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Spectral function for finite nuclei in the local-density approximation
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The spectral function for finite nuclei is computed within the framework of the local-density
approximation, starting from nuclear matter spectral functions obtained with a realistic nucleon-
nucleon interaction. The spectral function is decomposed into a single-particle part and a "corre-
lated" part; the latter is treated in the local-density approximation. As an application momentum
distributions, quasiparticle strengths and overlap functions for valence hole states, and the light-cone
momentum distribution in finite nuclei are computed.

PACS number(s): 24.10.Cn, 21.60.—n, 21.10.Jx

I. INTRODUCTION

All information on the single-particle structure of nu-
clei is contained in the spectral function S(k, E), where k
and E are the momentum and the removal energy of the
nucleon, respectively. This quantity plays a central role
in a variety of high-energy nuclear reactions, such as in
(inclusive and exclusive) quasifree electron scattering and
deep-inelastic lepton scattering on nuclei. With presently
available many-body techrnques (method of correlated
basis functions) it can be computed quite accurately for
nuclear matter starting &om a realistic nucleon-nucleon
interaction [1]. On the other hand, for finite nuclei with
A ) 4 it is much more diKcult to calculate the spectral
function without making severe approximations.

In this paper we compute the spectral function for G-

nite nuclei in the local-density approximation (LDA). To
this end the spectral function is decomposed in terms of
a single-particle contribution and a correlation part. The
former part, which varies strongly with mass number, is
represented by the generalized mean Geld approximation;
the latter which is rather insensitive to the finite size of
nuclei is treated in the LDA. As an input the results for
the nuclear matter spectral function, computed as a func-
tion of the density by Fabrocini et al. [2,3], are used. In
order to get an idea about the sensitivity to the details of
the high-momentum components, we also use as an input
a simple parametrization of the momentum distribution
in nuclear matter given by Baldo et al [4]. .

Several applications are considered. First, by integrat-
ing over the removal energy, momentum distributions for
finite nuclei with closed shells are computed. Next we
consider three different aspects of the spectral function:
(1) the quasiparticle strength for valence hole states and
the radial shape of the overlap functions which have been
measured in (e, e'p) reactions in several closed shell nu-
clei, (2) the distribution of single-particle (SP) strength
at large removal energies where there is an important
enhancement of the high-momentum components in the
spectral function, and (3) finally, the light-cone momen-

turn distribution, which plays a central role in the con-
volution approach to the EMC effect in deep-inelastic
scattering on nuclei is computed.

This paper is organized as follows. In Sec. II the I DA
to the spectral function is described; Sec. III deals with
various applications; Sec. IV contains a summary and
discussion.

II. THE SPECTRAL FUNCTION
IN THE LOCAL-DENSITY APPROXIMATION

Usually the spectral function for a Gnite system is ex-
pressed in terms of a (truncated) single-particle basis
S p(E) = (Olct b(E —H + Eo)cpl0). Since we are in-
terested in the effects induced by (short-range) nucleon-
nucleon correlations on the spectral function, we wish to
be independent of the choice and size of the SP basis
and use the coordinate representation.

For a finite nucleus the hole spectral function can be
expressed as

sA(R, r, E) = (0(A) lc'(r~)~(E —II + Eo(~))c(»)10(A))

(1)

with R =
2 (rg + r2) and r = rg —r2.

The spectral function (1) is normalized to the number
of particles

&F(w)

dE S~(R, r = 0, E) = A. (2)

S~(K, k, E) = 1

27r 3 dre '"'SA(K, r, E).

We use the convention ty(g): (Eo(g+]) —Ep(g ]))/2 for
the Fermi energy in a Gnite system.

In order to make the connection to nuclear matter, it
is useful to introduce the Fourier transform with respect
to the relative distance r:
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The rhs of Eq. (3) can be interpreted as the spectral
function for a nucleon at position R with momentum k
[2,3]. In particular the momentum distribution in the
ground state of a nucleus with mass A is given by

n~(k) = f dR dan~(R, k, E).
~F(A)

For our purpose of making a LDA, it is necessary to
decompose the spectral function and momentum distri-
bution into a (generalized) single-J)article part and a cor
relation part. The reason for this can be seen if one con-
siders the global application of the LDA to the (special)
case of the momentum distribution

ticle orbitals Pz. As for deviations from the mean-field
approximation, it is convenient to distinguish the follow-
ing two dynamical efFects of the residual interaction.

