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Resurrection of the L-S coupling scheme in superdeformation
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In a realistic calculation the L-S coupling scheme is restored not only for the parity doublet
levels but also for some other levels in the superdeformed limit, because of the strongly deformed
quadrupole interaction. This real-spin mechanism can take into account the unique-parity level, in
contrast to the pseudo-spin mechanism. The contribution from the unique-parity level to the Ml
transition become non-negligible when the nucleus is superdeformed.

PACS number(s): 21.10.Ky, 21.10.Pc, 21.60.—n

I. INTRODUCTION

The motivation to start this work is the quantization
of alignment [1] observed in the excited superdeformed
bands (b „0.6) in the mass region of A 150 and
A 190. On the other hand similar identical band
structures are observed in the normally deformed nu-
clei [2], and recently also in the superdeformed band
of A 130 region [3] (b „0.4). When we look at
the simple Nilsson diagram [4), we find the degeneracy
of the parity-doublet levels (P D) around-b „0.6,
i.e., the pair levels with asymptotic quantum numbers
[N, n, = N, A = 0] 2 and [N —1,n, = N —2, A = 1] i.
The former level belongs to the unique-parity level with
0 =

2 (unique-parity partner), and the latter level to the
pseudo-spin family as [N —2, N —2, 0] 2 in the pseudo-
spin representation [5, 6] with no pseudo-spin pair part-
ner (pseudo-spin partner). Previously, we showed in a
simple model [7] that the expectation values of the spin-
orbit force by the the P-D levels at b „0.6 converge to
the values given by the asymptotic wave functions, which
indicates the revival of the L-S coupling scheme.

In this paper we perform a more realistic calculation
using the Nicra code [8], and find that the 1. Scoupling-
scheme is restored not only for the P-D levels, but also for
the other levels in N, h = 2n~ + n, . Although the expec-
tation values of the spin-orbit interaction for the unique-
parity partners of the P-D levels do not converge well to
the asymptotic values, their L-S coupled spherical-basis
wave function components yield 85% of the total at su-
perdeformation. Once the L-S coupling scheme works
again, the quantization of alignment is explained by the
real spin 8. We call this mechanism real-spin mechanism
in contrast to the pseudo-spin mechanism.

In Sec. II we calculate the expectation values of 1s and
J for the eigenstates obtained from the exact diagonal-
ization of H using the Nicra code [8]. In Sec. III we

expand. this eigenstate in terms of the spherical L-S cou-
pled wave functions and compare the magnitude and the
phases of the components. In Sec. IV we calculate the
Ml transition rate between the eigenstates and estimate
the contribution from the unique-parity level. In Sec. V
we give our conclusions.

II. SPIN-ORBIT INTERACTION
AND ALIGNMENT

H= — V + —[~~(z +y)+~,z]
2M 2

+(it (I' —(I')~) + (t, ls,
where the volume conservation condition is used;

~.h = ~o(a b)
-X/3

h(up ——41A ~ MeV .
(2)

The deformation parameter b „is given by 3(a—b)/(2a+
b) An energy. eigenvalue of H without the residual 12 and
ls interactions is described by hw, h(N, h +a+ —) with the
shell quantum number N» = an~ + bn, n~ —&+ + ~
A = n+ nand n, is the ei—genvalue of c,.c; (i = +, —or z
of the harmonic oscill-ator bosons [7]). The correspond-
ing eigenfunction is a so-called asymptotic wave func-
tion which is usually denoted by the quantum numbers
[Nn, A]O. In the superdeformed shape where a:b = 2:1,
the P-D levels belong to the same N, h ——2n~ + n with
the same shell energy hu, h(N, h + 5/2), which indicates
that the P-D levels are almost degenerate in energy.
This energy degeneracy is not destroyed in the realis-
tic calculation, because the residual interactions (I and
ls) are much smaller than the harmonic-oscillator poten-
tial. From now on we take N, i, = 6(7) for the proton
shell (neutron shell) of Dy and N, i, = 7(8) for the
proton shell (neutron shell) of 2Hg, because the fermi
surface is located near these shells at superdeformation
for these nuclei. For the A 130 region, a:6 = 3:2 and
N, h

——3n~ + 2n . Again the energy degeneracy is found
for [550] 2 and [420] 2 in the proton shell and [660] 2 and

[530]—in the neutron shell around b „=0.3 0.4 near
the fermi surface of 58 and 74 in the Nilsson diagram.
Since the shell energy is much smaller in this case, the

We use the Nilsson Hamiltonian [9] which is assumed
to have an axially symmetry with a rational ratio a:6
between the frequencies u~ and u .
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shell gap is not clear, but we can still see the degeneracy
of some levels.

