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Radial pattern of nuclear decay processes
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At high level density of nuclear states, a separation of different time scales is observed (trapping
efFect). We calculate the radial profile of partial widths in the framework of the continuum shell
model for some I resonances with 2p-2h nuclear structure in 0 as a function of the coupling
strength to the continuum. A correlation between the lifetime of a nuclear state and the radial
profile of the corresponding decay process is observed. We conclude from our numerical results that
the trapping eKect creates structures in space and time characterized by a small radial extension
and a short lifetime.
PACS number(s): 24.30.—v, 21.10.Tg, 21.60.Cs, 24.60.Lz

I. INTR.ODU CTION

Recently, the properties of open quantum systems are
investigated in the framework of difFerent models [1—12].
In most cases studied, the number N of resonance states
is much larger than the number K of open decay chan-
nels. One of the results obtained is the trapping effect
which appears if the average width I' of the resonance
states is of the same order of magnitude as their av-
erage distance D. In this case, a redistribution takes
place inside the nucleus which results in the formation of
K short-lived resonance states ("broad states") together
with %-K long-lived ones ("narrow states"). The time
scales of both types of states are well separated from each
other.

The trapping effect is shown to occur in realistic many-
body quantum systems such as nuclei. Here, at low level
density, the nuclear spectroscopic properties are relevant,
while at higher level density, the properties of nuclei are
described well by the unified theory of nuclear reactions
where the open decay channels are relevant. It is ex-
actly this transition which is described by the redistri-
bution taking place inside the nucleus at the critical de-
gree I'jD = 1 of resonance overlapping [4]. Further, in
strong-absorption cases, a proper statistical theory of the
reaction amplitude yields such a broad distribution of
resonance pole widths and strengths that individual pole
terms giving rise to intermediate structure resonances in
the cross section appear with appreciable probability [13].

Further, the trapping effect explains the different prop-
erties of resonances observed in light and heavy nuclei.
While the lifetimes of the resonances in light nuclei are
of the order of magnitude of the collision time between
nucleons (apart from selection rules), the resonances in
heavy nuclei are very long-lived. They are strongly
mixed in the basic shell-model wave functions which cor-
responds to the original definition of the compound nu-
cleus given by Bohr [14].

The trapping effect is the result of the interference
between a certain number N of overlapping resonances.
Thus, one could expect that the radial extensions of the
broad and narrow states are of comparable size. On the

other hand, the lifetimes of the long-lived and short-lived
states differ strongly from each other so that there exists,
maybe, a correlation with the radial extension of the nu-
cleus.

There are two different possibilities for such a correla-
tion, which both have their own justification. One could
imagine that the long-lived states have a narrower radial
extension than the short-lived ones with the consequence
that they are screened from the continuum. This might
be the reason for their long lifetimes. Another idea is the
interpretation of the trapping effect as the formation of
structures in space and time by self-organization [15]. In
such a case, the radial extension of the short-lived states
is expected to be smaller than that of the long-lived ones.
In this case, the broad states appear to be localized in
both time and space while the long-lived states are spread.
over a larger extension in time as well as in space.

The purpose of our investigation is to clarify whether
there is any relation between the lifetimes of resonance
states and their radial extension. In our calculations, the
radial extension of a state is not determined directly. We
calculate, instead, the radial pattern of the partial width
amplitudes, i.e. , of the area at which the emission of the
particles from the resonance states takes place. The par-
tial width amplitudes vanish at the center of the nuclear
states where the channel wave functions are small, and
are sensitive to the radius of the resonance state where
its wave function vanishes. The results obtained show
clearly a correlation between lifetime and radius of dif-
ferent states.

II. MODEL CALCULATIONS

The radial profile of the partial width amplitudes is
studied in the framework of the continuum shell model
in line with the method described in [16].

