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We discuss the ability of the generator coordinate method (GCM) to select collective states in
microscopic calculations. The model studied is a single-j shell with a Hamiltonian containing the
quadrupole-quadrupole interaction. Quadrupole-collective excitations are constructed by means of
the quadrupole single-particle operator. Lowest collective bands for j=31/2 and particle numbers
%=4, 6, 8, 10, 12, and 14 are found. For lower values of j, exact solutions are obtained and compared
with the GCM results.
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I. INTRODUCTION

A microscopic description of nuclear collective modes
is still a very important and interesting problem studied
in the theory of nuclear structure. In a frame of the shell
model such a description is di%cult to obtain because
of the very large size of the basis required to include all
necessary configurations. For example, only very recently
excellent shell-model results for rotational states in Cr
have been obtained [1]. Although many phenomenolog-
ical approaches can, and have been constructed, their
microscopic derivation from the shell model is often not
entirely accomplished. It is therefore important to ana-
lyze and study approaches which are able to provide a
simultaneous description of collective and single-particle
phenomena.

The generator coordinate method (GCM) [2—5] consti-
tutes an e8'ective method to deal with collective degrees
of freedom while starting from a pure many-fermion de-
scription. Moreover, it may also yield. an exact quantum
mechanical formalism, and only the choice of generating
functions and a generator coordinate decides whether we
can find exact solutions, collective as well as noncollec-
tive, to the actual problem. The configuration mixing
feature which is by construction built into the GCM pro-
vides us with the ideal tool to study microscopic founda-
tions of collective models.

In the present study, we apply the GCM to a micro-
scopic model of a single-j shell filled with an even num-
ber of identical nucleons interacting via a pairing-plus-
quadrupole (PPQ) Hamiltonian [6]. Although the model
is very simple, it contains two main ingredients of the
"real" nuclear structure theories, i.e., the quadrupole de-
formation and the pairing correlations, and at the same
time for low values of j it is relatively easy to solve. On
the other hand, the GCM is well suited to study this
model for large values of j where the exact solutions are
inaccessible.

In the past the single-j shell model has been stud-

ied by many authors. Mulhall and Sips [7] found that
even for four particles occupying a single-j shell with
strong quadrupole-quadrupole force the collective efFects
are important and rotational structures are present in the
spectra. Deformability, i.e. , a competition between the
quadrupole force and the pairing, was studied in a se-
ries of papers by Baranger and Kumar [8,9]. Arima [10]
discussed excited rotational level structures (%=2 bands)
appearing in the single- j shell. Friedman and Kelson [11]
analyzed collective spectra as depending on the particle
number and j. The present paper aims at using the GCM
as a filter which would select collective structures among
the complete shell-model spectrum. Such a study may
give us more confidence in using the GCM in more real-
istic cases where the quality of approximations involved
is difBcult to analyze.

The paper is organized in the following way: In Sec.
II we fix notation by brieHy reviewing the PPQ model
in a single-j shell, and then in Sec. IIA we present the
available exact solutions. The key point of the GCM
is the construction of the generating states, which we

present in Sec. IIB by invoking the single particle co-
herent excitation model (SCEM) of Dobaczewski and
Rohozinski [12,13]. In this model the quadrupole ex-
citations are built using the single-particle quadrupole
operator. In the present study we restore the broken
particle-number and angular-momentum symmetries ex-
actly. This is done in a consistent GCM framework by
using the gauge angle and the Euler angles as genera-
tor coordinates. The particle-number projection [14,15]
is based on the Fomenko method [16,17] in which inte-
grals are replaced by finite sums, Sec. III A, and a simi-
lar method is also used to perform the angular momen-
tum projection [18,19], Sec. III B. A description of the
GCM calculations in the intrinsic frame of reference is
presented in Sec. IV. In Sec. IV A we analyze the GCM
results for j=15/2 and %=8 particles and compare them
with the exact calculations. In Sec. IVB we present the
GCM spectra for j=31/2 and 1V=4, and for particle num-
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bers between 6 and 14, where the exact solutions are not
available.

0—
X=1.0

II. SINCLE-J' SHELL —10-

We consider the (2j+1)-fold degenerate single shell of
angular momentum j filled with an even number N of
identical particles, which without the interaction, is as-
sumed to be at zero energy. The Hamiltonian is com-
posed of the PPQ interaction,

—HO-

H = —&& & —xQ. Q (2 1)

where P+ is the pair transfer operator and Q is the
quadrupole moment operator,

mm'

Q„+ = ) (jmjm'~2p)o, +a

(2.2a)

(2.2b)
I i i i i I—7

mml

while G and y are pairing and quadrupole coupling con-
stants, respectively. Hainiltonian (2.1) describes basic
collective correlations between nucleons [6,7] and it has
been used by many authors [8—11,20,21]. In the mean-
field analyses of the PPQ model, one often disregards
pairing-type matrix elements of the quadrupole interac-
tion and the field-type matrix elements of the pairing
interaction, and, moreover, the exchange terms are also
neglected [8]. Here we aim at comparing the GCM re-
sults with the exact solutions, and therefore all matrix
elements of the Hamiltonian (2.1) are taken into account.

In the present paper we aim at solving the PPQ inodel
in a large single-j shell. Dimensions of the many-fermion
space increase rapidly with j, and the exact solutions be-
come inaccessible very fast. For example, in the M and
J representations the maximum dimensions for j=15/2
are 526 and 35, respectively, while for j=31/2 they are as
large as 8 908 546 and 200691. The generator coordinate
method, which we apply in Sec. IV to this problem, is
able to describe low-lying collective states without using
very large matrices. Here we present solutions for the
values of particle number N and single-particle angular
momentum j for which in the M representation the di-
mensions of the many-particle space are not larger than
5000.

A. Exact ciiagonalimation

In Fig. 1 we show the yrast bands for %=8 particles
in the j=15/2 shell obtained with several values of the
coupling constants G and y, see Eq. (2.1). Using the
parametrizations G = (1 —x) MeV and y=x MeV we
show a transition from the pairing (seniority) limit at
x=0 to a large-deformation limit at x=1. It can be seen
that for x(1 the spectra are strongly influenced by the
fixed-seniority structures which at x=O appear as degen-
erate multiplets. Since in this paper we want to discuss
situations corresponding to collective quadrupole excita-
tions, in the following we present only the results for the

0 10 HO 30
Spin (Ii)

FIG. 1. Exact yrast spectra for N=8 and j=15/2 obtained
with varying strength of pairing and quadrupole interactions.

pure quadrupole-quadrupole force, i.e., we set G=O and
y=1 MeV.