The eigenvector of (1) is given by

H
~

0-, 0, n) = E(o, O, .n) i
o, 0, n),

44
I i I'/I

/a

42 —
5303-

/ 2/

6602

50

I //i I

4112~1

413
2

where 0 = A+ E(= 2 for the P Dl-evels), n denotes the
signature, and o represents all the other quantum num-
bers. In Figs. 1 and 2 we show the energy eigenvalues of
the P-D levels together with the other levels belonging
to the same N, h around b „0.6. These results were
obtained using the NICRA code [8] with the parameters
given in Table I. We plot the positive and negative par-
ity levels in diBerent figures next to each other with the
same scale of ordinate for both of proton and neutron
shells. The solid lines correspond to the P-D levels. In-

side of the figures E(0, 0, n) is labeled by the asymptotic
quantum numbers Nn, AO. Although the P-D levels are
plotted in difFerent figures in order to get rid of mess, one
sees the P-D levels cross each other and the levels belong-
ing to the same K,h come near to this crossing around
superdeformation, because of the same scale of ordinate.
As there is no cranking term in (1), energy eigenvalues
are degenerate with respect to signatures.

We calculated the expectation values of the angu-
lar momentum j using the eigenfunctions from (3),
i.e., (0, 0, n~ J ~a, 0, n), and of the spin-orbit force,
(0', O, n~ls~a, A, n). Figures 3 and 4 show these val-
ues for all the levels with 0 =

2 belonging to the
same N, h both for the proton shell (vr) and the neu-
tron shell (v) of A = 152 and 192 cases, respectively.
Inside of the figures the single-particle levels are identi-
fied. by the asymptotic quantum numbers Nn, A, where
we drop 0, as all levels have 0 = 2. In the figure we
choose the signature which gives the positive values of
(0, 0, n~ J ~o, 0, o.) at b „=0.0. The other signature
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FIG. 1. The calculated energies E(rr, 0, a) near superde-
formation for the P-D levels and the other levels belonging to
the N, h, as a function of the ellipsoidal deformation b „for
the proton shell (vr) and the neutron shell (u) in Dy. The
values of b „run from 0.5 to 0.8. The ordinate is in units of
MeV. All E(a, 0, n) are obtained by diagonalizing the total
H but are labeled by asymptotic quantum numbers Nn AO,
to which they converge at very large deformation. The P-D
levels are denoted by the solid lines, i.e., 5412 and 660~ in
the 7r shell and 651— and 770 — in the v shell. For the nega-
tive parity levels of the vr shell, the open circles denote 5412,
the closed triangles 301—,the open triangles 301—,the closed
squares 303— and the open squares 303—. For the positive
parity levels of the 7r shell, the closed circles denote 4202, the
closed triangles 422- and the open triangles 422 —. For the
positive parity levels of the v shell, the open circles denote
6512, the closed triangles 411~, the open triangles 4112, the
closed squares 413—and the open squares 413—.For the nega-
tive parity levels of the v shell, the closed circles denote 530—,
the closed squares 532 —and the open squares 532 —.
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FIG. 2. The same quantities as in Fig. 1 for Hg. The
solid lines are the P-D levels, 651— and 770 — for the proton
(7r) shell and 761 —and 880 —for the neutron (v) shell. In the
positive parity levels of the vr shell, the open circles denote
651 2, the closed triangles 4112, the open triangles 411~, the
closed squares 4132 and the open squares 4132. In the nega-
tive parity levels of the vr shell, the closed circles denote 5302,
the closed triangles 532 —and the open triangles 532 —.In the
negative parity levels of the v shell, the open circles denote
761~, the closed triangles 5212, the open triangles 5212, the
closed squares 523 —and the open squares 523 —.In the posi-
tive parity levels of the v shell, the closed circles denote 640 —,
the closed triangles 642 —,the open triangles 642 —,the closed
squares 404 —,the open squares 404 —,the closed stars 402-,
the open stars 402- and the asterisks 400 —.
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TABLE I. The parameters for the Nilsson potential. The relations between (II and (I, in Eq. (1),
and Ir. and p below are (I, = 2—Irhuo and (II = p(I, /2.

N

4
5
6
7

Kp

0.09
0.065
0.062
0.062
0.054
0.054

Dy
Pp

0.30
0.57
0.34
0.26
0.69
0.69

0.09
0.07
0.062
0.062
0.062
0.062

Pn
0.25
0.39
0.43
0.34
0.26
0.26

Kp

0.05
0.05
0.05
0.05

0.0635
0.0635

Hg

Pp
0.35
0.45
0.45
0.45
0.3
0.3

0.05
0.05
0.05
0.05

0.0635
0.0635

p~
0.35
0.45
0.45
0.45
0.3
0.3

partner gives the same amount with a negative sign. The
values of (o, 0, n~ls~o, 0, n) are degenerate with respect
to signature. We see these expectation values tend to de-
crease with increasing deformation for both Dy and Hg.
It is very remarkable that all of the single-particle expec-
tation values, except for the unique-parity partner of the
P-D levels, approach the values given by the asymptotic
wave functions, i.e. , (o', 0, n~ls~o, 0, n) approaches AZ
and (cr, 0 = 2, n~ 1 ~o, 0 = 2, n) approaches +2. This

indicates that the L-S coupling scheme is already recov-
ered for these levels. As for the unique-parity partners
of the P-D levels, they do show a tendency to reach the
asymptotic values, but not yet enough even at b „0.8.
We will return to this point later.