In the continuum shell model, the Schrodinger equa-
tion

(II —E)C = 0

is solved with an ansatz containing both bound and un-
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bound states. The total function space is subdivided, by
using the projector operator technique, into the two or-
thogonal subspaces P and Q under the condition P+Q =
1. The subspace Q contains the many-body states of
A nucleons formed by the antisymmetrized products of
the wave functions of the single-particle bound states
and of the single-particle resonance wave functions up
to some cutofF radius. Therefore, the structural part in
the continuum shell model is the same as in the stan-
dard shell-model approaches. The eigenstates C»M of
the Q-projected Hamiltonian Hqq are called [17] "qua-
sibound states embedded in the continuum" (QBSEC).
These QBSEC's differ from the "bound states embed-
ded in the continuum" (BSEC) introduced by Mahaux
and Weidenmiiller [18] by the contribution of the single-
particle resonances from the interior of the nucleus ("cut-
off procedure"). The subspace P contains the many-body
states with A —1 nucleons in bound orbits and one nu-
cleon in a scattering state as well as the part of the single-
particle resonance wave functions beyond the cutofF ra-
dHls.

Using the cutoff procedure for single-particle reso-
nances, it is possible to identify the matrix elements

~R. = (2~)"(XzlVI~R)
= (2~)' '(6 [VIER),

with the amplitudes of the partial widths [19). Here, the
C» are the eigenfunctions of the non-Hermitean operator

where (i)—:( ') t,j;m;w, with n, and s; for a bound and
unbound particle i, respectively. The V~1,~ are deGned as

V, g( = (4;(1)4.(2)lV(r~, r~)l4a(1)4'((2))

where 4, stands for the one-particle wave function
„—YE,.&,. y, g;(r). In our calculations, we use a zero-range
residual interaction with spin exchange term

V(r1 +2) V0(a + bP1~2)~(rl +2)

According to the method used in [16], the radial profile
of the amplitudes of the partial widths is calculated from

~R. = (2~) "(GIVE(r —r') l@R)

where h(r —r') is the Dirac delta function. An integra-
tion over the radius variable r' in the matrix elements
gives us the r-dependent characteristics. Here, r is the
radial coordinate of the particle in the continuum (in the
outgoing channel) .

Let us consider the expression (10) for the pR, in detail.
Using the residual interaction (9), Eq. (10) reads

f'vr ))
1/2

+
YR I

—
I Vo ).&' .&'E' (tla; «a~l@'R)

&2)

„—,&*(&)&k(&)«(r)&,',~(&) .

H ——Hgg + Hg~ G~ H~q,efF (+)

where G&+ is the Green function in the P subspace and

H =HO+V (4)

contains the central potential Ho as well as the two-
particle residual interaction V. Using the projector op-
erator formalism, the Hamiltonian consists of four parts

H = Hgg+ Hg~+ H~g+ H~~

OR = (Q+ G~+ HI q) 4R (6)

are the wave functions of the resonance states R. The
details of the model can be found in [17,4].

In the second quantization method, the two-body
residual interaction reads as follows:

1
V = —) V;, g~

.. a,+a,+. a~aA, .
ijIcl

(7)

where HJ q = PHQ and so on. It is 4R
gR, aRR 4R, with complex coeff1cients aRR . The
4RM are the eigenfunctions of Hqq (shell-model wave
functions) which are represented as 4R™= gR, bRR 4R,
where the 4» are the Slater determinants belonging to
K0. The functions Q are solutions of the coupled-
channel equations (H~I —E)(& ——0 while the y& are
the channel wave functions (wave functions t of the target
(or residual) nucleus in a certain state and one unbound
nucleon). The functions

Here, (i), (k), (t) denote the quantum numbers of bound
particles while (j) stands for those of the unbound par-
ticle. The (i'), (k'), (l'), (j') contain all the quantum
numbers of the (i), (k), (t), (j) but n, , ny, n~, and e~,
respectively. The Z, ~ A, ~ are geometrical factors contain-
ing the Clebsch-Gordon-coeff1cents while the (., &(r) =
(tl(&) are the one-particle channel wave functions pro-
jected onto a particular (ground or exited) state lt) of
the residual nucleus. They depend on the radial co-
ordinate r and on the quantum numbers (j'). It is

4R = g aRR bR R 4R„where the 4R are the Slater
determinants of the system with A particles. The target
wave functions are represented as t = P,. b;t, where the
t, are the Slater determinants of the system with A —1
particles.