(i) Depletion and fragmentation of the hole strength.
Nucleon-nucleon correlations lead to both depletion and
fragmentation of the single hole strength in Eq. (9).
We assume that this depletion and fragmentation of
the strength related to the hole orbital h only depend
on the single-hole energy, ep, they are taken equal to
the depletion and fragmentation of the spectral function
S„(p,k, E) in nuclear matter at the local density. Can-
sequently the b function in the single-particle part of the
correlated spectral function in Eq. (9) is replaced by the
distribution function

n~~D~(k) = dR v(p(R), k),
1

(5) b(E + eh) m S„(p(R),k(eh), E). (10)

n~(k) = n~ "(k) + f dRdv&(p(B), k)

dR bv) (p(R), k)
1

27r3
(6)

with

1
n& (k) = dRdre ' 'n& (R, r),

bv&(p, k) = (v(p, k) —1)8(kp —k),
bv) (p, k) = v(p, k)0(k —kp),

and the mean-field density given by the sum over the
occupied orbitals

nA (R r) ) nh (R r) ) ~h(ri)4'h(r2) (8)
h=1

A similar divergence problem, which occurs if the LDA
is applied to the full spectral function, can be treated in
an analogous way. In this case there are several ways to
decompose S in difFerent parts. Let us Grst consider only
the mean-field part of the interaction felt by a nucleon in
the nucleus, in which case the spectral function has the
simple form

A

S„"(R, , E) = ) M'(R, )b(E+.„).

where v(p, k) is the momentum density for nuclear mat-
ter at density p and with Fermi momentum kz(p)
(2~2p)i)'s. As noted in [5], Eq. (5) is divergent in the
limit k —+ 0. This problem can be circumvented by de-
composing the momentum distribution into a mean-field
part and a correlation part generated by dynamical ex-
citations. While the former part can be calculated using
modern mean-field theories such as density dependent
Hartree-Fock, the latter part can then be approximated
by applying the LDA to the correlation part of v(p, k)
only, i.e.,

This ensures a realistic behavior of the strength distri-
bution at large removal energies; it is well known that
Lorentzian distributions become inadequate away from
the quasiparticle peak and cannot be used for the evalu-
ation of, e.g. , mean removal energies. The momentum
k(eh) ( k~ corresponding to eh is chosen in such a
way that the SP energy (relative to the Fermi energy)
e~~~~ —ep corresponds to the position of the quasihole
peak in the nuclear matter spectral function. For the
most deeply bound hole orbitals it may happen that the
Sp energy e~~~~ —ep lies above the quasihole spectrum
for nuclear matter at small density, so no correspond-
ing momentum k(eh) can be found. In this case we as-
signed momentum k(eh) = 0 to the hole state. It should
be mentioned that the contribution of the most deeply
bound orbitals to the spectral function is quite insen-
sitive to the nuclear matter results at small densities,
since these orbitals are almost exclusively localized in
the large-density (interior) region of the nucleus; e.g. ,

90%%up of the lsl/2 orbital in isO lies at densities p/po )
0.25, with po

——0.16 fm the nuclear matter density at
equilibrium. The fact that the finite volume of the nu-
cleus imposes discrete energies and bound single-particle
wave functions Ph (of well-defined angular momentum)
is taken into account by keeping the mean-field density
nh (R, r) in Eq. (9). The single-particle part is domi-
nated by the mean field, and the k dependence is mainly
determined by the hole orbitals.

(ii) Partial occupancy of the normally empty states.
The scattering of' nucleon-nucleon pairs into states above
the Fermi momentum leads to both a depletion of the oc-
cupied Fermi sea and to the presence of high-momentum
components in the spectral function at large removal en-
ergies. Since this efFect is expected to depend only weakly
on the shape of the orbitals P„ in the finite nucleus, the
correlation part of S~ is taken equal to the spectral func-
tion in nuclear matter for k ) k~ at the local density
p(R):

S~'(R, k, E) = S„(p(R),k, E)8(k —k~(R)). (11)

In addition to the hole orbitals appearing in Eqs. (8) and

(9), the mean field also defines the normally empty par-

We emphasize again that this prescription cannot be ex-
tended to the whole spectral function (k ( k~), since
an integration over K would lead to a singular result for
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S~(R, k, E) = S~ (R, k, E) + S~ '(R, k, E) (12)

with

S~ (R, k, E) = ) n„(R,k) S„(p(B),k(ep, ), E) (13)

and S& '(R, k, E) given by Eq. (11).