In Fig. 2(a) we present the yrast bands for N=4 parti-
cles interacting with the quadrupole-quadrupole interac-
tion in shells corresponding to j between 15/2 and 31/2.
At low spins, regular rotational-like bands are obtained
with moments of inertia J=3h /E2+ va'rying between 51
52/MeV for j=15/2 and 333 h /MeV for j=31/2, and
the corresponding E4+/E2+ ratios varying between 3.23
and 3.32 (EI+ denotes the excitation energy above the
ground state).

At higher spins the ground-state bands are crossed by
bands built on high-K particle-hole excitations, which
can easily be identified with oblate structures. In the
Nilsson single-particle diagram presented in Fig. 3 for
j=15/2, we see that at the oblate side the four particles
occupy the 0=15/2 and 13/2 orbitals. Therefore the
lowest single-particle excitation corresponds to promot-
ing a particle from 0=13/2 to B=ll/2 which gives the
K=13/2+ll/2=12 excitation and leads to a band head
at I=12. Similarly, for larger values of j one obtains
band heads at larger even values of spin.

For %=6 particles, Fig. 2(b), we see the bands which
correspond to 2p-2h, oblate configurations. For exam-
ple, for j=21/2 the p-h band corresponds to exciting the
0=17/2 particle to the 0=15/2 orbital (K=16) and then
the second p-h excitation aligns the 0=19/2 particle to
the 0=13/2 orbital leading to K=32 and giving the band
head at I=32. We see that for small shell-filling factors
N/(2j+I) the high-K bands appear at very low ener-
gies, while they cease to be yrast for larger shell-filling
factors. For example, for %=8 and 10, Figs. 2(c) and
(d), no yrast high-K bands are seen and only yrast-yrare
band interaction is visible at I=12 for the lowest j=19/2
and %=8 bands. In general, the yrast bands for half-
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FIG. 5. Exact spectrum for %=8 particles occupying the
j=15/2 shell.

the procedure is continued for still higher 0+ states. Af-
ter that all remaining 2+ states are considered to be the
band heads. In the next step the 2+ states are consid-
ered by order of increasing energy and connected to the
4+ states. In this way all even spins are connected into
bands and then the same procedure is repeated for odd
spin values.

Several regular collective bands can be seen in Fig. 5.
These will be used to discuss the ability of the GCM
to select collective structures in the sea of all possible
eigenstates, Sec. IVA. Here we only discuss a possible
interpretation of lowest states in terms of the collective
model. In Table I we present the reduced E2 matrix
elements between the five lowest 0+ and 2+ states. It
can be seen that these matrix elements obey a strong se-
lection rule related to the special symmetry of the half-
filled shell. Indeed, the quadrupole operator (2.2b) is
odd with respect to changing the creation operator into
the annihilation operator and vice versa. Therefore, the
quadrupole-quadrupole Hamiltonian is invariant with re-
spect to such a change and the spectra of systems con-
taining N and 2j+1—N particles are strictly identical.
However, for a half-filled shell N is equal to 2j+1—N
and the above symmetry allows attributing a new dy-
chotomic quantum number to every eigenstate, while the
quadrupole operator may only connect states when these
quantum numbers are different.

An approximate interpretation of the lowest states can
be done in terms of the collective Jean-Wilets model [22],
which describes collective states for the p-unstable PES.
In this model the lowest-order quadrupole transition op-
erator changes the seniority quantum number by one,
and therefore the parity of the seniority can be associated
with the dychotomic quantum number discussed above.
In this way the 0& and 02 states can be identified with
seniority zero and three, and the three lowest 2+ states
with seniority one, two, and four. In this scheme the
states 03 and 04 can be interpreted as mixtures of the
seniority six states with the seniority zero P vibrations,
and the states 24 and 25 as mixtures of seniority five
and seven with seniority-one P vibrations. This inter-
pretation is, however, not manifested in the energy spec-
tra, where the characteristic Jean-filets multiplets are
strongly split. One can also note that if the identification
of the P vibrations is correct, the corresponding energy
is rather high as compared to the energy of the motion in
the p direction. This high energy may also suggest that
the collective p vibrations are here directly mixed to non-
collective states and that the P vibrations are absent in
the model.

The first excited band can be interpreted as the p vi-
bration strongly coupled to rotations due to the p insta-
bility of the corresponding PES, Fig. 4(a). At spin I=8
it is perturbed by a coupling to the lowest noncollective
excitation promoting the 0=7/2 particle to the O=S/2
state (if one considers the oblate side of the Nilsson dia-
gram, Fig. 3). However, one is here unable to distinguish
between the oblate and prolate structures, because the
prolate side suggests an excitation of the O=S/2 particle
to the 0=7/2 state, which gives the same value of spin
I=8.

For j=31/2 the exact solutions are available for %=4
only, Fig. 6. The collective bands are identified by the
same procedure as described above using the reduced ma-
trix elements of the quadrupole operator. At low spins
one can see several regular bands which can be fairly well

0.0

TABLE I. Absolute values of the reduced matrix elements
of the quadrupole operator between the loosest 2+ and 0+
states obtained in the exact calculation for j=15/2 and %=8

—1.5

21
22
2+
2+

4
2+

5

0+
1

1.921
0
0
0.086
0.070

0
1.307
1.231
0
0

0+3
0.017
0
0
0.790
0.387

0+
4

0.003
0
0
0.208
0.437

0+
0
0.014
0.034
0
0

0 I »» I I i I i I I i I [ I I I I I I ]
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Spin (h. )

FIG. 6. Exact spectrum for %=4 particles occupying the
j=31/2 shell.
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interpreted in terms of the p vibrations coupled to an
axial rotor with K being approximately a good quantum
number. In this interpretation, the ground-state band
is the K=O and n~=O band, and the first excited band
has K=2 and n~ =1. Then come two n~ =2 bands with
K=4 and K=O followed by two n~=a bands with %=6
and %=2. One may even identify three n~=4 bands with
K=8, 4, and 0. Again, in this interpretation there is no
room for the P vibrations at low energies [23]. Table II
shows the E2 reduced matrix elements between the low-
est 0+ and 2+ states and con6rms the above interpreta-
tion. A clear decrease of the matrix. elements with the
difference in the number of p-vibrational quanta is man-
ifest; however, the strict IAn~I(1 selection rule is not
present.

Similarly as for the yrast bands, Fig. 2, one may easily
recognize in the spectrum of Fig. 6 the bands built on
the oblate particle-hole excitations. Together with the
excitation of the 0=29/2 particle to the 0=27/2 orbital,
which becomes yrast at I=28, one can also identify the
excitations of the same particle to the 0=25/2, 23/2,
21/2, and 19/2 orbitals. One may clearly see the effect
of decreasing E2 probability when the band terminates;
the band heads are then coupled stronger to adjacent
bands then to the next members of the given band.

