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Symmetric and asymmetric nuclear matter in the relativistic approach
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Symmetric and asymmetric nuclear mat ter is studied in the framework of the relativistic
Brueckner-Hartree-Fock and in the relativistic version of the so-called A approximation. The
equations are solved self-consistently in the full Dirac space, so avoiding the ambiguities in the
choice of the efFective scattering amplitude in matter. The calculations were performed for some
modern meson-exchange potentials constructed by Brockmann and Machleidt. In some cases we
used also the Groningen potentials. First, we examine the outcome for symmetric matter with
respect to other calculations, which restrict themselves to positive-energy states only. The main
part is devoted to the properties of asymmetric matter. In this case we obtain additionally to
the good agreement with the parameters of symmetric matter, also a quite satisfactory agreement
with the semiempirical macroscopic coeScients of asymmetric matter. Furthermore, we tested the
assumption of a quadratic dependence of the asymmetry energy for a large range of asymmetries.
Included is also the dependence of nucleon self-energies on density and neutron excess. For the
purpose of comparison we discuss further the similarities and di8'erences with relativistic Hartree
and Hartree-Fock calculations and nonrelativistic Skyrme calculations.

PACS number(s): 21.30.+y, 21.65.+f, 24.10.Cn, 24.10.3v

I. INTRODUCTION

The past decades have seen many successes in the ap-
plication of relativistic theories to the nuclear many-body
problem. Relativistic treatments have advantages in sev-
eral respects, as for instance [1,2]: An extremely use-
ful Dirac phenomenology for the description of nucleon-
nucleus scattering [3], the natural incorporation of the
spin-orbit force [1,2], the shift of the saturation curve
from the so-called "Coester band" towards the "experi-
mental" value [4] via a new saturation mechanism [1,2],
the successful description of finite nuclei [5—8] etc. Com-
prehensive surveys can be found, for instance, in Refs.
[1,2]. One of the primary challenges in every many-body
theory is to "understand" the properties of the system
in terms of the interactions between its constituents (so-
called parameter-f'ree theories). One basic attempt in this
direction is the relativistic treatment in Inany-body ap-
proximations with dynamical two-body correlations us-
ing modern one-boson exchange potentials (OBE poten-
tials) adjusted to the two-nucleon problem. One possibil-
ity in the case of nuclear physics to check the capability
of this attempt in a systematic manner is the calcula-
tion of the parameters of the Weizsacker —Bethe formula
(WBF). So far, one has concentrated on the symmetric
volume properties, which can be calculated in the ideal-
ized system of symmetric infinite nulcear matter (INM).
In this respect the results are quite encouraging [1,2,4],
[9—14]. Systematic theoretical studies of asymmetric nu-
clear matter (AINM; K P Z) in this framework, which
would test the asymmetric volume parameters of the
WBF are, to our knowledge, rare [15—18], and it is the
main purpose of this investigation to calculate the prop-
erties of AINM as a further step in the described philoso-
phy. Furthermore, one should emphasize that equations

of state of asymmetric matter (AEOS) are essential in-
gredients in star models [19,20] and heavy-ion studies
[21].