This feature that the expectation values of the ls in-
teraction converge to the asymptotic values in the su-
perdeformed limit is characteristic not only of the levels
with 0 = 2, but also of some other single-particle levels
with larger 0 in the same limit [7]. In Fig. 5 we calculate
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FIG. 3. The expectation values of J and ls by the eigen-
state ~o, 0 = —,n) belonging to the same N, h= 6 for the
proton shell (vr) and 7 for the neutron shell (v) in Dy.
The ordinate is in units of h. The state ~o, 0, n) is obtained
by diagonalizing the total 0, but labeled by the asymptotic
quantum numbers N, n, A. For the expectation values ofJ, we choose the signature that gives the positive values of
(o., 0 = —,n~ J ~cr, 0 = —,n) at b „=O. For the vr shell b „
is from 0 to 0.7 and the v shell 8 „is from 0 to 0.8.
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FIG. 4. The same quantities as in Fig. 3 for Hg. N, h ——7
for the proton shell (7r) and 8 for the neutron shell (v).

Here the I-S coupling scheme means A and Z become good
quantum numbers.
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Nsh =6 Nsh =7
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see the detailed character of the wave function, which is
discussed in the following section.
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WAVE FUNCTION
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We now investigate the detailed character of the single-
particle levels at superdeformation using spherical wave
functions. The state [a', 0, n) is expanded by the I S-
coupled spherical basis [N, I,I, = A, O) utilizing the
formula

—2)l o

~ ~
o

o p p

o o o [~, n, n) = ) w„~A„[N, I„A,n) . (4)
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FIG. 5. The expectation values of ls by all the levels ex-
cept for A = —belonging to the same N, h ——6 for the proton
shell (m) and 7 for the neutron shell (v) in Dy. The ordi-
nate is in units of h, . The symbols correspond to those labeled
by the asymptotic quantum numbers [Nn, A]B, which are de-
noted under each Bgure of vr and v shells. In m shell, closed
triangles denote [541]—,closed squares [422] —,open squares

[303]~ &
open circles [301]—,open squares [303]— and closed

circles [422] —.In v shell, closed triangles denote [651]—,closed
squares [413]—,open squares [532]—,open circles [532]—,open
squares [413]—and closed circles [411]—.The abscissa is 6 „,
and b „starts from 0 to 0.7 for the 7t shell, and from 0 to 0.8
for the v shell.
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To make our study clear we show the coefBcients of the
1

P-D levels, i.e. , R' 1, as functions of 8 „for Dy
NLA—

2
in Figs. 8 (vr) and 9 (v). At the spherical limit the
A = 0 and 1 components are mixed almost equally (0.54
to 0.46). This indicates j-j coupling is more suitable.
With increasing b „the dominant spherical components
decrease, while the other components increase. Finally
the amplitudes of the A = 1 (A = 0) components become
dominant for the pseudo-spin partner (the unique-parity
partner) of the P Dlevels. -

(a, 0, n ~is~a, 0, n) for the N, h = 6 of the proton shell (vr)
and K,h = 7 of the neutron shell (v) for the s Dy. All
levels show a tendency to converge to their asymptotic
values, except [541]— in vr, and [651]— and [532]— in v
which show a slow and incomplete convergence. These
levels belong to the unique-parity levels with small O.

In Figs. 6 and 7 we show the eKect of rotation on
these expectation values by the P-D levels of Dy and
Hg, respectively. In this case [o, 0, n) is the eigenstate of
H' = H —h,~, t J . So long as the rotational frequency
hu, t is small (( 0.3), the effect of the cranking is neg-
ligible, especially in the expectation values of ls. This
tendency agrees with the prediction given by the pertur-
bation calculation [7]. As for the expectation values of J,
those produced by one signature partner of the unique-
parity level show a gradual increase with an increasing
h~, t, while those coming from the other signature part-
ner increase rapidly and approach the asymptotic values
for b „0.6.