B. The SCEN model in a single-j shell

The single-particle coherent excitation model (SCEM)
proposed by Dobaczewski and Rohozinski [12,13] is based
on the assumption that the quadrupole excitations can
be constructed by acting with the quadrupole fermion
operator E+ on a reference state of the form

tpt2) = exp(ta I"+) exp(tpS ) I o) . (2.5)

The parameters to and t2 are a scalar and a quadrupole
numerical tensor, respectively, and are used as the gen-
erator coordinates. We use the notation of the scalar
product de6ned as t2 P+=P t2„F+ and assume that
t2„——(—l)~t2 ~ and tp ——tp.

For the GCM state (2.5) neither the particle number
nor the angular momentum is a good quantum number.
It can, however, be decomposed into the SCEM states
(2.4) which, with a proper angular momentum coupling
of the excitation operators E+, have good angular mo-
mentum and particle number. The norm and. the average
value of the particle number in the generating function
(2.5) increase with the to parameter. In principle, one can
use this parameter to fix either the norm or the average

It can be seen that for low values of N~ the numbers of
states of a given I exactly correspond to those of the Gve-
dimensional harmonic oscillator [24] with N~ phonons, or
to the numbers of 0+8 excitations required to create the
interacting-boson-model states [25] from the s-boson con-
densate (s+) ". However, SCEM being a true fermion
model, there are departures from this rule appearing as
soon as N~ reaches half of the shell's maximum particle
number j+1/2 (i.e. , in Table III from Ny =4 on), which
re8ect the eÃect of the Pauli correlations. It is obvi-
ous that states of the angular momentum I can only be
obtained for NJ;)I/2, and therefore the number of exci-
tations N~ plays the role of the cutofF in spin.

The generating function of the GCM is here con-
structed as a condensate of the E+ excitations acting
on a condensate of the S+ pairs

1.e. )

I
ref) = (S+)

I
0),

I
@scEM) = (&+) l«f)

(2.3)

(2.4)

TABLE III. The decomposition of the %=8 SCEM collec-
tive states (2.3) in the single-j shell for j=l5/2 into states
of good angular momentum. The numbers of new states ob-
tained for a given value N~ as compared to those for N~ —1
are listed for every I.

TABLE II. Same as Table I for j=31/2 and N=4

2+
1

2+
2+3
24
2+

5

0+
1

1.366
0.099
0.005
0.001

&0.001

0+
2

0.004
0.109
1.091
0.181
0.020

0+
&0.001

0.001
0.018
0.206
0.833

0+
&0.001
&0.001

0.002
0.015
0.072

where S+ creates a monopole collective pair of particles
and E is a single-particle quadrupole excitation opera-
tor. Since only one operator of a given multipolarity can
be constructed in the single-j shell, here S+—:P+ and
F+=Q. In the SCEM, for N~=o we obtain one state of
I=O and for N~ ——1 one state of I=2. If for every value
of N~ we orthogonalize the SCEM states with respect
to those obtained for N~ —1, we obtain the numbers of
states listed in Table III for j=15/2 and N=8.

0
1
2
3

5
6
7
8
9
10
11
12
13
14
15
16
17
18

8
0
0
0
1
3

8
11
15
11
9
3
3
1
1
0
1
0
0

9
0
0
0
0
0
0
0
3
9
11
15
13
10
4
3
1
1
0
1
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particle number at suitable values. We perform our cal-
culations with exact particle-number-projected kernels
which do not depend on tp, except for a normalization
factor. Moreover, the norm kernel is explicitly used in
the GCM equations, and the individual generating func-
tions need not be normalized. In what follows we use
a fixed value of tp, which for the sake of numerical sta-
bility should give average particle numbers not far from
the projected ones, and in our case tp ——1 fulfills this re-
quirement. Therefore, in our study tp is not a generator
coordinate.

The average number of the excitations F+, and hence
the average value of the angular momentum, increases
with the magnitude of the quadrupole tensor [26]

itot2) = expi -' ) C,a+a,
i io), (2.10)

where

nn'
(2.ii)

In this way all GCM kernels can be easily calculated using
the standard expressions resulting from the Wick theo-
rem [29,5]. On the other hand, the product of matrices
in (2.11) can be rapidly obtained by using the F matrix
in its eigenreference frame, which corresponds to trans-
forming the tensor t2 to the intrinsic system defined by
conditions

&'=). It (2.6)
(2.i2)

1+, = (jmjm'i00) = (-i)~-- a, , (2.7.)2j+ 1

F"+, = (jmj—m'i 2p, ) (—1)~+

F+, =) t,*„F"+,,
(2.7b)

(2.7c)

The values and interpretation of the generating coordi-
nates t2„are discussed in Sec. IV where the calculations
in the intrinsic frame of reference are presented.

It is convenient to introduce three matrices

2to( —1)'+ (,2z)
mm' g2. +1 4 j~, (2.i3)

and then diagonalizing the mean field F in the intrinsic
frame. In cases when the S+ pair has the seniority form,
i.e. , contains pairs of time-reversed states with equal am-
plitudes as in the single-j shell (2.7a), we may further
simplify expression (2.11) by using the fact that F is a
time-even matrix, i.e. ,

F+

) S,a+ a+, ,
mml

) F"+,a+ a
mmt

(2.8a)

(2.8b)

where S is antisymmetric and F is Hermitian, in terms
of which the basic SCEM building blocks read

III. RESTORATION OF BROKEN SYMMETRIES

It is well known that the GCM for the gauge an-
gle and the Euler angles used as generator coordinates
is equivalent to the exact particle-number and angular-
momentum projections [30,4,5]. In the present study we
use this property to restore those broken symmetries ex-
actly, and then the GCM equation is solved in the intrin-
sic frame of reference.t2. F+

mml

+F a a (2.8c)

itot2) = exp(toe" S+e "
) io), (2.9)

and further, using the nonunitary Bogoliubov transfor-
mation [27], as a Thouless [28] state:

Now, the generating function (2.5) can be represented as A. Particle-number projection

A standard way [14,15,31,5] to perform the particle-
number projection is to introduce a gauge angle and to
integrate over its (0, 2vr) domain. Using the generating
function in the form (2.10), the projected state is

1
i&t2)—:P~

i
tot 2) =-

27r
dP e ' ~ exp

i

—) C+, e '~a+a+,
i io) .

mm'

Such an integration leaves only the components of the wave function with the particle number ¹ This is based on
the following orthogonality relation valid for any integer N and N'

(3.2)

When calculating matrix elements of any arbitrary particle-number-conserving operator 0 between the Thouless
states, the integration over the gauge angle can be done only for one of those states
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2'
(Nt2lolNt2) —= «ot2lo&1vltot2) = — d4 e '" (tot2lole" to t2)

271 0

which amounts to multiplying the Thouless matrix C' (or, in other words, the coeflicient to) of the ket state by the
factor e '~ and integrating over P.