The first relativistic approach in this framework for cal-
culating INM has been suggested by the Brooklyn group
[9], who used a relativistic extension of the Brueckner-
Hartree —Fock theory (RBHF). In this pioneering work
of Shakin and co-workers [2,9] the problem was treated
in the full Dirac space, but the relativistic efFect in the
determination of the self-consistent basis was taken into
account in first-order perturbation theory only. For that
reason a comparison with other treatments is rather difB-
cult. The full self-consistency problem in the whole Dirac
space as proposed in Refs. [2,12,22] is a tedious problem,
and due to its complexity one has tried to avoid this pro-
cedure by invoking additional simplifying assumptions.
The standard method makes a nonunique ansatz for the
scattering matrix T in medium in terms of five Fermi
invariants [23] (for instance, in Refs. [12,14] the pseu-
doscalar invariant is replaced by the pseudovector invari-
ant) and obtains the solution in the c.v. frame only for
positive-energy spinors. Once a specific fixed value of the
so-called Dirac mass m is chosen and Lorentz boosting
mixes only positive-energy helicity spinors among them-
selves one determines only positive-energy matrix ele-
ments in the nuclear matter frame. The consequence of
this procedure is that the full matrix structure of T, and
hence of the self-energy Z, is not uniquely determined.
Et can be shown that the results for Z depend on the
chosen decomposition [24]. An even simpler method was
suggested by Brockmann and Machleidt, who avoid this
procedure by making the assumption that the scalar and
timelike parts of Z (denoted Z, and Zo) are momentum
independent. From the expression of the positive-energy
matrix elements of Z in the nuclear matter frame in terms
of Z, and Zo they deduce then in a fit the values for Z,
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and Kp [4]. Both approaches have been discussed and
criticized in full detail in Ref. [22] with the conclusion
that a calculation in the full Dirac space, as originally
proposed in Ref. [9], seems to be necessary, since all cal-
culations with restriction to positive energy-matrix ele-
ments of T lead to ambiguities. Taking these objections
into account and in order to clarify the situation we have
calculated the properties of INM and AINM for modern
OBE potentials in the full Dirac space, and taking the
energy-momentum dependence into account. (A draw-
back of Refs. [9,11,12] is the use of OBE potentials, which
are nowadays not considered to be the best choice [24].)
With respect to this point we would like to stress that
in the case of generalized chemical equilibrium, which is
applicable, for instance, in neutron stars, one needs the
chemical potential at the Fermi surface for a large den-
sity range, and therefore the momentum dependence of
the self-energy can be more important than in the case
of averaged nuclear properties at saturation [20,25].

As a suitable tool for the treatment we employ the
Green s function technique, which is described in great
detail in Refs. [12,26,27]. The arrangement of this paper
is as follows. In Sec. II we briefly review the relativis-
tic meson-field dynamics in the Green's function theory
treated in many-body approximation schemes with dy-
namical two-body correlations. The results with discus-
sion are given in Sec. III with special emphasis on the

outcome for asymmetric matter. Finally in Sec. IV we
summarize our conclusions and our outlook for further
improvement and applications of the current work.

II. GENERAL THEORY

Since the general theory is outlined in greater detail in
Ref. [12] (we refer to equations in Ref. [12] as I.l.l etc. ),
we shall only repeat the essential structure of the general
scheme and concentrate mainly on some changes due to
the asymmetry of the problem.

The dynamics of the system is governed by a La-
grangian density [see equations (I.2.1)—(2.13)]

L = Lx+) (LM+~MN) .
M

(2.1)

The three terms describe the noninteracting nucleons,
the difFerent free meson fields, and the interaction (inde-
pendent of B„g).From the fiel equations one obtains,
after elimination of the meson fields, a coupled system
of equations for the Green's functions [Gp —1; the la-
bel 1 denotes the time-space coordinates xz, xq and the
spin-isospin coordinate (i (ii, ni) etc. ; we employ the con-
vention to sum or to integrate over all doubly occurring
variables]

G„(1.. . n; 1'. . . n') = ) (—)'+'G, (1,j ')G„i (2. . .n, 1'. . .g'. . . n )
i=1
+i Gi(1, k)(kmlvlm'm")G„+i(2. . . nm'm", m+1'. . . n') (2.2)

with the definitions (5 = c = 1;p"—:iB"; leap) denotes the ground-state)

G-(1" 1'" ') = '"(&o
I &(@~,(* )".@~.(*-)A.(*'.)" &c, (*'))

l &o)

[Gi(» —*i)] ' = ( 8*+m)~'(* —*')—
(2.3)

(2.4)

and

(12
I

v
I

34) = ) (12lvMI34)
M

=), s'(*, —*,)s'(~, -*,)r, , r, , ~' (~, *.).
M

(2.5)

The Bee propagators L~ and the vertices I
& &

for the
difFerent meson fields (s, v, pv, ...) are given explicitly in
formulas (I.2.18)—(I.2.21) and (I.2.29)—(I.2.33).