The calculations are performed for different values

(@sM
l

V~~@(+)V~~
l@

sM
)

of the mixing of two resonance states via the continuum
of decay channels ("external mixing" ). For this purpose,
the external part V" = o. " V of the interaction in
H~q, Hg~, and H~~ is varied by means of varying the
parameter o.'". The internal part V'" = o, '" V of the
interaction between bound states appearing in Hgg re-
mains constant in our calculations (o.'" = 1). By varying
the external mixing W'", we change electively the aver-
age degree I'/D of overlapping of the resonances (Table
I).
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TABLE I. The main characteristics of the resonance states.

ex I'i /MeV I'p/MeV I"/Me V y (I"')/MeV

Protons
0.2
1.5
2.5
4
8

0.005
0.325
0.891
2.212
5.103

0.01
0.66
2.4
10.3
43.9

0.005
0.34
1.7
9.6
37.2

0.049
2.9
6.6
6.7
14.3

6.5E-05
3.4E-03
3.8E-02
1.4E-02
2.2E-01

Neutrons
0 ' 2

1.5
2.5
4
8

0.006
0.322
0.881
2.187
5.419

0.01
0.71
2.8
10.3
43.2

0.005
0.53
2.6
10.0
37.6

0.049
2.6
5.2
6.0
14.5

6.5E-05
3.3E-03
1.8E-02
8.4E-03
2.3E-01

a~2(p&&) (ptr ptr)2

III. H.ESU LTS

Some typical results of our calculations are shown in
Figs. 1 and 2. We have chosen a configuration space of
K = 70 states 1 of 0 with 2p-2h, nuclear structure
and the 18, 1pzg2, 1p&~2, 28, and 1dzy2 shells. The num-
ber of open decay channels is K = 2, which are either
the two proton channels N~y2- + p and N3~2 — + p
(Fig. 2), or the two neutron channels Oi/2- + n and
'sOs/2- +n (Fig. 1). The energy of the system is E = 34
MeV. The inelastic channel opens at E = 6.30 MeV in
the proton decay and at E = 6.15 MeV in the neutron
decay, i.e. , there are no threshold efI'ects at the energy
considered [12]. The parameters of the Woods-Saxon po-
tential for neutrons as well as for protons are taken from
calculations describing proton scattering on N [12, 17].
The Coulomb potential corresponds to a homogeneous
charged sphere of radius 1.25 (A —1)i/s = 3.08 fm. The
parameters of the residual interaction V are the same as
in [12].

The calculations are performed for o. = 0.2 up to
= 8. The trapping effect appears at o,'„-2.6 where

I'/D = 1 (see Table I) [12], i.e. , our calculations at a'
0.2 are well below the critical region o.„while those with
o. " = 8 are beyond it. The widths I'~ of the states are
given in Table I. In each case, B = 1, 2 are the two states
with the largest widths (second and third columns). The
sum of the widhts of the remaining 68 states as well as its
averaged squared deviation y are given in the two last
columns. Just above the critical point o.„", where the
two broad states separate from the other resonances, the
widths of most of the trapped modes decrease. Therefore,
the y show a minimum in this region of o.' .

The radial profiles 1p&,j are complex because they
contain the complex wave functions 4~ and (., &(r). In
Figs. 1(a)—1(h), Re(p& j for the inelastic neutron chan-
nel is drawn for n'" = 0.2 to 8. In Fig. 2, Re(p&, j as
well as Imfp& j are shown for both channels ci [Figs.

2(a, b, e,f)) and c2 [Figs. 2(c,d, g,h)] in the case of proton
decay and for o," = 0.2 and 8. In any case, the pR
for the two states B = 1, 2 with the largest widths are
represented by dashed lines while the p&, of all the other
states B = 3, ..., 70 are shown by dots at the radii r for
which the calculations are performed. The solid curves
in Fig. 1 are drawn for a typical trapped state.

The results of our calculations show the following:
With increasing o.' the amplitudes pR increase for all
states. Further, the transition matrix elements for the
broad states get dominant peaks at small radii if the
coupling strength increases. That means, the fast de-
cays take place mostly in the inner part of the nucleus.
In contrast to that, the decay of the trapped states is
distributed over the whole nucleus.