When there is an upper limit N on the particle number of the system, as is the case in the single-j shell, the
integral (3.3) can be discretized as proposed by Fomenko [16,17]. For systems with even particle numbers one may
use only N—„discrete points spaced by &$=7ri( —N „+1)in the gauge angle. Furthermore, assuming that N—
is also even, or proceeding as if N was larger by 2 when 2N „is odd, one can use 4Nm „points only, and finally

1
4N

) i(1V' —1V)nkvd

2N „+1 2
for even N, N' & N (3.4)

Since the unprojected GCM states are time-even, the matrix elements of time-even operators are real and then the
prescription for the projected matrix elements takes the following form:

1
4N

(Nt, lolNt', ) =, -«ot. loltot2) + ~ ) .-'""~~(tot, lol."- ~t„t,),
mB,x n, =l

(3.5)

where only 4N~ „ integration points are required.
The standard formulas resulting from the Wick

[29,5] and Thouless [28,5] theorems applied to evaluate

(tot2lOle ' &to, t2) matrix elements contain the prod-
ucts of matrices C+C', cf. Eq. (2.10). Since using the
projection method requires many such matrix multiplica-
tions a very efBcient algorithm can be obtained by trans-
forming C+C' to the basis in which it is diagonal (Ap-
pendix A). Then the matrix multiplications reduce to
simple sums and products of the corresponding eigen-
values. At the same time the sign problem of the GCM
kernels is avoided by considering only one half of pairwise
degenerate eigenvalues [32].

t2o = Peas+, ~2t22 = @sing . (3.6)

According to standard prescriptions [5,18,19,30,31], the
angular-momentum-projected GCM state lnNIM) has
the form

ture [33,34]. We review here the formalism in the form
suitable for the description of the quadrupole degrees of
freedom.

Let us denote by lNPp) the particle-number-projected
states (3.1) in the intrinsic frame defined by Eq. (2.12),
where P and p are the axial coordinates on the t2o —tz2

plane

B. Angular-momentum projection
lnNIM) = )

K)p
Pd

g"' (~' ) lNIMKP ) (3.7)1+ b~p
)

The practical techniques of the exact angular momen-
tum projection were discussed many times in the litera-

where the angular-momentum-projected intrinsic state
lNIMKPp) is given by

l~lM~W') =, fd& &Ma(&)+( I) &Ccrc(&) &(&)l~,—P&) . (3.8)

The rotation operator R(A) depends on the three Euler angles, 0—:$, 0, @. Due to the D2 symmetry of the GCM
states (2.5) the sum in Eq. (3.7) is restricted to non-negative even values of K. Using states (3.7) one obtains the
GCM (Hill-Wheeler) equation in the farm [2,3,35]

K')o
P d Y +KK' (P) Y~ P I Y ) @n+KK'(P) Yj P ) '7 ) gnIK(P~ Y) —0

~ (3.9)

where 'R and JV are the GCM kernel matrices of the Hamiltonian and of the norm, respectively, defined as

&KK (»»'&' &') = dO N pOB 0 N

X DKIK'(0) + D K K'(0) + (—1) DK K'(0) + ( 1) D KK'(0)— (3.10)
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and Z~~ stands for 1/[(1+b~p)(l+b~ p)]. Since evaluation of kernels in Eq. (3.10) requires three-dimensional
integration, this is the most time consuming part of the numerical calculation.

Because all indices K and K are even, we may use the explicit form [36] of the Wigner matrices,
D~~~, (0)=e'~~d~~~, (0)e'~ ~ to rewrite (3.10) in the following way:

dQ (N /3pl OR($, 0, $) lNP'p')
2I + 1 27r 7r 2'

O~~, (p, '7;p, p ) = 2
2 ZKK'

87t.2 0

x d~~, (0) cos(KQ+ K'Q) + ( 1) d—~ ~, (0) cos(KQ —K'g) (3.11)

By the same token the integration intervals over P and

g can be reduced from (0, 2m) to (O, z'). Moreover, the
Wigner functions d~~, (0) depend then on x=cos 0 only,

7r 1

dt9sino can be rewritten as dx.
—1

Furthermore, symmetry properties [36] of d~~~, (0) al-
low also reducing integration over x to the interval (O, l).
Finally, the integration domain in (3.11) is eight times
smaller and the factor 2 in front is replaced by 16.

Numerical integration over P and g Euler angles is
done by means of the Tchebyshev method [37], i.e., val-
ues of the integrand in equally spaced points are summed
up with equal weights. This method is exact when the
number of points is taken to be I „+1,where 1 is
the maximum spin of the good-angular-momentum com-
ponents in the intrinsic state lN»). Integration over x
is done using the Gauss-Legendre method [37] applied to
the (0,1) interval. Again, one exact result is obtained by
setting the number of points to I +1.

and the integral

IV. GCM CALCULATIONS IN THE INTRINSIC
FRAME

The exact particle-number and angular-momentum
projections allow us to calculate Hamiltonian and norm
kernels, 'R~~, (P, p;P', p') and JV~~, (P, p;P', p'), for ar-
bitrary pairs of intrinsic deformations (P, p) and (P', p'),
which define the GCM equation (3.9). By a discretiza-
tion of the P and p variables this integral eigenequation
is transformed into a matrix eigenequation, for which the
kernels have to be calculated between all pairs of selected
points (P„,p„), n=l, . ., Ng. .

In principle, the invariant measure P l

sin 3pldPdp
should be used in the GCM equation (3.9) for quadrupole
motion. However, since we discretize this integral equa-
tion, the integration measure is immaterial. Moreover,
we may then also include points for axial (p=O) and
spherical (P=O) shapes, which in the discretized GCM
equation represent a certain volume of the phase space
around points for which the invariant measure vanishes.

For a given j, the main factor determining the total
computing time is the number Ag of the mesh points
(P, p ) on the P~ plane, because the number of pro-
jected kernels to be calculated is equal 2Nd(Nd+1). Each
of these kernels requires calculating (I „+1) overlaps
for difFerent Euler angles, Eq. (3.11). In the present study
we have performed the GCM calculations for j=31/2
and for j=l5/2. For the latter value, the exact results

Q~(»&) = (N»IQ~IN») . (4 1)

The intrinsic frames of reference for the deformation ten-
sor t2 and for the quadrupole tensor Q coincide, i.e. , the
only nonzero components of Q are

Qp ——Q cos 6 and i/2Q2 ——Q sin 8, (4 2)

which defines the radial coordinates in the Q—b plane, in
analogy to Eq. (3.6). When the mesh points of Fig. 4 are
plotted in the Q—b variables they appear to be distributed
in a more uniform way than in the P—p variables. On the
other hand, the topology of the PES is the same in both

can easily be obtained and were used to test the GCM
method.