The system resembles closely in its formal structure
the nonrelativistic case [26,27], and can therefore be de-
coupled in the same manner. A decoupling procedure
was given by Martin and Schwinger, who expressed the
system of equations (2.2) as a single functional equa-
tion. By an expansion in powers of the source terms
one can then incorporate two-body, three-body, and
higher correlations in a systematic manner. If one takes
only two-body correlations into account and invokes the

I

healing assumption [i.e. , terms as (12lvl34)G2(34, 1'2')
are included, but otherwise G2(12, 34) is replaced by
Gi(1, 3)Gi(2, 4) —Gi(1, 4)Gi(2, 3); for more details and
a comparison between the diferent approximations, see
Refs. [27,28]]; one obtains the so-called ladder-type ap-
proximations.

In this scheme one has to treat a coupled system of
the Dyson equation for the G function and the effective
scattering matrix T in matter

((Gi) (1, 2) —Z(1, 2) )Gi (2, 1') = b(1, 1'), (2.6)
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(12~T~1'2') = (12~i)~1'2' —2'1') —iA'~ (12, 34)

+(12~i)~34)&(34, 56) (56~T ~1'2'), (2.7)
'

G, (1,3)G, (2, 4),
2[Gi(1, 3)Gi(2, 4) + Gi(1, 3)Gi(2, 4)],
Gi(l, 3)Gi(2, 4)

(2.9)

where the self-energy is given by It turns out that a useful simplification of the treatment
can be achieved by utilizing the spectral representation
of the Fourier transformed G-function (see I.2.39):

~(1,2) = —i(14~T~52)Gi(5, 4) (2.8)
A(p, ~)

~ —(p' —u)(1+ in)
(2.iO)

The Hartree- or Hartree-Fock approximation is defined
by T = v and T = v~p, respectively. For the interme-
diate p-p propagator a standard choice is the Brueckner
propagator A~, but one can also use the so-called A ap-
proximations, defined as (A~ is simplified version of A
[i2,27])

since all the wanted quantities are determined by the
self-energy and the spectral function A alone.

In INM, the spectral function A (and similar G and E)
takes the form [p

= pj ~ p ~]

A = A, (w, p) + A„(ur,p)(p j) + A„((u,p)p . (2.11)

More explicitly, the final form of A is given by (I.2.58)

A(~ R = sgn[~i(p) —~0(pO = ~i(R p)]A" (R~(~+ ~ —~"(R)
+sgn[~2(P) ~0(PO ~2(p), R]A "b J~(~ + V

—~ "(p))

with the energy-momentum relation for particles (an-
tiparticles; i = p, ap):

~~'~ = Z, ~~'~ p, p + —'+' m+ Z. ~~'~ p, p '+ p +~. ~~'~ p, p
' '~'.

(2.12)

(2.13)

The particle part A" can be decomposed as follows [k:=
~ p ~; po —— w" (k); Z, (k) = 2, (po

—— cu" (k), k)
etc.]:

m+ E.(k)

I g. (k)
(2.i4)

Ap (k)
k + ~ss (k)

I g. (k) I

(2.i5)

with

~ i"l (k) —E„(k)
I g. (k) I

F(~):= [m+ K, (~, k)]'+ [k+ Z„(~,k)]' —[Zo((u, k) —ur]2

(2.i6)

(2.i7)

Since we use regularized interactions with form factors one can neglect the contributions arising from A " [4,12].
In AINM one has to distinguish between the proton and neutron parts of the self-energy and the G functions, and

one obtains, for instance, the following equations for the protons in an obvious notation (see I.3.27, 3.32):

[8 —~ —~"(»)]-,-.Gi(p)-.-, = —~-,-, (2.18)

s."-,-.(6 "~ s') =
s .( d's'~(l

I s
—si)(~its, ~'4 is'I T1~22s ~5', s')&'.., (s')

~'s's'(Is'I —s~)(~i2s ~4 ——,'s'I 7
I ~s2s, ~s —,'s )& (s')). —'".,,(2.i9)
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For the neutrons one gets similar equations. For the calculation of the six matrix elements of the self-energy one needs
18 T-matrix elements with respect to isospin. In the case of symmetric INM one gets along with a summation over
the isospin channels, but in the case of AINM one is forced, due to the diferent self-energies for p and n, to calculate
separately the T-matrix elements for the different isospin degrees (i.e., (pp

~

T
~ pp), (nn

~

T
~
nn), (pn

~

T
~
pn)),

which are determined via coupled integral equations. These features render the numerical procedure for AINM much
more complicated than for symmetric INM [29].