III. APPLICATIONS

A. Nuclear matter input

For the nuclear matter spectral functions we used the
results obtained by Fabrocini et al. [2,3] for densities
p/pp —0.25, 0.5, 0.75, and 1.0. The spectral functions
were calculated with correlated basis function (CBF) the-
ory using the Urbana v&4 nucleon-nucleon (NN) interac-

the momentum distribution at k = 0 [see Eq. (5)]. The
separation of the spectral function into a single-particle
part and a correlation part is thus quite natural, as the
low-momentum part of the spectral function depends cru-
cially on the finiteness of the system.

In summary, we use the following decomposition of the
hole spectral function:

tion with addition of a three-nucleon force [6]. The cal-
culations involve a variational determination of the cor-
related ground state and of the 1h, and 2h, lp states. Fur-
thermore, perturbative corrections (2p2h) to the ground
state and (2hlp) to the lh states are added.

As noted in Ref. [3] a peculiar feature of the nuclear
matter results is that the momentum density does not
approach the noninteracting one in the limit of zero den-
sity. For example, one finds a rather constant depletion,
e.g. , v(p, k = 0) = 0.86, 0.87, 0.86 for p = po, 4 pc, and

2 po, respectively, and similar results for the discontinuity
Z(p) of v(p, k) at the Fermi surface. This behavior can
be attributed to the fact that in the variational approach
the attraction of the NN interaction leads to bound pairs
and thus to clustering for low densities. One may argue
that this effect is an artifact of the variational approach
and is not a realistic density dependence to be used in
the LDA for finite nuclei. Therefore, we assumed that
h'v(p, k) ~ 0 for p ~ 0 by a smooth extrapolation to
zero for densities lower than 4po. One should note that
the final results are quite insensitive to this procedure
because the weight of small p values is quite small.

To investigate the sensitivity to the nuclear matter in-
put, it is of interest to compare the results with those for
simple parametrizations of the nuclear matter momen-
tum distribution as a function of the density. Here we
use the parametrization recently given by Baldo et al.
[41:

' —0.21 —0.13K —0.19(l —K) ln(1 —K), v. & 1

gv(p k) —t 0.21 + 0.3 arctan x + 0.82x ln x, 1 & K & 2, k & 2 fm

&~ exp (—1.6k), 2 & k & 4.5 fm

(14)

where x = (K —1)/(K + 1) and. K = k/kF. This is an
approximate parametrization valid for kF & 1 fm, in
the sense that for k & 2 fm the result depends on
K only. Since we require that hv(p, k) —+ 0 for lower
densities, we multiplied the above expression for 8v(p, k)
with k+ for kF & 1 fm . We also properly renormalized
the momentum distribution for all densities considered.
The parametrization of Eq. (14) provided a good fit to
nuclear matter momentum distributions with 1 & k~ &
1.75 fm calculated to second order in the Brueckner
reaction matrix and using a separable representation of
the Paris interaction.

In Fig. 1 we compare v(k) from the two prescriptions
for nuclear matter at two densities. Note that the former
has a higher depletion and somewhat stronger correla-
tions.

This is also reflected in Table I, where we list the ki-
netic energies obtained with the spectral functions of [2]
and with the parametrization in [4], as a function of the
Fermi momentum in nuclear Inatter. For the kinetic en-
ergies obtained with the spectral functions of [2] we as-
sumed an exponential extrapolation of the momentum
distribution for large momenta. We note that the total
kinetic energy in the interacting system is roughly twice
the &ee value given by Tf,

10

FabI ocini et al;

10
Baldo et al.

'] 0

10

10

10 I I I I I I I

0.0 0.5 1.0 '].5 2.0 2.5 3.0 3.5 4.0

k [frn ']