As discussed in Sec. IIB, the average value of angu-
lar momentum in the intrinsic states lN») increases
with P. Similarly, for large values of I the collective
weight functions g 1~(P,p) have large components at
large P. Choosing the mesh of points (P, p ) with P
smaller than a given value P „ is equivalent to restrict-
ing the variational space to the values of spins smaller
than a certain maximum value I . In calculations we
used P „=6 which allows properly describing spins up

Two meshes of points (P„,p ) were used. The first one
was composed of 10 points uniformly distributed in the
sector P&P „, 0&p&60' (Fig. 4, full circles) in such a
way that overlaps of the neighboring points do not differ
too much one from another. The average overlap turns
out to be 0.73 for N=10 particles in the j=31/2 shell and
0.80 for N=8 and j=15/2. To test the influence of the
number of points on the results, the second mesh com-
prising 19 points was constructed by adding one point in
the middle of each triangle formed by three neighboring
points of the 10-point lattice.

In Fig. 4 the PES in the intrinsic frame of reference is
presented for the pure quadrupole force. The upper part
shows the results for N=8 and j = 15/2, in which case
the PES has a deformed p-unstable valley. Two absolute
minima are at P 3.5 for p=0 and p=60' with a low
saddle in between. The lower part of Fig. 4 shows the
PES for N=10 and j=31/2. In this case there appears a
strongly pronounced oblate valley that extends towards
large values of P.

The quadrupole moment of the intrinsic state can be
calculated as an expectation value of the quadrupole op-
erator in that state,
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representations, with one important di6'erence, namely,
due to a Snite dimension of the single-j-shell space, the
quadrupole moment Q has its upper limit Q „. In Ta-
ble IV the values of Q „are shown for several particle
numbers in the j=15/2 and j=31/2 shells.

For j =31/2 the intrinsic states IN/3p) with the P coor-
dinates beyond P=10 all have quadrupole moments close
to the maximum value Q „. This means that there is
no reason to extend the generating coordinates outside
the P „=10circle, and in fact the value of P „=6used
in the calculations is sufFicient.

A. GCM solutions for j=l5/2 and %=8

2
15/2
31/2
31/2
31/2
31/2

TABLE IV. Maximum quadrupole moments

N
8
10
12
14
16

Qmax
1.6
1.7
2.0
2.2
2.4

In this section we present the GCM calculations for
j=15/2 and N=8, where the exact solutions are avail-
able and can be used to test the properties of the GCM
approach. The Hill-Wheeler equation (3.9) is solved by
using the standard method of calculating the square root
of the overlap matrix JVIclc, described in Ref. [5]. In
what follows we compare the results obtained for 10 and
19 mesh points of intrinsic deformations, as defined in
Sec. IV.

As is well known, the GCM overlap matrix has the
spectrum with the zero value as an accumulating point,
cf. the discussion in Ref. [38]. In principle this matrix
is strictly positive definite, but in practical calculations
the negative eigenvalues may appear at the level of the
numerical precision. This may be related to a finite pre-
cision of the diagonalization method, and especially to
the numerical noise which may appear in calculating the
elements of the overlap matrix. In Figs. 7(a) and 7(b) we
present the absolute values of the overlap matrix for I=O
and I=6, respectively, obtained with 19 mesh points. For
I=O the exact spectrum contains 7 states, see Fig. 5 or
Table V, and the overlap matrix has the same number
of large eigenvalues separated by 10 orders of magnitude
from the remaining 12 eigenvalues which represent the
numerical noise. This illustrates a rare situation when
the GCM generating functions exhaust the correspond-
ing Hilbert space completely.

A more typical spectrum of the overlap matrix appears
for 1=6, where the total number of eigenvalues equals 76
[its dimension equals the product of the number of points
(19) and of the number of K components (4), K=0,2,4,
and 6]. Even if this dimension is larger than the num-
ber of the exact I=6 states (31), the GCM generating
functions do not exhaust the Hilbert space and no gap in
the overlap spectrum occurs. In calculating the square
root of the overlap one has to decide how many norm
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TABLE V. Numbers of states N „,t of spin I in the
single-j shell for j=15/2 and N=8 particles compared with
the numbers kcpj& of eigenvalues of the overlap matrix retained
for the 10 and 19 point GCM calculations (see text).

I
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Nexact
7
4
16
13
25
21
31
26
35
29
35
29
34
27
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19
20
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12
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3
4

Number o f the eigenvalue

FIG. 7. Absolute values of eigenvalues of the GCM over-
lap matrix for j=15/2 and N=8. Results obtained with the
19-point mesh are shown for I=O (a) and I=6 (b).
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0 I I

j= 15/2
N=8
I=O

10 points

~ 0 ~ ~ GCM
Exact

eigenvalues should be retained. Since the negative eigen-
values reHect the appearance of the numerical noise, their
magnitude can be used as an indication of how much the
results are perturbed by numerical uncertainties. There-
fore, in the following we shall use and discuss a useful
parameter denoted by k„;q, which is equal to the num-
ber of norm eigenvalues larger than the absolute value of
the smallest eigenvalue. In Fig. 7 we present a graphic
illustration of how this parameter is defined.

Let us denote by k the number of norm eigenvalues re-
tained in solving the GCM equation. A choice of a proper
value of k should be based on studying the stability of so-
lutions when this parameter increases. In Fig. 8 we show
the GCM energies for I=O (full circles) obtained by using
10 (a) and 19 (b) mesh points. The exact energies are
also shown (open squares) and placed between the results
obtained with k=k „q and k=k„;q+1. It can be seen that
the GCM calculation with k=7 give the exact spectrum
with a very good accuracy. This is due to the fact that
the complete Hilbert space is obtained in this case. For
values of k=1,2, or 3 one obtains a fair description of 1,2,
or 3 lowest states. On the other hand, the fourth state
which first appears for k=4 is correctly split into two ex-
act solutions only after all the 7 basis states are included.
We may see this kind of eKect in many other examples,
and one may interpret it as a manifestation of the cou-
pling of collective and noncollective degrees of &eedom.
Within this interpretation, for k=4 the GCM correctly
singles out the fourth collective state, which in reality is
fragmented among the fourth and the fifth exact states.

As soon as we include in the basis more states than the
critical value k„;q, there appear in the spectrum spuri-

ous states which have nothing in common with the exact
solutions. Such states appear in an unpredictable way
at various energies and in realistic calculations cannot
be distinguished &om the real ones. In fact, they also
pollute the wave functions of states which have energies
seemingly stable when k increases beyond the value of
k„;&. Therefore, one should always try to avoid using
too large values of k and an identification of a highest
acceptable value is essential [39].