We also calculate the expectation values of ls and J
for the case of Ce. These expectation values converge
much faster than the Dy and Hg cases to the asymptotic
values for 6 „=0.3 0.4, except for the unique-parity
levels with small O. However the quantization of align-
ment observed in Ce is in the region of hu, q & 0.5
[3]. Under such a large cranking term, it is very hard to
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FIG. 6. The efFect of the Coriolis interaction on (cr, fI =
—,o~ J ~o, 0 = —,n) and (O', 0 = —,o.~ls~o, f1 = —,o) as func-
tions of hu, « for the P-D levels in Dy at 8», ——0.6. Here
~o', 0, n) is the eigenfunction of H' = H —hm, ~t J~. The sym-
bols are labeled by the asymptotic quantum numbers [Nn A].
Open and closed symbols correspond to the diferent signa-
tures with the same [Nn, A]A The absci. ssa is hu, t, and it
is from 0 to 0.3 in units of MeV.
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FIG. 7. The same quantities as in Fig. 6 for Hg.

We calculate the values of ZI. ~WgL&&~ for both A = 0
and 1 and show them in Table II. For example, in the
[541]2 level of Fig. 8, the squares of the A = 1 compo-
nents to those of A = 0 are 0.78 to 0.22 at b „=0.6, while
at b' „=0.2 they are 0.23 to 0.77. For the state [660]2,
the squares of A = 1 components to those of A = 0 are
0.15 to 0.85 at b „=0.6, while at b „=0.2 they are 0.42
to 058. At b „=08, Zl [W~l&&~ of A = 0 becomes
91 92% for the unique-parity partner state of the PD-
levels, while for A = 1 it is 84—89% for the pseudo-spin
partner state. These results indicate that the L-S cou-
pling scheme is restored in the superdeformed limit, and
this resurrection is better for the unique-parity partner
levels than for the pseudo-spin partner levels of the P-
D levels, i.e. , the unique-parity partner (the pseudo-spin
partner) has 0.85(0.78) at h „=0.6 for the proton shell
and 0.81(0.69) for the neutron shell. Although the con-
vergence of the expectation values of 1s to the asymptotic
limit, shown in Figs. 3—5, was worse for the unique-parity
partner levels of the P-D levels, Table II illustrates that
the L-S coupling scheme becomes better for the unique-
parity partner of the P-D levels at b „=0.6. As seen in
Figs. 8 and 9, the reason for this is that the amplitudes of
A = 0 and those of A = 1 are out of phase for the [541]2
and [651]2, while they are in phase for the [660] 2 and

[770]2. The out-of-phase amplitudes between A = 1 and
0 cause the cancellation of the matrix element of 1s, and
help the convergence to the asymptotic values. On the

I f I i I I I

0 0.2 0.4 0.6 0 0.2 0.4 0.6
~osc

FIG. 8. The expansion coefBcients of the P-D levels in the
proton shell of Dy in terms of the I-S coupled spherical
basis I%LAO = —) as functions of deformation. The filled

(open) symbols denote the coefficients of A = 0 (1). All the
symbols are labeled by the quantum numbers (L, A). The
quantum number 0 =

~ is common for all spherical basis in
each figure. For [541)—,the circles correspond to L = 3, the
squares to L = 1 and the triangles to L = 5. For [660]—,the
circles correspond to L = 6, the squares to L =2, the triangles
to L = 4 and the asterisks denote the contribution from sl/2
(L = 0, A = 0). The abscissa is b'o„ from 0 to 0.8.

other hand the in-phase amplitude has no cancellation,
and the convergence is slower. This is not only the case
for the unique-parity partner level of the P-D levels, but
also for the unique-parity levels with small 0, which show
in Fig. 5 a slow convergence to the asymptotic values. For
example, [541]2 in the proton shell has the ratio of the
summed values of Zr, ~W$L&&~ for A = 1 as 0.64:0.36
at b „=0.0 and 0.89:0.11 at b „=0.6. The neutron
state [532]2([651]2) has the ratio of the summed values
for A = 2(1) to 3(2) as 0.90:0.10 (0.86:0.14) at 8 „=0.6.
The I-S coupling scheme is also restored for these levels
in the superdeformed limit.

The reason why the L-S coupling scheme works well
can be simply explained &om the nature of the matrix
elements of the axially symmetric deformed field bYqo. lf
we expand the state ~o, 0, n) in terms of the spherical j-
j coupled wave function [N, l, j,0), instead of (4), there
appear three kinds of matrix elements of Yqo. The matrix
element of (j' = t —2 + 2 ]Y2o]g = l + 2) is proportional to
lg(l —1)(l + 1)/[(2l —1)(2l + 1)]. This is of comparable
order to the diagonal element (j' = / + 2 [Y2o~j = l + 2),
which is proportional to [4 —j (j + 1)] /[j(j + l)(2j +
3)(2j —1)]. On the other hand the matrix element be-
tween spin-orbit partners (j' = 1 —2~Y2o[g = & + 2)
is proportional to g(2j + 1)(2j'+ 1)/[jj'(j + 1)], and
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whole matrix. In the last paper [7] we already showed the
coeKcients of the eigenvector in terms of the j-j spherical
wave function, i.e. , W~' .

