 10 are compared in Fig. 11, where we note that
the former function has a significantly smaller correlation
hole than the latter at short distance, corresponding to a
significantly smaller excluded volume. The same feature
is seen in liquid He [4].

This observation is relevant to a recent study of final-
state interactions in inclusive (e, e ) scattering from nu-
clear matter carried out within correlated Glauber the-
ory [11]. In the treatment of Benhar et aL [11], fur-
ther expounded in Refs. [12,13], the recoiling nucleon
is described relativistically, and its final-state interac-
tions are calculated by means of a generalized Glauber
multiple-scattering theory in which the nucleon propa-
gates through the same correlated medium to which it was
bound. before being hit by the electron. Accordingly, the
struck nucleon in the initial state is surrounded by a cor-
relation hale. This correlation hole, corresponding to a
region of reduced nucleonic density, has the consequence
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F~s(r) +F~.(r)
vide further impetus to a more thorough investigation of
the role of the half-diagonal two-body density matrix in
the determination of anal-state corrections and a more
realistic evaluation of this important quantity.

V. CONCLUSIONS

Potential v2

f(r):MC

0
I I I I I I I I I I I I I I I I I I I I

4. 6
r (frn)

10

FIG. 11. The comparison of Fig. 10 is repeated in coordi-
nate space, g(r) being the radial distribution function corre-
sponding to the static structure function S(k).

that the recoiling nucleon experiences little damping at
short distances (& 1 fm) from the interaction site. Hence
the short-range correlations produce an effect qualita-
tively similar to that of color transparency [33—35]. It
follows that if convincing conclusions are to be drawn
&om experiment regarding the quantitative importance
of color transparency in inclusive scattering of GeV elec-
trons, it will be necessary to make an accurate accounting
of this analogous effect of short-range nucleon-nucleon
correlations, with the half-diagonal two-body density ma-
trix as the natural descriptor.

The approach of Benhar et al. approximates the effects
of ground-state correlations on the inclusive scattering
in essentially the same manner as Silver, who replaces
Egd(r)+Ed, (r) by g(r) —1. The calculations performed in
Ref. [11] reveal a pronounced sensitivity of the inclusive
cross section to the size of the hole in the input radial
distribution function g(r), particularly at small energy
loss u. The comparison drawn in Fig. 11 should pro-

In summary, we have applied Fermi-hypernetted chain
theory to achieve quantitative microscopic determina-
tion of a momentum-space transform n(p, Q) of the half-
diagonal two-body density matrix of nuclear matter, in
the restricted context of a ground-state trial function con-
taining only state-independent, central, two-body cor-
relations. The results exhibit interesting features that
reflect the interplay of statistical and geometrical cor-
relations. Further investigations of p2h(rq, r2, rz) and
n(p, Q) in nuclear matter should extend the analysis and
the calculations to the case of realistic, state-dependent
correlations. Some progress in this direction has been
made recently by Gearhart [36] within self-consistent
Green's function theory. A second important direction
for future work is the microscopic determination of these
functions in finite nuclear systems. In analogy with an
earlier study [37] of the momentum distribution n(p) in
finite nuclei, it may be fruitful to apply a suitable local-
density approximation based on inputs from the evalu-
ation of pzh(rq, r2, rz) in (uniform) nuclear matter over
a range of densities. To this end, an extension of the
local-density approximation proposed by Co, Fabrocini,
and Fantoni [38) for the one-body density matrix might
be developed.
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