In Fig. 9 we present similar results for the I=2 states.
For both mesh sizes we obtain a good description of the
four lowest states by using k=4. At higher energy one
may identify two other structures which appear at k=5
and k=9, and for increasing k become fragmented. For
the 10-point calculation, except the four lowest states,
none of the higher excited states is reproduced with
k&k„;q——12. On the other hand, for the 19-point mesh
the exact spectrum is obtained for k&k„;g——16, because
the full Hilbert space is then again exhausted by the
GCM generating functions. It is interesting to note that
for 10 mesh points the fifth exact state appears only be-
yond the value of k=k„;q. This may illustrate an approx-
imate character of our prescription to define the critical
value k„;q. For 19 points the fifth state is stable already
at k=kcrit

Based on these results we will suppose in what follows
that using a relatively small number of mesh points of
the intrinsic deformations (as compared to the number of
exact states), one obtains a fair description of the collec-
tive subspace, and that only states with strong collective
components are then present in the GCM spectra. By
increasing the number of mesh points one includes non-
collective configurations and the GCM yields collective
states mixed with the noncollective ones. A separation
of states into the collective and noncollective subspace
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FIG. 8. GCM spectra of spin I=O states obtained for dif-
ferent values of the cuto8' parameter A:. Results obtained vrith
10 (a) and 19 (h) mesh points of intrinsic deformations are
shown for j=15/2 and %=8.
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FIG. 9. Same as Fig. 8 for the I=2 states.
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is of course not a well-defined procedure (both in the
experiment and in the exactly solvable model discussed
here). %which states are called collective is therefore a
subject of a model interpretation. With increasing exci-
tation energy the collectivity is gradually lost, and the
mixing with noncollective states increases. VVe may see,
however, that the GCM can be used as a practical tool
to select and decouple the collective space.

In Fig. 10 we compare the GCM spectra for spins up to
I=6 with the exact results. Again, both the 10-point (a)
and 19-point (b) results are shown. In the GCM calcu-
lations the cutoK parameters k were chosen to be equal
to the critical values k„;t, which are listed in Table V
together with the corresponding numbers of exact states
for a given spin. In all cases we have checked that the
GCM states have correct average values of spin (I ) and
particle numbers, (%) and (N ), and that the average
values of the Hamiltonian (II) are equal to the GCM
eigenenergies. These turn out to be useful criteria of
identifying spurious states, because as soon as the spuri-
ous states start mixing with the physical ones the above
average values become perturbed, even if the symmetries
have been exactly restored when calculating the GCM
kernels.

In the GCM spectra there are no 1+ states because
they belong to representations of the point group D2
which are not included in the present calculations. Our
choice of the generating functions (2.5) restricts them to
the symmetric representation (+++) [24], and therefore
such is the symmetry of all GCM eigenstates, whereas
the 1+ states belong to mixed-symmetry representations.
In principle, some other high-spin many-particle states in
the single- j shell may also belong to the mixed-symmetry
representations and will not be accessible in our imple-
mentation of the GCM. This is not a case for the %=8
and I=2 states in the j=15/2 shell discussed here because
the GCM reproduces these states exactly. On the other
hand, the GCM method gives much fewer odd-spin states
than even-spin states as compared to the exact solutions,
Fig. 10. This can be understood by recalling that, for ex-
ample, in the asymmetric rotor model [24] only (I—1)/2
odd-spin states belong to the symmetric representation
as compared to the I/2+1 even-spin states. One should
also stress that the standard Bohr collective quadrupole
model [5] describes the symmetric states only.

Comparing the results for 10 and 19 points, Fig. 10, we

may see that only three collective I=3 states are found
in our GCM space in the former case. The lowest one
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clearly reproduces the lowest exact state while the first-
excited state is probably &agmented among three excited
exact solutions. For 19 points seven states are found
of which the lowest four correspond to the exact ones.
For I=5 only two collective states are found; the third.
excited state appears for 19 points at the correct energy,
but it is absent in the 10-point results. Similar analysis
shows that the four lowest I=4 and I=6 states can be
considered as collective ones.

The lowest GCM states with spins up to I=18 are
shown in Fig. 11. Full circles denote states with posi-
tive signature (—1) and open circles with the negative
signature. The states are connected by lines according to
their stretched E2 matrix elements, see Sec. IIA. In or-
der to illustrate the convergence properties of the GCM
we draw such lines only between states which have the
GCM absolute energies precise to better than 3.5%%uo as
compared with the exact values. Again we see that the
10-point GCM calculation selects two lowest collective
bands while in the 19-point results many higher excited,
and not necessarily collective states are found.

B. C"CM solutions for j=31/2

In Fig. 12 we show the GCM energies for I=O states of
¹ 8 particles obtained for diferent values of the cutoK

0 I I I

parameter k. The vertical dashed. lines are placed be-
tween the results obtained with k=k „.t and k=k„;q+1
to show the values of the critical cutoK parameters k„;t
determined as described in Sec. IVA. For the 10-point
mesh in the intrinsic frame of reference, Fig. 12(a), we
obtain the two lowest I=O states for k=1 and 2, respec-
tively. Only the first of them has a fairly correct en-
ergy already for k=1; the energy of the second one de-
creases rapidly and stabilizes around k=6. According
to our method of identifying collective states, the third
and probably the fourth collective I=O states appear at
k=3 and 5, respectively, and then become strongly frag-
mented. This picture is confirmed by the 19-point results
presented in Fig. 12(b).

A similar analysis of the I=2 states, Fig. 13, shows
that the lowest three of them have a collective nature
while other three collective structures [appearing at k=4,
8, and ll in Fig. 13(b)] become completely mixed and
disappear in the dense noncollective spectrum.

In the examples presented in Figs. 8, 9, 12, and 13, the
lowest solution of the Hill-Wheeler equation is, with a
good accuracy, given by the eigenstate of the norm ker-
nel with the largest eigenvalue. Therefore, the highest
norm eigenstates are in general suKcient to obtain a cor-
rect description of yrast states. For j=15/2 (Figs. 8 and
9), similar observation is also valid for a few lowest ex-
ited states On .the other hand, for j=31/2, the second
norm eigenstate gives only a poor description of the first
excited solutions, Figs. 12 and 13. In this case, excited
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states are mixtures of a few highest norm eigenstates.
Figures 14(a)—(f) show the GCM spectra for particle

numbers N=4 to N=14, respectively, obtained by us-
ing the 19-point mesh of intrinsic deformations. All pre-
sented GCM eigenenergies correspond to states fulfilling
the criterion of stability with respect to the cutoÃ pa-
rameters k&k„;t, as well as have correct average values
of (I ), (jV), (K2), and (H), as discussed in Sec. IV A.