In both cases the main obstacle is the treatment in the full Dirac space, for which one needs a self-consistent basis,
which decouples the integral equations for the T matrix and makes the one-body propagator diagonal. This procedure
is described in detail in Secs. III C and IV A of Ref. [12].

In the self-consistent iteration procedure one starts, for instance, with the outcome of the HF treatment for Z
and determines in the first step the spectral functions A, the momentum densities n(p) (see I.3.50) and the energy-
momentum relations u(k). After solving the T-matrix equations one obtains via Eqs. (2.12)—(2.17) and (2.19) new
values for the self-energy, which can be used in the next iteration step. The connection between the matrix elements
in the self-consistent basis and the decomposition in Z„Z„,and Zo is given, for instance, for Z„by[P (0) denote the
positive (negative) energy helicity eigenspinors; for Zo, Z„,see (I.3.35)—(I.3.46) and [29]]:

(2.20)

With the final results, one can determine the energy and baryon density of AINM, given as (k:=~ p ~)

1
4vr3

d'p(0(k~ —k) (2 [m."A",(k) —kA„"]+ [Z", (p) A", (k) —E"„(p)A& (k) + Eg(p) A((k)] . ,(„)) + (p ++ n) j
(2.21)

, f d'u (0(k~~ —k) A~0(k) + (p m n) ) (2.22)

The chemical potentials for proton and neutrons de6ned by

p"" = ~""( "k'") = 2"'"((u"'"(k~"),k~") + [m+ 2",'"(a»"(k~"), k~")] + [k~" + 2"„'"((u&"(k~"),k~")] (2.23)

are more sensitive to the momentum dependence. Since
they are important for the determination of the P equi-
librium of hadronic matter in neutron stars, it is advan-
tageous to determine the full momentum dependence of
the self-energies [20,25]. By utilizing the definitions

K =9p'
i

, t'0'e)
k~p ) p=p...b=o

(2.27)

J denotes the bulk symmetry energy of the semiempirical
mass formula, which is equal to the symmetry energy

(2.24) 1 02e(p, h)
esym(p) '

gg2
(2.28)

(2.25)

one can express the energy per particle as a function of
the total baryon density p and the asymmetry b. The
mass formula reads as [pop denotes the equilibrium (sat-
uration) density of symmetric INM]

e(p, 8) = (a„+—K„e+ )
1 2

18

~ clesymI =3pi
P=Poo

(2.29)

at saturation density poo. I and Ksy~ are related to the
slope and curvature of the symmetry energy, respectively,
at density poo.

+~
~

J+ —«+ —&.y e + . ~, (2.26)
3 18 P=poo

(2.30)

where e:= (p —poo)/pop. K„is the compression modulus
of symmetric INM:

For small b one obtains the approximate formulas for the
equilibrium values
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(2.31)
~ ~ ~

I
~ ~ ~ I ~0

-5

e(p.„s)= a„+Jb' (2.32)
-10

III. RESULTS AND DISCUSSION -15

A. General remarks

For this investigation we have selected modern OBE
potentials constructed by Brockmann and Machleidt,
which have been widely used in more recent relativis-
tic treatments. They adjusted three difFerent potentials
to the two-nucleon data, denoted by A, B, and C, which
dier mainly by the strength of the tensor force increas-
ing from A to C. Since the tensor force determines the
location of the saturation point, it is advantageous for
the construction of the Coester band, to consider difer-
ent potentials, Since these potentials were not available
at the time of our first investigation, we have repeated
the calculations for these potentials for the case of sym-
metric INM, too. Furthermore, we used two OBE po-
tentials given by the Groningen group. As explained in
the Introduction and outlined in Sec. II, we perform the
calculations in the whole Dirac space and neither use the
assumption of expressing T in terms of five Fermi invari-
ants, as suggested by J.A. McNeil, J.R. Shephard, and
S. Wallace [23], which may lead, depending on the decom-
position, to difFerent results for the self-energy, nor use
the fitting procedure of Ref. [24], where one invokes the
assumptions of constant self-energies Z, and Zo(Z„=0)
in the system of equations for 2, which reads in full