&
&. In order to explain the rea-

)27 )

son more clearly, we show the matrix elements to be diag-
onalized for the case of N = 5 and b „=0.6. The rows
and columns correspond to the spherical single-particle
levels from pl/2, p3/2, f5/2, f7/2, h9/2, and hl1/2 in or-
der,

0 '—6 —7 0 0 0
—6 —5 —1 —7 0 0
—7 —1 —5 —1 —6 0
0 —7 —1 —8 0 —6
0 0 —6 0 —8 0
0 0 0 —6 0 —13

o (4,1)

0
0 D Q ll

(6, 1)

I I I

0 0.2 0.4 0.6
I I

0 0, 2 0.4 0.6
OSC

FIG. 9. The same quantities as in Fig. 8 for the neutron
shell of Dy. The filled (open) symbols denote the coeK-
cients of A = 0 (1). For [651]—, the circles correspond to
L =4, the squares to L =6, the triangles to L =2 and the as-
terisks denote the contribution from sl/2 (L = 0, A = 0). For
[770]—,the circles correspond to L =7, the squares to L =3,
the triangles to L =5, and the small asterisks denote the con-
tribution from pl/2 (L = 1, A = 0), and the large asterisks
denote the contribution from p3/2 (I = 1, A = 1).

this is usually much smaller than the other two elements
provided that l is large. Thus, the couplings among
the j = I + — family members (sl/2, d5/2, g9/2, . . ., or
p3/2, f7/2, hl1/2, . . .) or among the j = I —— fam-
ily members (d3/2, g7/2, . . ., or pl/2, f5/2, h9/2, . . .) are
strong, which keeps a j-j coupling scheme good. However
the third matrix elements, i.e. , those between spin-orbit
partners of the spherical basis become almost comparable
to the other two elements of Y20 for small values of l, such
as I = 0 and 1; that is, the coupling, for example, between
sl/2 and dj/2 for positive parity levels or pl/2 and p3/2
for the negative parity levels. This fact causes strong
mixing between the two families mentioned above, in-
cluding large l value states after the diagonalization of the

These matrix elements include both of ls and 1 inter-
actions and all the values are measured from the Brst
diagonal matrix element between pl/2 and pl/2. We
see the strong coupling between pl/2 and p3/2, i.e. ,

(pl/2
~

Yjp ~p3/2) = —6, while all the other matrix ele-
ments between the spin-orbit partners are very small,
i.e. ,

—1 or 0. The eigenfunction of (5) has almost 50-50
mixed components between j = It + 2 and j = l —2. Here
we want to remark that in contrast to the case of pseudo-

spin scheme where the ls interaction is nearly zero, the
ls interaction remains large in the P-D levels, but the
L-S coupling scheme becomes better than the j-j cou-
pling scheme in the superdeformed limit, because of the
large quadrupole deformed Beld. It is often pointed out
that the deformed Woods-Saxon potential should be used
rather than the deformed harmonic-oscillator potential.
We anticipate that a similar situation occurs when the
deformed Woods-Saxon potential is used. Namely a sim-
ilar degeneracy of the P Dlevels can -be seen [10] and the
L-S coupling scheme is recovered by the same argument
concerning the mixture of j = l + 2 and j = l —

2 when
superdeformed, which is shown in this section.

IV. THE EFFECT OF THE UNIQUE-PARITY
LEVEL ON THE MI TRANSMISSION

The difFerence between the pseudo-spin scheme (LS
coupling) and the real-spin one (L decoupling) co-mes
from the unique-parity level, as the pseudo-spin cannot
include the unique-parity level. In order to see the dif-
ference between the two coupling schemes, we calculate
the effect of the unique-parity level on the M1 transition
rate. As it is linear in the spin operator, the M1 opera-

TABLE II. The squares of the A = 0 amplitudes and A = 1 amplitudes of the P-D levels in
Dy as a function of deformation.

~osc

0
0.2
0.4
0.6
0.8

[541]—,
'

A=1
0.43
0.23
0.54
0.78
0.89

Proton

A=0
0.57
0.77
0.46
0.22
0.11

[66o] -',

A=1
0.46
0.42
0.28
0.15
0.08

0.54
0.58
0.72
0.85
0.92

[651]—
A=1
0.44
0.27
0.40
0.69
0.84

Neutron

0.56
0.73
0.60
0.31
0.16

[77o]-,'
A=1
0.47
0.44
0.34
0.19
0.09

0.53
0.56
0.66
0.81
0.91
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tor is also a good physical quantity to test the recovery
of the I-S coupling scheme. We calculated the matrix
element of the following M1 transition operator.