The spectrum for N=4 can be compared with the exact
results shown in Fig. 6. It is seen that the lowest GCM
collective bands agree very well with the exact calcula-
tions. This is due to the fact that the dimension of the
Hilbert space is here not too large and the GCM generat-
ing functions seem to exhaust it, at least for lower spins.
The states for spins higher than I=12 are reproduced. less
accurately and the bands gradually disappear, even if in
the exact results they can be followed up to still higher
spins. The bending up at higher spins of the n~=2 GCM
bands illustrates the eKect of decreasing possibility of the
GCM states to exhaust the exact Hilbert space.

For all particle numbers one may clearly distinguish at
least five lowest collective bands. All of them are similar
to those for N=4 and may accordingly be interpreted
as the p vibrations coupled to an axial rotor, see Sec.

IIA. In all these cases one cannot see any candidate for
low-energy P vibrations [23].

With an increasing particle number the GCM collec-
tive quadrupole bands lose their regularity. This efFect
can probably be attributed to a decreasing ability of the
generating functions used in this study to exhaust the
space of quadrupole collective excitations. But even for
N=14 the low-energy collective bands are visible. On
the other hand, for the p-unstable case corresponding to
the half-filled shell (%=16), we could not obtain any sta-
ble GCM solutions even by using the 19-point mesh of
generating coordinates.

V. SUMMARY AND CONCLUSIONS

In the present paper we have discussed properties of
states of particles moving in a single-j shell and interact-
ing with the quadrupole-quadrupole force. This system
exhibits collective as well as noncollective features, and
we have analyzed a possibility to select the collective sub-
space by using the generator coordinate method (GCM).

The GCM generating functions have been constructed
as coherent excitations built from the single-particle
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quadrupole operator. This type of building blocks has
been proposed in the single-particle coherent excitation
model (SCEM) which constitutes an interesting alterna-
tive to other models based on a building-block concept,
e.g. , the bosonic IBM model [25] and the algebraic Ginoc-
chio models [40]. A collective model constructed in this
way is based on purely fermionic objects and requires no
closed algebraic properties.

Depending on the number of difFerent intrinsic-state
confi.gurations used in the GCM we obtain difFerent pre-
cision of results as compared with exact solutions. When
this number is relatively small, the GCM is shown to se-
lect correctly the quadrupole collective structures, while
when this number is large all exact states are obtained
with high precision.

We have shown that in the single-j shell the low-lying
quadrupole collective states can be interpreted in the
frame of a standard geometrical collective model, either
in its limit of an axial rotor coupled to p vibrations or in
the limit of a p-unstable motion. In the single-j shell we
did not find collective bands of the P vibrational charac-
ter, even for j as large as 31/2.

Th&s research was supported in part by the Polish
State Committee for Scientific Research under Contract
No. 20450 91 01. Numerical calculations were performed
at The Pittsburgh Super Computer Center under grant
No. PHY900027P and at The Interdisciplinary Centre
for Mathematical and Computational Modeling (ICM)
of Warsaw University.

APPENDIX A: CANONICAL BASIS FOR
TRANSITION MATRIX ELEMENTS

(c+c") (c+w-'*) = (a+w-") aT (A3)

We may now discuss several specific cases depending on
the degeneracy of eigenvalues.

1. Nondegenerate eigenvalues

Suppose that the ith eigenvalue is nondegenerate.
—17Then the ith column of the matrix C+W is propor-

tional to the ith column of W,

(A4)

W C+W (A5)

which gives o.=0, because the right-hand side is a diag-
onal matrix element of an antisymmetric matrix. From
Eq. (A4) we now see that the ith column of C+W is1T

equal to zero and hence from Eq. (A2) the corresponding
eigenvalue D, is equal to zero. Therefore, there can be at
most one nondegenerate eigenvalue, and it must be equal
to zero. All other eigenvalues must be at least pairwise
degenerate.

where o. is a proportionality constant. We keep the no-
tation of indices m and m denoting the single-particle
states, although the results derived here do not depend.
on the assumption that these states belong to the single-
j shell. Multiplying both sides of Eq. (A4) by W; and
summing over m we obtain

Canonical basis for antisymmetric matrices has been
introduced in Refs. [41,42] and, together with the Wick
[29,5] and Onishi [43,3,5] theorems, can be used to facil-
itate calculation of average values of fermion operators
in quasiparticle states. Here we extend the concept of
the canonical basis to nondiagonal (transition) matrix
elements.

We begin by considering the eigenequation for the
product of two complex antisymmetric matrices C+ and
~I .

2. Doubly degenerate eigenvalues with one
eigenvector

Suppose now that the matrix C+C' has a doubly de-
generate eigenvalue D; for which only one eigenvector
exists, and let this eigenvector be equal to the ith col-
umn of TV. Let the zth column of TV contains its partner
in the 2x2 Jordan block corresponding to this doubly
degenerate eigenvalue. From (Al) we then have

(C+C'W) . =D,W, ,

(C+O'W) = D;W;+ W;,
(A6a)

(A6b)

where the columns of the matrix W are linearly indepen-
dent vectors of the Jordan basis, and D is the Jordan
block matrix with the eigenvalues D,. at the main diago-
nal, the zeros or ones just above the main diagonal, and
zeros elsewhere. In general, the eigenvalues D, are com-
plex.

Multiplying from the left-hand and right-hand sides
the eigenequation (Al) by W and then transposing,
we obtain

and from (A4),

(c+e) (c+w-") = D; C+R"

+ V+TV-' . A7b

(C+C") (C+W '
) = D; (C+W ' ), (A7 )

C' C+W-' =W-' D (A2)

which multiplied by C+ from the left-hand side gives

Comparing Eqs. (A6a) and (A7a) we see that the zth col-
umn of C+W must be proportional to the ith column+ —1T

of W,
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C+W —1 W (A8a)

while multiplying Eqs. (A6b) by n and subtracting from
(A7b) we obtain that

C+W = nW;+ W, , (A8b)

where a and P are constants. However, summing Eq.
(A8b) with W,. we obtain P=O. Similarly summing Eqs.
(A8a) and (A8b) with W, and W,-, respectively, we
obtain that o. is simultaneously equal to both transposed
matrix elements of an antisymmetric matrix, and hence
n=0 too. Finally, both vectors at the left-hand sides of
Eqs. (A8a) and (A8b) vanish, which is in contradiction
with Eq. (A2), where the D matrix has a nondiagonal
matrix element equal to one. As a conclusion we rule out
the possibility of one eigenvector existing for a doubly de-
generate eigenvalue. Similar derivation can be repeated
for higher degeneracies, and we conclude that the matrix
D is always diagonal, i.e. , the number of eigenvectors of
the non-Hermitian matrix C+C' equals to the number of
dimensions.

on the phases of columns of the matrix W.
Comparing Eqs. (Al) and (A10) we see that the same

matrix W simultaneously transforms the second antisym-
metric matrix C' to its canonical form

(W O'W) . . = s,*. c',b.;, (All)

where the canonical matrix elements c'; of C' are related
to the canonical matrix elements c,* of C+ by

(A12)

c,*=c', = gD, , (A13)

with an arbitrary branch of the square root calculated
for complex numbers D;.