generality as follows: [W(p):= m2(p) + k2; m. (p) =
m+ Z, (p); k = k+ Z„(p)]:

~~~(p) = ~ (p) + - ~.(p) + — ~o(p)
k(p) W(p)
mp mp

(p) = -~.(p) + ~-(p) + — ~o(p) (3.2)
k(p) W(p)
mp mp

~s~(p) = — ~.(p) + — ~o(p)
W(p) k(p)
mp mp

and determines the constant Z, and Zo via a fit proce-
dure from the positive energy spinor matrix elements of
Zyy alone. For these reasons it is diKcult to compare
the results directly. However, in order to obtain some
similarity with the Brockmann procedure, we tried also
a simplified version, denoted by RBHF~ &, in which we
use an iteration procedure, where we always replace in
the iteration the momentum dependent self-energies by
the momentum averaged self-energies. Self-consistency in
this case is obtained, if the averaged self-energies stays
constant. This method is by far less time consuming than
the iteration procedure, in which the full momentum de-
pendence is taken into account (RBHF(i)).

-2 0 ~ t ~ I I ~ ~ I ~

0.2 0.4 0.6

Fermi

0.8 1 1.2 1.4 1.6 1.8

momentum (fm ")

FIG. 1. Binding energy per nucleon versus Fermi momen-
tum for symmetric INM in RBHF for the Brockmann po-
tentials A and C. The solid (dashed) curves correspond to
the treatment with (averaged) momentum dependency of the
self-energies. The square indicates the empirical range.

B. Symmetric infinite nuclear matter

TABLE I. Saturation properties of symmetric INM for
diferent approximations for the three Brockmann poten-
tials A, B, C [4]: RBHF (full basis; momentum depen-
dent self-energy), RBHF (full basis; momentum-averaged
self-energy), RBHF( ) (positive energy spinors only; momen-
tum independent self-energy [4]); A ( ) approximation). For
comparison we give also the outcome of the relativistic HF
approximation, where p and E/A are adjusted and the prop-
erties of asymmetric matter were calculated [15]: RHF( ) (cr, u)

mesons only), RHF( ) (rr, ur, rr, and p mesons; f~/g~ = 6.6),
RHF( ) (rr, u, rr, and p-mesons; f~/g~ = 3.7).

Method

RBHF(') (A)
RBHF( )(A)
RBHF( )(A)
Aoo(2) (A)
RBHF(') (B)
RBHF (B)
RBHF( )(B)
Aoo(2)(B)
RBHF") (C)
RBHF (C)
RBHF (C)
Aoo(2) (C)
B,HF&'&

RHF~ ~

RHF('~

E/A
(MeV)
-15.72
-16.49
-15.59
-23.51
-14.81
-15.73
-13.60
-21.90
-13.73
-14.38
-12.26
-20.57
-15.75
-15.75
-15.75

Poo
(fm )
0.174
0.174
0.185
0.215
0.170
0.172
0.174
0.210
0.162
0.170
0.155
0.206
0.148
0.148
0.148

kp-

(fm ')
1.37
1.37
1.40
1.47
1.36
1.365
1.37
1.46
1.34
1.36
1.32
1.45

K„
(MeV)

336
280
290
297
264
249
249
260
268
258
185
293
610
360
460

The comparison for the different Brockmann poten-
tials for symmetric INM are given in Table I. The energy
per particle for INM is exhibited in Fig. 1 for the poten-
tials A and ( (for B, see Ref. [17]). The agreement of
the saturation properties with the results of Brockmann
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0.2 0.4
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0.6 0.8 1 1.2 1.4 1.6

rmi momentum (fm ')

~ ~

1.8
-20 ~ ~ I I I i ~ ~ ~

0 0.05 0.1 0.1 5 0.2 0.25 0.3 0.35

p (fm )

FIG. 2. Comparison of the binding energy per nucleon in
INM for the treatment in the full Dirac space [RBHF and
A full curves, RBHF and A dashed curves; the
superscripts "1" and "2" denote the version wraith full and
averaged momentum dependence, respectively (see text)] with
the treatment utilizing the decomposition of the scattering
amplitude T into five Fermi invariants (dashed —dotted curve;
Groningen potential H; for more details, see text).

1. Bulk pv operti es

We turn now to the interesting case of asymmtric mat-
ter. The outcome for the energy per nucleon for the

TABLE II. Saturation properties of symmetric INM for the
Groningen potential B.
Method

RBHF(~)
B.BHF(')
Aoo(x)
~oo(z)

E/A
(MeV)

-9.21
-9.68

-13.92
-14.53

Poo
(fm )

0.145
0.152
0.181
0.].89

(fm ')
1.29
1.31
1.39
1.41

K„
(MeV)

191
183
264
178

and Machleidt is rather good. In our approach we obtain
a little more binding, and the saturation density varies
less. We have also calculated the nuclear matter proper-
ties within the A approximation, which is the simplest
A approximation. This approximation is known to give