Qx = gl~x + gss~ & (6)

where the free nucleon values of gi and g, are assumed,
i.e. , gl = 1 (0) and g, = 5.58 (—3.82) for proton (neu-
tron), respectively. The selection rule on transitions
caused by the operator p of (6) is Ao = 0, Aa. = 0 and
KB = 0 or +1 for the wave function ~cr, 0, n). The state
~a, 0, o.) is obtained by diagonalizing the Hamiltonian II
in (1), but it is labeled for the sake of the convenience
by the asymptotic wave function ~N, n„AA) to which the
state converges when b „is extremely large. We show the
calculated matrix elements of (a, 0, n[p [o, 0', n) and the
contributions only from the unique-parity level for the
wave function ]o, B,n) in Table III (proton shell) and
Table IV (neutron shell) for the case of is2Dy, and in
Table V for the case of the neutron shell of Hg. We
choose only some typical examples in the tables in or-
der to study the dependence of the contributions from
the unique-parity level on the deformation. In the ta-
bles the numbers inside the parentheses denote the val-
ues only from the unique-parity level, including the di-
rect [for example (hll/2~y, ~hll/2)] and crossing terms
[(hll/2~p, ]69/2)]. The numbers before the parenthe-
ses correspond to the total values of matrix elements
of (6), in which all mixed states including the unique-
parity states are taken into account. For example, for
the diagonal matrix element of [541]2, which is [440] 2
when the pseudo-spin representation is used, the contri-

bution of hll/2 is 0 at b „=0, but reaches —0.56 at
6 „=0.6, and its ratio to the total becomes 200%%uo. The
nondiagonal matrix element between [541]2 and [532] 2

([440] 2 and [431]2 in pseudo-spin) has a 23'%%uo contribu-
tion of h. 11/2 at 6 „=0.2, while at 8 „=0.6 it be-
comes 70%%uo. We drop the contribution from the unique-
parity level, renormalize the wave function of [O', 0, n),
and then estimate the M1 matrix elements produced by
the pseudo-spin wave functions. We apply this method
to both [541]2 and [530] 2 in the superdeformed limit,
as an example. Then the value of the diagonal matrix
element (i[Ml~i) for [541]2 becomes 0.38, which should
be compared with —0.28 in Table III. The nondiagonal
matrix element (i(M1(j) between [541]2 and [530] 2 is
—1.44 in contrast to —2.23 in Table III. Thus, we cannot
renormalize the wave function only within the pseudo-
spin states ignoring the unique-parity level when the nu-
cleus is superdeformed. On the other hand, the diago-
nal matrix element of the [660] 2 (unique-parity level at
8 „=0) has 100%%up contribution from il3/2 at b „=0.0,
but reduces to 28.8'%%uo at 8 „=0.6, which indicates that
the pseudo-spin levels inHuence this state.

Similarly, in Table V, we see for the diagonal matrix
element between [770] z that the contribution of jl5/2 re-
duces from 100% to 16.8%% at 8 „=0.6, and in the non-
diagonal transition matrix element between [651]2 and

[613]—([552]— and [512]2 in the pseudo-spin representa-
tion), the contribution of i13/2 to the total becomes very
large at the superdeformed limit, i.e., —0.12, while the
total is —0.01 and its ratio is 12.0. As g~ is 0 for the neu-
tron, the spin part of (6) only determines the Ml matrix

TABLE III. The contribution from the unique-parity level to the total single-particle M1 tran-
I

sitiou rate, (a, O, n~p ~cr, 0, n) as a function of deformation for the proton shell in Dy. The
state ~o, 0, o.) is obtained by diagonaliziug the total H, but is labelled by the asymptotic quantum
numbers, [N n, A]O, to which the state converges in a very large deformation. The numerals inside
of the parentheses denote the contribution from the unique-parity level to the total values, which
are shown before the parentheses.

(i~M1~ f)
[541]—,

' —+ [541]—,
'

[541]-,' ~ [530]-,'

[541]— —+ [510]—

[541]— —+ [532]—

[530]——+ [541]—

[541]——+ [541]—

[541]-' —+ [532]—

[541]-', ~ [523]-,'

~osc 0.0

—3.31(O)

o(0)

1.13(0.0)

3.20(0)

1.35(1.35)

o(o)

4.00(4.00)

0(0)

0.2

—2.88(—0.39)
—1.59(—0.52)

0.45 (0.23)

2.13(0.49)

0.99(0.37)

—1.20( —1.81)

3.80 (3.56)

—0.25(0.51)

0.4

—0.94(—0.51)
—2.42( —0.98)

0.13(0.42)

1.23(o.76)

0.08(—0.86)

—2.32 (—2.22)

3.44 (2.93)
—0.22(0.45)

0.6

—0.28( —0.56)

—2.23( —1.17)

o.o5(o.53)

1.26(0.88)

—0.45 (—1.20)

—2.77(—2.14)

3.11(2.45)

—0.14(0.46)

[660]-' m [660]-'

[660]-,' -+ [651]-,'

[660]— —+ [651]—

[660]-' —+ [622] -'

4.73(4.73)

o(o)

4.68(4.68)

o(o)

4.54(3.65)
—0.28( —1.72)

4.45 (3.72)

0.12(—0.12)

4.20(1.99)
—0.33(—1.44)

3.81(2.27)

0.04(—0.26)

3.89(l.15)

—0.70 (—0.99)

3.18(1.44)

0.01(—0.28)
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TABLE IV. The same quantities as in Table III for the neutron shell in Dy.