FIG. 1. Nuclear matter momentum distributions (normal-
ized to —zk~) at densities p/po = 0.5 and 1, according to the
spectral function of Fabrocini et aL [2,3] (solid line) and with
the parametrization of Baldo et al. (dashed line).
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k~ (fm ')
Tfree

Baldo
Fabro cini

1.13
15.88
37.62
33.25

1.23
18.82
42.93
36.99

1.33
22.00
48.31
40.77

B. Momentum distxibutions in Bnite nuclei

The momentum distributions for finite nuclei are com-
puted by integrating Eq. (12) over B and E,

n~(k) = n~ (k) + dR) n„(R,k)8v((p(A), k(eg))

dMv) (p(B), k),

for the spherical closed-shell nuclei with A =16, 40, 48,
90, and 208. We checked that the normalization (2) was
in all cases fulfilled to better than l%%uo. The mean-field
densities were taken from [7]. For comparison we also
used the more conventional form of the LDA of Eq. (6)
for the momentum density. The two expressions [Eq. (6)
and Eq. (15)] difFer in the second term, which repre-
sents the depletion of the mean-field momentum distri-

TABLE I. Kinetic energy [MeV] per particle as a function
of Fermi momentum in nuclear matter, calculated with the
momentum density from Baldo et al. [4], and from Fabrocini
et aL [2,3].

bution at small momenta. In Fig. 2 the resulting momen-
tum densities are compared for 16Q and 208Pb. As ex-
pected, the high-momentum components (k ) 1.6 fm )
are identical for both cases. In the intermediate range
(1fm ( k ( 1.6fm ), the conventional LDA gives
rise to a kink in the momentum distribution. The kink is
due to the second term in Eq. (6), which (with k& „ the
Fermi momentum corresponding to the largest density in
the nucleus) has a very steep behavior for k ~+ k~ „and
is strictly zero for k ) k~ „.This unphysical feature is
removed in the present approach, since the second term
in Eq. (15) has a smooth behavior for all k. The present
treatment also predicts for 0 somewhat larger n~(k)
for k 0 than the conventional LDA, because Eq. (15)
takes into account that the reduction of the mean-field
distribution for k —0 comes only from the depletion of
the lsl j2 (l = 0) orbitals, which are deeply bound and
therefore less depleted than the 1p orbitals. The con-
ventional LDA, on the other hand, can only take into
account an average depletion. For ~ 0 we also included
in Fig. 2 the result of a variational Monte Carlo calcula-
tion by Pieper et al. [8]. As was noted in [3], there is good
agreement up to k = 2 fm between the LDA and the
VMC approach. For A: ) 2 fm the difference can proba-
bly be ascribed to the fact that the VMC calculation was
carried out using the Argonne NN interaction, which has
a stronger tensor force than the Urbana interaction [8].

In Fig. 3 the LDA result for the A dependence of the
momentum density is shown. Although with increasing
A there is a clear tendency towards the nuclear matter
momentum density, finite-size effects are seen to remain
important (even for Pb), especially at small k.

10

808p b

10

—310

l0

J I . - I I

00 05 10 15 20 25 30 35 40 00 05
k [fm-']

I I I I I

1.5 2.0 2.5 3.0 3.5 4.0
k [fm-']

FIG. 2. Momentum density (normalized to unity) in 0 and Pb. Short-dashed line: mean-field result. Solid line: present
LDA treatment. Long-dashed line: conventional LDA. The dots in the 0 plot were taken from [8].
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FIG. 3. Momentum density (normalized to unity) for finite
nuclei (dashed lines) and nuclear matter at equilbrium density
(full line), calculated in the present LDA treatment, with the
nuclear matter input taken from [2,3].

sity by Baldo et al. leads also in 6nite nuclei to siz-
ably larger KT. The mean removal energies (E) in Ta-
ble II were calculated using the mean-field (9) and cor-
related spectral function (12), and have been corrected
for the mean-field rearrangement energy. The inclusion
of nucleon-nucleon correlations increases (E), from 33
MeV in the mean-field approximation to about 55 MeV.
Note that the eÃects of the Coulomb interaction and the
proton-neutron asymmetry are only taken into account
via the mean-field single-particle energies. For complete-
ness we have also compared in Table II the experimental
binding energies per particle EA/A with the binding en-
ergies following from the Koltun sum rule

1 t'A —2
E~/A = —

I
T —(E) I, (16)

r2 qA —1

which is valid if only two-body forces are present. We
find about 2.4 MeV too much binding. This discrepancy
is not too worrisome since we neglected the eKect of three-
body forces, and (part of) the Coulomb interaction and
proton-neutron asymmetry efFects.