In other words, most nucleons which appear quickly
from the short-lived resonances, are emitted in the inter-
nal region. The nucleons emitted in the surface region (2
to 3 fm) arise from both, the long-lived and the short-
lived states. These results are independent of the charge
of the emitted particle [compare Figs. 1(a), 1(h) and
2(c), 2(d)]. They are well expressed for the calculations
with o. & o.,'", where the widths of the two broadest
resonances are well separated from those of the other 68
resonances.

It should be underlined here that the (p&,j of the two
broadest resonances B = 1, 2 do not change their sign as a
function of r in our calculations for o.'" above the critical
point. After integrating over r, one gets therefore large
values for the amplitudes of the partial widths pRjp~, dr.

IV. DISCUSSION

The results obtained are unequivocal from the numer-
ical point of view. Nevertheless, a discussion of them is
necessary in order to understand their physical meaning.

As stated in the Introduction, the radial extension of
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FIG. 1. Re(pa, ) for the in-
elastic neutron channel c2 and
for ca'" = 0.2 to 8 [(a) to (h)].
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1, 2 with the largest widths
are represented by dashed lines
while the pR for all the other
states R = 3, ..., 70 are shown
by points at the radii r for
which the calculations are per-
formed. The solid curves be-
long to a typical trapped state.
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the short-lived states could be comparable to that of the
long-lived states since they result from the interferences
of all (overlapping) resonance states. The lifetimes of
the states difI'er, however, so strongly from each other
that one expects intuitively also difFerences in their radial
distribution.

In a schematic example considered in [7], the short-
lived states are concentrated at the surface what seems
to be in contrast to the result obtained by us. In the
example discussed in [7], a finite chain of potential vrells
is considered where only the outer wells are coupled to
the exterior. In this system, the exit is possible from the
surface only. Thus, the short-lived state is concentrated

at the surface as a consequence of the way the potential
is constructed. A similar result is expected if the calcu-
lations for nuclear reactions are performed with a surface
b interaction.

In our model calculations, no area of the nucleus is dis-
tinguished from the other ones from the very beginning.
The residual interaction does not favor any specific value
of the radius. All areas contribute in the same manner
according to the assumptions of the model. Thus, there
is no preassumption for the localization of the states cou-
pled strongly to the continuum.

As one sees from Eq. (11), the radial dependence of
p&, results from the interference of the bound and un-
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bound one-particle wave functions at the radius r. For
illustration, in Figs. 3 and 4 the radial dependence of the
one-particle wave functions is shown. The contribution
of the d waves to the scattering wave functions (., & at

)

radii r & I fm (Fig. 3) is about zero. The amplitude
of the scattering wave functions at these small radii is
determined therefore by the s waves. The amplitudes of
the bound s waves at r & 1 are larger than the ampli-
tudes of the bound p and d waves (Fig. 4). We conclude
from these results that the peak near 0.8 fm in pR of the
short-lived states is caused, mainly, by the constructive
interference of bound and unbound one-particle s waves.

At larger radii, the contributions from the higher /

waves cannot be neglected. Destructive interferences of

the different waves may play, therefore, an important
role.

The results obtained in the present paper suggest that
the redistribution taking place in the nucleus in the
neighborhood of the critical value o.„creates structures
in space and time by self-organization. This statement
will be explained in the following.

According to the general understanding, self-organi-
zation occurring in open systems leads to the creation of
states with a high degree of order. A measure for the
degree of order of a system is its entropy. Haken [20]
used successfully the conception of the information (or
Shannon) entropy in order to characterize the formation
of high-ordered states by self-organization at a certain
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critical value of a so-called control parameter.
In our calculations, the parameter o.' plays the role

of a control parameter [12). It simulates the degree of
overlapping of the resonances, i.e. , the interaction of the
resonances via the continuum of decay channels. The in-
formation entropy of the system as a function of' o.' is
investigated in [12]. As a result, the information entropy
of a/l modes, including the relevant and irrelevant ones,
increases with increasing o.' . The information entropy
of the relevant modes (short-lived states at a'" ) n,'", )
alone is, however, smaller than the information entropy
of the whole system at values n' o.,', . The main part
of the information entropy at o. " & o.,'", is in the many
long-lived states. The existence of these long-lived states
allows to fix the energy to an accuracy much higher than
the energy uncertainty characteristic of the system which
is determined by the collision time of the constituent par-
ticles. The long-lived states are, therefore, not relevant
for the system at time and energy scales characteristic
of it (although they may be identified in high-resolution
experiments and are decisive in the long-time scale).