(i[M1[f)
~osc 0.0 0.2 0.4 0.6

[651]-'

[6sl] —,
'

[6sl] -',

[6sl j —,
'

[651]-'

[64o]-,'

[6sl]-,'
[6sl] —',

m [651]—

-+ [611]-'

~ [62o]-,'

~ [631]-',

-+ [642] 3

-+ [651]-,
'

m [642]-',

-+ [61s]-',

—1.06(0)

0(0)

0.95(0)

0(0)
—1.04(0)

—1.10(—1.10)
—0.98(—0.98)

0(0)

—1.46(—0.05)

—0.14(—0.06)

0.52(0.16)
—0.43(—0.29)

—0.71(—0.11)
—1.09(—0.71)
—0.95(—0.86)

—0.04 (—0.13)

—1.14(0.07)

—0.03(—0.10)

0.16(0.23)

—0.52 (—0.53)

0.32(—0.17)
—0.87(—0.15)
—0.83(—0.66)
—0.02( —0.13)

—0.60(0.10)
—0.01(—0.11)

0.05 (0.24)

—0.27(—0.64)

0.54( —0.17)

—0.63(—0.05)

—0.68(—0.49)

—0.01(—0.12)

[77O]-,' ~ [77O]-,'

[770]-' -+ [761]-'

[770]-,' -+ [761]3

[770]-,' -+ [752]-'

1.02(1.02)

0(0)
—1.01(—1.01)

o(o)

1.06(0.81)

0.12(—0.35)
—1.03(—0.82)

0.16(—0.29)

1.27(0.46)

0.56(—0.25)

—0.96(—0.48)

0.38(—0.17)

1.55 (0.26)

0.66(—0.14)

—0.76 (—0.27)

o.sl( —o.o2)

element, and the dependence of the unique-parity on the
deformation can be clearly seen. On the other hand, in
the proton case the orbital part of (6) also affects the
dependence and sometimes cancels the spin part so as to
smear out the efFect. This is the reason why the con-
tribution from the unique-parity is more clearly seen in
the neutron case than the proton case for superdeformed
nuclei.

Recently dipole transitions linking signature partner
superdeformed bands in ~s Hg are observed [ll]. The as-
signed levels in Ref. [11] are [512]2 and [624] 2, both of
which do not belong to the N, h

——8, but the former to
N, h

——9 and the latter to 10 at superdeformation. In
Table V we showed some calculated matrix elements for
both [512]2 and [624] 2 levels together vrith those for the
members of N, g = 8, i.e. , [532]2, [642]-, [761]-, [761]s,

TABLE V. The same quantities as in Table III for the neutron shell in Hg.

(ij~l~y)
[631]-', -+ [642]-

[642] 5 —+ [613]~

[613]-,' -+ [624]-

[624]-', -+ [606]—",

[880]—-+ [880]—

[880]—m [862]—

~osc 0.0

—1.25( —1.25)

0.51(0.51)
—1.54( —1.54)

0.21(0.21)
—1.01(—1.01)

0(0)

0.2

—0.86(—0.55)

0.11(0.31)
—0.53(—0.45)

0.13(0.17)
—1.03(—0.86)

—0.11(0.28)

0.4

—0.56(—0.14)

0.04 (0.29)

—o.as( —o.23)

0.08(G.15)
—1.14(—0.54)

—o.s6(o.2s)

0.6

—0.40(0.01)

0.02(0.26)

—0.24 (—0.14)

0.06(0.15)
—1.40( —0.28)

—0.39(0.07)

[541]-', m [512]-

[s41]-,'-+ [s23]-,'
[S12]-,'-+ [523] -,

'
[s23]-,'~ [s2s]-,'
[761]—,

' —+ [732] —',

[761]-', -+ [743] -,
'

0.60(0.60)

0(0)
—1.47(—1.47)

o(o)

o(o)

0(0)

0.14(0.39)
—0.40(—0.34)

—0.55 (—0.44)

1.54(1.46)
—0.37(—0.05)
—0.16(0.18)

0.04(0.35)
—0.24( —G.27)

—0.35(—0.22)

1.71(1.53)
—0.23(—0.05)
—0.33 (0.04)

0.02 (0.30)

—0.14(—0.24)

—0.25(—0.12)

1.79(1.55)

—0.09(0.00)
—0.28(—0.07)
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and [880]—. We see the effect of the unique-parity con-
tribution becomes important according with increasing
deformation even for [523] 2 and [642] 2 levels which are
not the members of N, h ——8. These matrix elements
in Table V do not correspond to the transitions linking
the signature partners except for the diagonal matrix el-
ement in [880]2. We will publish the realistic calculation
on the linking transitions between the signature partners
of Hg in the future.