C. Spectroscopic factor and radial shape
of the quasihole wave functions

The LDA. approach

The resulting A dependence of the kinetic energy T,
b.T = T —TMF, and the mean removal energy (E)
are given in Table II. It is seen that both the MF and
the correlation part of the kinetic energy amount to ap-
proximately 17 MeV, and increase with A. The di8'er-
ence between LT in the present approach and in the
conventional LDA is small (at most 3%), whereas the
parametrization of the nuclear matter momentum den-

Of special interest is the spectral function for the least
bound orbitals just below the Fermi energy. For val-
ues of the removal energy near the Fermi energy e~ the
nuclear matter spectral function vanishes except for mo-
menta slightly below k~. As a consequence the corre-
lation part S&' in Eq. (11) vanishes and the spectral
function in LDA can be expressed as

S~(R, E = e~(A) ) = ) pt*, (R)pt, (R)Z(p(B) )8(E + et, ).

A.
TMF

AT
AT
AT

(E)MF

(E)
E~ /A

E~ /A(expt. )

16
15.4
16.3
15.8
18.5
30.4
50.4
—10.6
—8.0

40
16.5
16.9
16.5
20.1
33.2
54.0
—11.0
—48.6

48
17.7
17.0
16.7
20.7
34.8
55.9
—11.1
—8.7

90
17.9
17.3
17.0
21.4
35.1
56.5
—11.0
—8.7

208
18.6
17.5
17.3
22.2
34.2
56.6
—10.5
—?.9

See caption.
See caption.

'See caption.

TABLE II. The A dependence of kinetic and mean removal
energies [MeV] per particle. T and (E) refer to the
mean-field approximation. AT and AT were calculated
with the nuclear matter input from Fabrocini et al. [2,3], using
the present model for the spectral function and the conven-
tional LDA, respectively. For AT the nuclear matter input
from Baldo et al. [4] was used, in the conventional LDA. The
mean removal energy (E) was calculated with the present
LDA for the spectral function and includes the mean-field re-
arrangement energy. EA/A is the binding energy per particle,
calculated using the Koltun sumrule with (E) and T .

(17)

By comparing Eq. (17) with the general form of the spec-
tral function for the top shells in the (A —1) nucleus

S~(R E) = ).1(&~ 'lc'(R)14~)l'~(E+ «)
h

= ).I&~(R) I'~(E + «)

one sees that in the LDA the overlap functions gh (R) for
the low-lying quasiparticle states can be expressed as

&3 "(R) = v Z(p(&))&~(R).

This result (18) has the correct asymptotic behavior of
the overlap function, which is determined by the sepa-
ration energy of each orbital [9]. It has also been noted
that for the case of droplets of sHe atoms, Eq. (18) in-
deed provides a good approximation to the exact overlap
functions [10].

Recent (e, e'p) and (p, p) experiments (after correction
for MEC) have probed the spectral function for the top
shells at large missing momenta. Therefore it is of inter-
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m*(R) ml, (R) m@(R)
m m

(20)

Since we assume that the nonlocality (giving rise to my)
is already included in the Skyrme Hartree-Fock wave
functions and that all volume contributions to m~ are
already incorporated in the LDA, we only take into ac-
count explicitly the surface peaked E mass rn~(R)/m =
(1+Pgdg/dR). Here the central part of the mean-field
potential g(R) and the parameter Ps, which re8ects the
coupling strength of the surface modes to the SP states,
were taken from [16]. We find that he resulting overlap
function gh (R), which includes the efFect of surface vi-
brations, can in good approximation be expressed by an
extra modulation factor in Eq. (18)

SP states which, in contrast to the hole mean-field wave
functions, do have sizable components in the momentum
range 1.5 ( A: ( 2.5 fm