Beyond the critical region of the control parameter,
the main part of the information entropy is, therefore, in
irrelevant modes. This result is in agreement with the
results obtained and discussed by Haken [20]. The re-
duction of the information entropy of the system (which

should be identified with the relevant modes) takes place
by means of the formation of irrelevant modes which
carry a large amount of information entropy. Altogether,
there is no contradiction to the second law of thermody-
namics [20].

In other investigations on self-organization (e.g. , [21]),
the entropy is divided into two parts, S = S'" + S',
where S'" is the entropy of the system and S " denotes
the entropy of the environment. It is supposed that
S'" decreases as a result of self-organization but S' in-
creases so that the sum S of both parts does not decrease,
bS & 0, in agreement with the second law. In these in-
vestigations, the formation of highly-ordered structures
is accompanied by an "export" of entropy into the envi-
ronment.

There is a long discussion in the literature on the
differences of these two entropy considerations in self-
organizing systems (e.g. , [20]). In any case, self-
organization is nothing else than the reduction of the
number of relevant degrees of freedom which occurs under
certain "critical" conditions by means of the interaction
of the system with its environment. That means, the sys-
tem before and after the reorganization is not the same
(when we identify the system with the relevant modes).
The number of degrees of freedom of the system is large
as long as the control parameter is below its critical value,
while this number is effectively reduced by formation of
a few relevant modes at values of the control parameter
beyond its critical point.

The results of our calculations show that both entropy
considerations are not in contradiction with each other
in the case of our model investigations. The short-lived
states which are relevant at time and energy scales char-
acteristic of the system and o, '" ) o;„", are localized at
small radii in contrast to the long-lived states which are
spread over a large radial extension. In other words: the
system forms structures in space. The corresponding in-
formation entropy is small [12]. The results of our calcu-
lations show further that the entropy export takes place
by formation of modes in the critical region o. " —o,,',
which are irrelevant at time and energy scales character-
istic of the system.

It is worth noting that such a consideration corre-
sponds qualitatively to the (phenomenological) models
used for the description of nuclei at low and at high level
density. At low level density, the environment consists of
the decay channels what is expressed by I' = I"~ where
I" is the escape width of a state (particle decay into the
continuum). At high level density, however, the states
coupled strongly to the decay channels, are supposed to
decay into the continuum as well as into the compound
nucleus states, I' = I'~+ I'~ where I'~ denotes the spread-
ing width for the "decay" of the short-lived states into
the long-lived compound nucleus states. An example are
the isobaric analogue resonances the structure of which
is described well by "parent nucleus + proton. "

The results obtained by us show further that the struc-
tures in space which are formed at the critical point of the
control parameter o. are short-lived. The correspond-
ing time scale is well separated from the time scale of the
long-lived states. The separation of these two time scales
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as a function of o.' can be traced by means of the results
presented in Table I ("trapping effect").

Short-lived states may be considered as states with a
small "extension" in the time, i.e. , they may be identi-
fied with structures in time in analogy to the structures in
space discussed above. Taking into account the trapping
efFect as well as the results shown in Figs. 1 and 2, the
system consisting of the relevant modes at high level den-
sity (n'" ) n, ", ) can be identified therefore with a struc
ture in space and time. It is formed by self-organization
under the inHuence of the coupling to the continuum of
decay channels.

The reorganization taking place at a certain critical
value of the control paramenter o,' in the open quan-
tum mechanical system considered by us, may be viewed
as an example for the processes happening in open quan-
tum systems. They support the assumption by Prigogine
(e.g. , [15]) that structures in space and time are formed
by self-organization.

times of the states and their radial extensions. In the
short-time scale, most nucleons are emitted from the re-
gions of small radii. The nucleons emitted from the sur-
face region of the nucleus appear mainly in the long-time
scale. That means, we observe a correlation of the decay
probability of nuclear states with their radial extension.
The shorter the lifetime of a state, the smaller is its ra-
dius.

The results of our calculations support, therefore, the
assumption that the trapping efFect creates "structures
in space and time. " In this manner, the trapping efFect
may be considered as a signature for self-organization in
the nuclear system.
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