APPENDIX B: TRANSITION MATRIX
ELEMENTS IN THE CANONICAL BASIS

Since the numbers c, depend on the normalization of
columns of W, we may choose to work with the canon-
ical basis for which c;=1 and c,'=D, However, a better
choice is to use the normalization in which c,*. and c,' ar' e
equal:

3. Doubly degenerate eigenvalue with two
eigenvectors

Now we have to consider again the case of the double
degeneracy and analyze the structure of the two corre-
sponding eigenvectors. Let these eigenvectors be equal
to the ith and z columns of the matrix W. Similarly
as in Sec. A 1 we show that the ith and zth columns of
the matrix C+W are also eigenvectors with the same
eigenvalue and therefore must be linear combinations of
the type:

(o'I&+ &-Io) -(1+o+o )-io+c-
(O'Io) mm'

(Bla)

, -=(o'~ -'-~o) = -(1+c+c)- c+-
(O'Ic) mm

(Blb)

The Wick theorem allows expressing nondiagonal ma-
trix elements of fermion operators between the Thouless
states (2.10) through three transition density matrices

= nW;+PW;,C+W-'

C+W ' =~W;+bW;,
(A9a)

(A9b)

+ (O'lu+ ~+ Ic) -

(
+

(Blc)

W C+W = sjc*-b;, (Alo)

where we use the convention of the state z being a partner
of the state i, while a=i. The numbers c;=c; are canon-
ical matrix elements of the matrix C+ while s;=—s; are
the phase factors, ~s,

~

=1, depending on the phase con-
vention chosen for the canonical matrix elements c,- and

where n, P, p, and b are constants. Summing Eqs. (A9a)
and (A9b) with W ~, and W; we obtain that o.=0
and b=0, respectively, while performing the summation
with these factors reversed we obtain that P=—p.

Similar procedure can be repeated for higher degen-
eracies with the same result that the eigenvectors of the
matrix C+C' are grouped in degenerate pairs, and that
these pairs transform the C+ matrix to its canonical form
where it has the form of 2x 2 antisymmetric blocks with
zeros elsewhere. Therefore, this canonical form can be
written as

Using the canonical forms of the Thouless matrices C+
and O', Eqs. (A10) and (All), we obtain the transition
density matrices in the canonical basis:

(B2a)

Kjq
s - j'D-b-2& 2 2&

j' 1+ j
rc'+ —:W K' W""2a- 1+D;

(B2b)

(B2c)

where the normalization (A13) was used. We see that
in the canonical basis the pairing-tensor densities are re-
lated by K=—K'+, provided phases are chosen in such a
way that the phase factors s; are real.

We may now express transition matrix elements of
fermion operators through their single-particle matrix el-
ements in the canonical basis. For the one-body and the
pair-transfer operators
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q= ) q .a+a
mm

(B3a) where only diagonal or paired matrix elements of matri-
ces

we have

q+ = ) q+, a+a
mm'

P+ ) P+ a+ a+
mml

AP= P a a
mml

(83b)

(B3c)

(B3d)

Q'= W QW,

P+ = F-'P+F '

P'= W PF,

(B5a)

(B5b)

(B5c)

(B5d)

(C'IQIC)

«'IP+IC&

(C'IC)

mml

mm'

mm'

. Q,',D;
Q—'-- =)-1+D'

2
2

Q
2

+ Q j

.P;,s;vD;P ~ =) 1+D,

(B4a)

(B4b)

(B4d)

have to be known.
The use of the canonical basis also facilitates calcula-

tion of transition matrix elements of two-body operators.
Moreover, the particle-number projection discussed in
Sec. III A can then be performed at a very low cost. This
is so because the multiplication of the Thouless matrix
C+ of the ket state by the gauge phase factor e '~ does
not change the canonical eigenvectors. Only the eigen-
values D, are multiplied by e '@. Here we only give ex-
pressions for particle-number-projected matrix elements
of separable interactions:

(C'~QQ+P~~C) = p, q,' ,Q+ D;D~.R2(.i.,j) + Q,'~Q;D, Ri(~ ,j) + q,',Q',~s, s,*/. D, D~. Ri(i,j)
(C'~P+PP ~~C) = P,, P;P,+;,gD, D, R (,j)+2P;,P, , D*D R (' &)

(B6)

(B7)

where R2&(i,j ) are the residues [15,5] Ta T+ =) U+, a (C2b)

2vr (CI ~C(y))
—i(N —2k)@

(1 + D;e2'&) (] + D e2'&)

which can be calculated by using the discretized integrals
discussed in Sec. IIIA. The overlap of Thouless states is
given by

C+ =UC U (C3)

where U is a unitary antisymmetric matrix. Then the
Thouless matrix C+ defining the state ~C) is time-even,
namely,

(C'~C(P)) = det (1+e"~C+C')
2)0

(1+D;e"~), For every antisymmetric time-even matrix such as C+
we may define the Hermitian time-even matrix C,

(B9) C = C+U* = C*U+ = UC = U C, (c4)

where notation i&0 means that only one state from every
canonical pair (i, z) is included in the product. C = UC*U+, (c5~

APPENDIX C: MATRIX ELEMENTS BETWEEN
TIME-EVEN STATES

Suppose that the Thouless states are time-even, i.e. ,

which contains the same information about the Thouless
state ~C) as the matrix C+. The results of Appendices
A and. 8 can now be significantly simplified.

First, the matrix C+C' de6ning all transitional matrix
elements becomes quasi-Hermitian,

(c1) CCI C1/2 Cl/2 CIC1/2 C—1/2 (C6)

where T is the antiunitary time-reversal operator, and
suppose that the single-particle basis is closed with re-
spect to the time-reversal, i.e. ,

i.e., by a similarity transformation C / can be trans-
formed into a Hermitian matrix Z:

Ta+T+ = ) UT, a+, , (c2a)
Z C1/2CtC1/2 (C7)

ml Therefore, all eigenvalues D, become real numbers.
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(Cases when C is singular can be considered separately. )
Second, the eigenvectors of the Hermitian matrix Z

form a unitary matrix V,

(CS)

and hence the eigenvectors of C+C' [cf. Eq. (Al)] are
given by

(C9)

Third, the Hermitian matrix in Eq. (C6) is time-even
and therefore has eigenvalues pairwise degenerate due
to the Krarners degeneracy. Therefore, only half of the
eigenvectors have to be numerically calculated, and the
canonical pairs of Appendix A can be identified with the
time-reversed pairs [32].
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