Following Refs. [15,16] we have included the efFect
of surface vibrations on the overlap functions in Pb
through the energy dependence of the mean field. In
general both the nonlocality and the genuine energy de-
pendence can be included by the introduction of a total
efFective mass m*(R) as the product of a k mass (mI, )
and an E mass (m@)

turn distributions generated by Eq. (21) are enhanced
compared to overlap functions without surface eKects,
by a factor of 10—100 for momenta in the range 1.5 (
k ( 2.5 fm . There is indeed recent evidence from
an (e, e'p) experiment on Pb [14] for a systematic en-
hancement of the momentum distribution in this range,
as compared to mean-field valence hole wave functions.
However, in a detailed analysis of the experimental data
it should be taken into account that the inclusion of sur-
face eKects through a surface-peaked modulation factor
changes, e.g. , the rms radius of the overlap function, as
well as the momentum distribution at smaller momenta.

The extra reduction Z of the quasiparticle strength
that results from the coupling to surface vibrations can be
calculated from the expectation value of [m@(R)/m]
with respect to the overlap function @h . For the total
quasiparticle strength Z = Z Z, we obtain an av-
erage of Z = 0.50 for the valence hole shells in Pb.
This result is similar to the one obtained in [17], but is
0.15 lower than the data in [11].This is probably due to
double counting when adding the surface eKects to the
nuclear matter results.

D. Global distribution of single-particle strength

ysv (R) V'Z(&(R)) ph (R). (21)
The energy distribution of total proton hole strength

S~(E) = dkS~(k, E) (22)

We have checked, e.g. , that for the valence proton SP
states in Pb the quasiparticle wave functions in [16] are
well approximated by the standard Woods-Saxon wave
functions multiplied by the effective mass according to
(21), although the surface peaking is somewhat overesti-
mated. We note that this prescription was also proposed
in Ref. [14].

Figure 6 shows that in momentum space the momen-

is shown in Fig. 7 for Pb, split in SP and correlation
parts. The SP part is dominant up to 50 MeV removal
energy. It represents the quasihole strength correspond-
ing to knockout from the various proton hole shells. Be-
yond the energy region of the quasihole excitations the
SP part of the strength dies out quickly, and the corre-
lation part of the strength, which extends to very high

10
110
010
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—210
—310
—410
—510
—610
—710

10
—910

10
—1110

10
10
10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k [fm-']

10

10

Q)

—310

10
25 50

208 p b

r
1

75 '100 'l25 150 175 200
V. [MeV]

FIG. 6. Overlap function (normalized to unity) in q space
for valence proton hole states in Pb. Short-dashed line:
mean-6eld approximation. Solid line: including correlations
in the LDA according to Eq. (18). Solid line with dots: in-
cluding additional surface eifects according to Eq. (21).

FIG. 7. Proton spectral function for Pb, integrated over
all momenta, as a function of removal energy. Short-dashed
line: single-particle part. Long-dashed line: correlation part.
Solid line: total.
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where the factor y represents the Aux factor. For values
of x ( 0.6 one does not need the full spectral function
S~(k, E), and it is sufficient to expand I"2 (x/y) around
y=1

+2(~/y) = +2(*) —(y —1)&+2(&)

+2 (y —1)'[»+2(*)+ *'+. (*)1 (24)

and therefore only the lowest moments of f (y) are
2

needed. The lowest moments of f(y) (up to order —', )
can easily be expressed in terms of T and (E)

where the nuclear structure information is contained in
the light-cone momentum distribution

FIG. 8. Proton spectral function for Pb, integrated over
various regions (0—50, 50—100, 100—150, and 150—200 MeV) of
removal energy, as a function of momentum.

with the result

removal energies, becomes dominant.
Also of interest is the difference in the momentum dis-

tribution between small and large values of the removal
energy. Figure 8 clearly illustrates that high-momentum
components are correlated with large removal energies, as
was also pointed out in [12,13]. Qualitatively this is eas-
ily understood, since in order to remove a nucleon with
high-momentum in the ground state one has to break a
correlated pair. The remaining nucleon in the pair has
roughly opposite momentum, its kinetic energy leading
to high excitation energies in the residual system.