It is seen from the tables that the effect of the
unique-parity level becomes very important when su-
perdeformed. The states, for which the pseudo-spin
states dominate at small deformation, are much afFected
by the contribution from the unique-parity level, while
the states for which the unique parity states dominate at
small deformation get a non-negligible contribution from
the pseudo-spin states. This means the M1 transition
probabilities, which are proportional to the squares of
transition matrix elements, are very much affected by the
mixing of unique parity states and pseudo-spin states.

Another di8'erence between the present real-spin mech-
anism and the pseudo-spin mechanism in the explanation
of the quantization of alignment at superdeformation is
that the real-spin mechanism has both the same parity
and the diferent parity states degenerate, because of the
relation N, h ——2N —n, while the pseudo-spin mecha-
nism has only states with the same parity degenerate.
Thus, if two particles are occupying two almost degener-
ate difFerent parity levels, total alignment can take 0 or 1
and total parity can be either + or —.The M1 transition
is allowed between the excited superdeformed bands with
the same parity levels, while an El transition is allowed
between the two excited superdeformed bands with the
diferent parity. If one particle is inserted in these de-
generate levels, again + and —parity excited bands are
possible with an alignment of 2. The twin bands and
also the incremental alignment [1] may come from this
mechanism. Once the transition between the excited su-
performed bands is observed, we can distinguish which is
the case. In the case of pseudo-spin, only the same par-
ity excited bands are allowed, and only an M1 transition
between them is allowed. Even when this is the case,
we emphasize that the M1 matrix elements are greatly
modified by the mixture of unique-parity levels.

V. CONCLUSION

We show the following conclusions from the numerical
analyses based on the realistic calculation in Secs. II, III,
and IV. Not only the P-D levels, but also some levels be-
longing to the same N, h are well approximated around
the superdeformed limit by the asymptotic wave func-
tions. Although the expectation values of the spin-orbit

interaction by the unique-parity partner of the P-D lev-
els do not converge suKciently to the asymptotic values,
their L-S coupled spherical wave function components
become more than 85+0 of the total. We find that this
is due to the nature of the large quadrupole deformed
field SY2p. Since the N, h = 6(7) for the proton shell
and 7(8) for the neutron shell, including the P Dle-vels,
are located near the fermi surface of is2Dy (is2Hg), i.e. ,

reference systems in the discussion of the quantization of
alignment, we can use real spin "8" instead of the pseudo-
spin "8" at superdeformation because of the restored L-S
coupling scheme. Among all the levels belonging to the
N, h, the P-D levels are the best candidates to explain
the quantization of alignment. As both positive and neg-
ative parity levels are degenerate in the P-D levels, two
particles excited from the reference system into such P-D
levels will produce one or zero aligned bands with both
parities. This mechanism should explain the existence of
twin bands.

It should be pointed out that the real-spin mechanism
works only in the superdeformed limit, as it is related
with the shell structure. On the other hand, the pseudo-
spin works at any deformation. Therefore the quantiza-
tion of alignment observed for normal deformation [2]
cannot be explained by this real-spin mechanism and
may be explained in the frame of pseudo-spin mecha-
nism or some other theory. As for the quantization of
alignment for A 130 [3] at b „0.375, we obtain
the same conclusion as for A 150, if the rotational
frequency for A 130 is as small as for A 150. How-
ever, the rotational frequency is very large in this region,
0.9 & hu, t & 0.5. It is very diKcult to see how the L-S
coupling or pseudo L-S coupling can still work in such
a high rotational &equency. This is still an open prob-
lem for future discussion. Next the pseudo-spin mecha-
nism uses only the degeneracy of the same parity levels,
while the real-spin mechanism uses the degeneracy of the
difFerent parity levels. Thus, the excited superdeformed
bands can have both possibilities of + and —parities.
The transition connecting these excited superdeformed
bands can be either E1 or M1 and E2 transitions. On
the other hand, if the pseudo-spin mechanism is respon-
sible for the identical bands, both bands have the same
parity and only Ml and E2 transitions can occur. Fi-
nally, it should be pointed out that the unique-parity
level must be separately discussed in the pseudo-spin for-
malism, while the real-spin mechanism can take into ac-
count both the unique-parity states and the pseudo-spin
states on the equal footing. We calculate the e8'ect of
unique-parity components on Ml transition rates and
find that they become very important with increasing
deformation.

The authors express their sincere thanks to Prof. B.
R. Barrett for his careful reading of this manuscript.
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