more binding than the RHBF approximation [12]. This
feature is certified in our calculations (see Tables I and
II). Unfortunately we could not treat for AINM, due to
limited numerical capabilities, the more interesting other
A approximations and therefore we restricted ourselves
to the described RBHF and A approximations. The
results for the Groningen potential B are given in Ta-
ble II. A comparison with the calculation of the nuclear
matter parameter with the treatment of Ref. [10] (T is
decomposed in five Fermi invariants) is given in Fig. 2 for
the Groningen potential B, which shows that the differ-
ences due to the calculation schemes are slightly larger
in this case.

C. Asymmetric matter

FIG. 3. Binding energy per nucleon versus density for dif-
ferent asymmetries in the RBHF approximation (Brockmann
potential A).

15

10

5

-10

-15

-20

~ I ~ ~ ~ ~

(1)-

2)-

0

~ I ~ s ~ ~

0 0.05 0.1 0.1 5 0.2 0.25 0.3 0.35

p(fm )

FIG. 4. Binding energy per nucleon versus density for dif-
ferent asymmetries in the RBHF approximation (potential
C).

Brockmann potentials A and C (we concentrate on the
potentials A and C, since some results for B are already
given in Ref. [17]) as a function of the baryon density
for different asymmetries is displayed in Figs. 3 and 4.
First, one recognizes the expected result that for neu-
tron matter (b = 1) the results are almost identical, since
the different tensor forces are not relevant in this case.
In Fig. 5 we give E/A results for the Aoo approxima-
tion (Brockmann A). In a recent preprint the properties
of asymmetric matter were calculated for the potential
A utilizing the Brockmann-Machleidt assumptions and a
difFerent Pauli operator [18], which makes a direct com-
parison difficult. A comparison of the E/A curves (the
asymmetry parameters are not given) shows an agree-
ment similar as in the original Brockmann calculations
for symmetric matter. For instance, the deviation for
pure neutron matter at nuclear matter saturation is ap-
proximately 2 MeV.

Of further interest are the energies per particle at equi-
librium as a function of the asymmetry, displayed in



1796 H. HUBER, F. WEBER, AND M. K. WEIGEL 51

10 I ~ ~ ~ I ~ I ~ s
I

~ ~5

0

(D

-10

-15

-20

(AOO)(2)

6=0.25
5=0

Q
-10

(D

-25
0 0.05 0.1 0.1 5 0.2 0.25 0.3 0.35

p (fm )

-2 0 ~ I I a I ~ I I ~ I I I

0 0.1 0.2 0.3 0.4
2

0.5 0.6 0.7

FIG. 5. Binding energy per nucleon versus density for dif-
ferent asymmetries in the A approximation (potential C).

FIG. 6. Energy per particle at equilibrium as function of
asymmetry (potential A).

Fig. 6 and symmetry energy shown in Fig. 7 (poten-
tial A). The curves show the same behavior as in the
relativistic Hartree-Fock treatment, however the quali-
tative features are quite different from the nonrelativis-
tic treatment with Skyrme forces (S III), where, for in-
stance, the symmetry energy bends over at densities of
approximately 0.15 fm [15]. The properties of INM
and AINM are listed in Table III and compared with the
outcome of relativistic Hartree and Hartree-Fock calcu-
lations, and with nonrelativistic treatments [15,30]. As
mentioned before the agreement of the bulk properties
with the accepted values of the mass formula is quite sat-
isfactory. Also the value of the asymmetry parameter J
is located within the accepted boundaries. The values for
L and K,y~, which are much more uncertain, lie between
the values of the relativistic Hartree parametrization NL-

SH and the Skyrme parametrization SkM* and conform
nicely to the systematics already established in nonrela-
tivistic fits to nuclear data, for instance, increasing values
of J are associated with increasing values of L [31]. In
such a comparison one has to keep in mind that despite
the fact that these parametrizations have been used very
often in the past, they still have some deficiencies (see,
for instance, Refs. [30,32,33]). One expects from a com-
parison between SkM' and NL-SH due to the different
values of J for I and Ksy~ values located between the
corresponding values for these parametrizations, which is