Comparing with the results quoted in [12,13] it ap-
pears that our LDA study predicts a larger amount of
high-momentum components, e.g. , when integrating the

0 spectral function up to 100 MeV removal energy we
find at k = 2.5 fm about 1.2 x 10 fm, to be com-
pared with 3.2 x 10 fm in [13]. A similar observation
holds for the total momentum distribution. A more ex-
tensive comparison should be made in order to determine
whether these discrepancies arise from differences in the
interaction or from shortcomings in either the LDA or in
the perturbation scheme used in [12,13].

+"(*)/& = +."(*)— *+ (*)+ *'+" (*).

In the earlier analysis of the EMC effect for finite nuclei
mostly the MF result has been used for (E) and T [19],
which can explain only 30% of the observed reduction at
intermediate 2:. The inclusion of correlations enhances
the effect in the ratio B~(x) = F2 (x)/AI"2 (x) by about
a factor 2, but still cannot fully explain the observed
EMC ratio as a function of x [20].

0.94

0.92

0.90
CO

II

0.88
lX

E. Light-cone momentum distribution
0.86

The light-cone momentum distribution plays a central
role in the description of high-energy reactions on nuclear
targets, such as deep-inelastic scattering. For example, in
the simple convolution approach (use of the impulse ap-
proximation, and neglecting ofF-shell effects) to the EMC
efFect the structure function I"2 (x) for the A-body target
can be expressed as [18]

0.84

0.82 I I I I I I I

10
I I I I I I I I

100

Target mass A

FIG. 9. Mass dependence of the EMC ratio B~(2:), for
x = 0.6. The SLAC data and best power law fit (long-dashed
line) were taken from [21]. Short-dashed line: best fit with the
parametrization in terms of a volume and surface contribution
(see text). Solid line: LDA prediction for this parametriza-
tion.
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It is also of interest; to examine whether the mass de-
pendence predicted by the convolution method agrees
with the observed one. To this end it is convenient
to parametrize the A dependence of T and (E) in
terms of a "volume" and a "surface" term, i.e. , T
T ~

—T,„,~A, and similarly for (E), hence R~(x) =
cq(x) + cq(x)A / . As an example, using the best fit
values to the LDA results for T ~ (=39.38 MeV) and
T,„,g (=18.87 MeV), and using the Koltun sum rule for
the mean removal energies, one finds for x = 0.60 that
B~(x) = 0.83 + 0.18A

Recently a new analysis of the A dependence of deep-
inelastic electron scattering at SLAC was presented [21].
In that analysis the EMC ratio for the range of A con-
sidered (2 ( A & 197) was parametrized as a power law:
B~(x) = C(x)A ( ) with C(x) —1.0; e.g. , at x = 0.60
the best fit is obtained for n(x) = —0.0346 + 0.002.
We note that this parametrization has a rather unphys-
ical limit for A ~ oo. If we use the more physical
parametrization above we obtain cq ——0.82, c2 ——0.23,
which gives an equally good fit to the data (see Fig. 9)
and moreover is in good agreement with our prediction.
This indicates that the observed A dependence of the
EMC eKect is consistent with a purely single nucleon ef-
fect. On the other hand if two-body effects would be
important a more general mass dependence would be ex-
pected.

elusive electron scattering at large q. The decomposition
of the spectral function in [2] is difFerent from ours; e.g. ,
at the variational level the SP part only contains the
direct g.s.—+ 16 contributions, whereas the g.s.~ 2h, lp
background contributions are part of the correlation part
for both A: ( k~ and k ) k~. On the other hand, in our
approach the correlation part contains the full nuclear
matter spectral function only for k ) k~, whereas the
background contribution for k ( k~ is incorporated in
the generalized single-particle part. However, the result-
ing momentum distributions for 0 from [2] and from
the present work are almost identical.

A point of uncertainty in the LDA treatment of nuclear
correlations is the extrapolation of the nuclear matter
spectral functions in the limit of zero density, but this is
expected to be of little inhuence on the Anal results.

We find that correlations lead to an appreciable de-
pletion of quasiparticle strength Z in nuclei; in r space
the valence overlap orbital is somewhat more reduced in
the interior than in the exterior region, but we find that
the momentum distribution of the valence orbit overlap
is hardly affected. This agrees with the conclusion in
Ref. [12]. However, surface efFects may lead, for inter-
mediate momenta, to a considerable enhancement of the
momentum distribution for valence hole states.
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