verified by our calculation. Finally we test the validity
of the quadratic approximation for the symmetry energy

e(»~) = e(p 0) + e (p)~ (3.4)

This approximation holds also in the nonrelativistic

TABLE III. Properties of symmetric and asymmetric nuclear matter in the RBHF approximation
(RBHFi ) for the Brockmann potentials A, B and C. For comparison the corresponding values are
also given for phenomenological relativistic Hartree and Hartree-Fock, and nonrelativistic Skyrme
force calculations. For the Hartree calculations we selected some currently used parameter sets,
namely LNl, and NL-SH. The HF results were taken from Ref. [15]. SkM' and S III denote two
well known Skyrme forces, FRDM is the latest and most sophisticated of the droplet-model mass
formulas, while ETFSI-1 denotes the erst mass formula to be based entirely on microscopic forces
(for more details, see Ref. [30]). The saturation density pso is given in fm . All other quantities
are in MeV.

Br A
Br B
Br C
RHF&i)
RHF(~)
RHF(3)
NL1
NL-SH
SkM*
SIII
FRDM
ETFSI-1

E/A
-16.49
-15.73
-14.38
-15.75
-15.75
-15.75
-16.423
-16.346
-15.776
-15.857
-16.247
-15.87

Poo
0.174
0.172
0.170
0.148
0.148
0.148
0.1519
0.1460
0.1603
0.1453
0.1529
0.1607

K„
280
249
258
610.0
360.0
460.0
211.7
355.8
216.7
355.4
240
234.7

J
34.4
32.8
31.5
28.9
43.3
38.6
43.49
36.13
30.03
28.16
32.73
27.0

L
81.9
90.2
76.1
132
135
138

140.2
113.7
45.8
9.9
0

-9.29

Ksym
-66.4
9.97
-35.1
466
105
276

143.0
79.82
-155.9
-393.7

-336.8
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FIG. 7. Symmetry energy as function of the density (po-
tential A). For the saturation density the values of the curves
give the bulk symmetry energy J.

FIG. 9. Comparison of the density dependence of the scalar
and timelike part of the self-energy in symmetric INM with
full (RBHF ) and averaged (RBHF ) momentum depen-
dence (see text; potential B).

Brueckner approximation [34]. From Fig. 8 one can see
that this presumption is also fulfilled to a very high de-
gree in the RBHF approximation.

2. Self energies-

If one compares in symmetric INM the momentum av-

eraged approximation RBHF~ ~ with the nonaveraged ap-
proximation RBHF( ), one obtains a decrease (increase)
for Z, (Zo) for RHBF( &, which is shown in Fig. 9. This
effect increases with density, and can be understood by
the fact that near the Fermi momentum Zo(Z, ) de-
creases (increases). By momentum averaging one sup-
presses this effect and obtains the described differences.
However, for the calculation of the EOS for asymmet-
ric matter in P equilibrium, important for neutron stars,
where one needs the single-particle energy at the top of

the Fermi sea at higher densities, this effect is not neg-
ligible [see Eq. (2.23)]. The Dirac masses, defined as
m = m+ 2, (py) —0.66 m (potentials A, B,C) are larger
than in the Brockmann approximation ( 0.62 m), and
the density dependence differs too. (Density-dependent
parametrizations of the self-energies have been applied
with some success in finite nuclear structure calculations
[36,37]. A comparison within the extended Thomas-
Fermi scheme, which gives a priori smaller radii, shows no
clear conclusions with respect to the density dependence,
since either the energies or the radii are better reproduced
by the parametrizations of the different INM schemes.
For the finite nuclei the choice of the 0 mass may be
of greater importance, where one may have some free-
doin since INM is mainly influenced by the ratio g /m
[36,39]. This seems also to be certified by the poor re-
production of the surface properties of semi-infinite nu-
clear matter utilizing the Brockmann parametrization;
for more details, see Refs. [33,38,39].)

For asymmetric nuclear matter the density dependence
for several asymmetries is exhibited in Figs. 10 and 11.
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FIG. 8. Test of the quadratic approximation of the symme-
try energy: Asymmetry energy per nucleon in the RBHF
approximation in the range 0 & b & 1 at five densities. The
slope of each curve gives the corresponding symmetry energy
(potential A).
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FIG. 10. Density dependence of the self-energies for pro-
tons and neutrons for different asymmetries in the RBHF
approximation (potential R).
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FIG. 11. Density dependence of the self-energies for pro-
tons and neutrons for difFerent asymmetries in the RBHF
approximation (potential B)

IV. SUMMARY AND OUTLOOK

Relativistic nuclear matter calculations with inclusion
of dynamical two-body correlations require the knowl-
edge of the effective scattering matrix in the nuclear-
matter frame. For a complete determination in a non-
ambiguous manner, the complete representation of the
%N amplitude in the full Dirac space is needed. We
have solved this problem utilizing the method described
in Refs. [12,29], so avoiding the ambiguous procedures,
which are restricted to the positive-energy sector only
[4,10,14]. For the interaction we used three modern
OBE potentials constructed by Brockmann and Mach-

As already expected &om the direct term, Zo and Zo, re-
spectively, increase and decrease with b approximately by
the same amount. For the differences in the scalar parts
the main source for the difference is hidden in a more
complex manner in the exchange contributions (the pure
Hartree theory gives Z", = Z, ). A closer inspection of
the Fock terms in RHF reveals that the contributions for

p, b, a mesons to the proton self-energy are larger than for
the neutron self-energy [29]. For pure neutron matter the
Fock contribution for E" is twice as large as the contri-
bution for Z . Therefore one expects, as demonstrated
in Fig. 10, larger deviations for Eo with b and relative
small changes in Z„where ZJ,' is stronger influenced by
the asymmetry as Z, .

leidt. The potentials differ mainly with respect to the
tensor force. For that reason one expects differences for
symmetric matter, but for pure neutron matter the prop-
erties should be almost identical, which is certified by
our calculations. The bulk properties of symmetric infi-
nite matter are in good agreement with the semiempiri-
cal values. In the next step we extended the calculations
to the properties of asymmetric matter in order to test
the predictive power of this parameter-free theory. Such
an extension seems to be a natural systematical step to-
wards the capability of the approach to describe nuclear
properties, since a test bench in this respect is the repro-
duction of the semiempirical values of the mass formula.
The obtained results for the bulk symmetry energy agree
well with the empirical values, and also the values for the
asymmetry slope and the asymmetry curvature fit nicely
in the expected pattern.

The binding energy at saturation decreases approxi-
mately as a quadratic function of the asymmetry param-
eter b, and the system becomes unbound at b = 0.67.
The symmetry energy as a function of the density is as
in the RHF treatment less curved as in the nonrelativis-
tic treatments. Furthermore, we could confirm the em-
pirical parabolic law of the binding energy as function
of the density for higher asymmetries. Additionally we
have studied the impact of using momentum-independent
self-energies. For densities below the nuclear matter sat-
uration density the differences are small, but for higher
densities, relevant, for instance, for the EOS in general-
ized P equilibrium in neutron stars, the differences are
not negligible.

In summary, we have investigated the properties of
symmetric and antisymmetric nuclear matter by solving
self-consistently the relativistic many-body problem with
two-body correlations in the RBHF and A approxima-
tion, using modern OBE potentials. The results for the
bulk properties of symmetric as well as asymmetric mat-
ter are in rather good agreement with the semiempirical
values of the mass formula, which gives additional hope
that the relativistic theory with inclusion of correlations
might be capable "of understanding" nuclear systems in
a parameter-free manner.
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