¹⁰⁰Sn-daughter α -nuclei cluster decays of some neutron-deficient Xe to Gd parents: Sn radioactivity

Satish Kumar, Dharam Bir,* and Raj K. Gupta Physics Department, Panjab University, Chandigarh-160014, India (Received 18 May 1994)

Cluster decays of the neutron-deficient ${}^{108-116}$ Xe, ${}^{112-120}$ Ba, ${}^{116-124}$ Ce, ${}^{120-124}$ Nd, ${}^{124-128}$ Sm, and ${}^{128-132}$ Gd parents are studied within the preformed cluster model of Malik and Gupta. The calculated preformation probabilities (P_0) and decay half-lives show that the α -nuclei ($A_2 = 4n$, $Z_2 = N_2$) clusters, like 8 Be, 12 C, 16 O, 20 Ne, 24 Mg, and 28 Si, emitted from N = Z parents are the most probable cases for measurements. Many of these clusters are shown to be within the upper limit of present experimental methods. This stresses the importance of ${}^{100}_{50}$ Sn-daughter in these decays. The fact that $A_2 = 4n$ cluster decays are more probable than $A_2 = 4n + 2$ clusters demonstrates that Sn radioactivity is associated with $A_2 = 4n$, $Z_2 = N_2$ (α -nuclei) clusters. Structure effects of the nuclear (proximity) potential and binding energies (the shell effects) in GN plots and in variation of P_0 with the parent mass A are also pointed out.

PACS number(s): 23.60.+e, 27.60.+j, 23.90.+w, 21.60.Gx

I. INTRODUCTION

Cluster decay of a N = Z, A = 4n nucleus via α nuclei $(A_2 = 4n, Z_2 = N_2)$ clusters was first pointed out in 1988 by Gupta and collatorators [1]. For very light nuclei (A < 80), it was shown that the minima in potential energy surfaces lie always and only at α nuclei. As the neutron-proton ratio N/Z becomes larger than one, other clusters of the type observed in the decay of radioactive nuclei also start appearing and become equally predominant for $N/Z \gg 1$ parents. More recently [2,3], the same kind of instability was predicted explicitly for decays of Ba isotopes, which has now been observed experimentally, first by Tretyakova et al. [4] at Dubna (Russia) and more recently¹ by Guglielmetti et al. [5] at GSI, Darmstadt (Germany). The α nuclei ⁴He, ⁸Be, ¹²C, ¹⁶O, and ²⁰Ne were predicted [3] as the possible decay modes of ¹¹²⁻¹²⁰Ba, observable with the presently available experimental methods. Other than the α particle, ¹²C decay of ¹¹²Ba was predicted to be the best candidate for experiments, with decay half-life $T_{1/2}(^{12}C) = 5.62 \times 10^3$ s, which depends strongly on the Q-value estimate. For ¹²C decay of ¹¹⁴Ba, the calculated [3] $T_{1/2}(^{12}\text{C})=1.32\times10^5-4.68\times10^9$ s for different Q values, to be compared with the recently measured [5] $T_{1/2}(^{12}C) \sim 1.7 \times 10^4$ s. For α decay of 114 Ba, the measured $T_{1/2}(\alpha) > 500$ s, which is to be compared with the predicted [3] $T_{1/2}(\alpha) = 9.12 \times 10^4$ s. It may be recalled here that, in general, the predicted half-life times for α decays in the model of Malik and Gupta [1,6] are underestimated. The collective desription is not expected to

give a proper description of α decay. In view of this fact, already considered by Malik and Gupta [6], instead of the branching ratios, the calculated half-lives for heavy cluster decays are more relevant here, and we follow the same spirit in this paper. The calculated branching ratios of Malik and Gupta [6] for heavy cluster decays of radioactive nuclei are known (see Table III in Ref. 6) to be good within two to three orders of magnitude due to their poor estimation of α decay half-lives by about the same orders of magnitude. However, the calculated half-lives for heavy cluster decays in this model [6] match within less than one order of magnitude with the early microscopic calculations of Blendowske et al. [7] for the observed ¹⁴C decay of Ra isotopes and with a very recent² fully microscopic calculation of Delion et al. [8] for ${}^{12}C$ decay of 114 Ba (compare $\log_{10}T_{1/2}(s)=5.12$ of Ref. [3] with $\log_{10}T_{1/2}(s)=5.02$ of Ref. [8]; notice that the Q values are slightly different in the two cases).

The above study is extended by some authors [9,10]to many neutron-deficient isotopes of 57La, 58Ce, 60Nd, and $_{62}$ Sm parents, predicting many new $A_2 = 4n$ cluster decays. In this paper, we extend our own study of Refs. [2] and [3] to many neutron-deficient isotopes of ${}_{54}$ Xe to ₆₄Gd nuclei, which can be produced in the laboratory by using the radioactive beams. The case of 56Ba parents, studied in Ref. [3], is also included here in the discussion of our results. The interesting aspect of this study is the existence of a spherical, doubly closed shell, ${}^{100}_{50}$ Sndaughter for $A_2 = 4n$, $Z_2 = N_2$ clusters ⁸/₄Be to ²⁸/₁₄Si. The predicted half-lives for many of these most favorable cases are $\sim 10^3$ to 10^{12} s, which are far below the present experimental limit of measurements. We have used here the preformed cluster model (PCM) of Malik and Gupta [1,6], where the cluster preformation proba-

^{*}Permanent address: Physics Department, Kurukshetra University, Kurukshetra (Haryana), India.

 $^{^{1}}$ This result became available only at the time of revising this manuscript.

²See footnote 1.

bility is the quantum mechanical formation yield based on collective model picture of the nucleus. This PCM has now been used extensively [2,3,11-15] and is perhaps the only theoretical prescription so far available for calculating the cluster preformation probability, other than the early shell model description of Blendowske *et al.* [7] and more recently of Delion *et al.* [8]. For a recent review of these models, we refer the reader to Ref. [16].

Section II gives a brief description of the preformed cluster model [6]. Our calculations and discussion of results are presented in Sec. III. Finally, a summary of our conclusions is given in Sec. IV.

II. THE MODEL

The decay half-life $T_{1/2}$ or the decay constant λ in a preformed cluster model is defined as

$$\lambda = P_0 \nu_0 P \ (T_{1/2} = \ln 2/\lambda) \ . \tag{1}$$

Here, P_0 is the cluster preformation probability, ν_0 , the barrier impinging frequency (s⁻¹) and P, the barrier penetration probability. Malik and Gupta [6] considered the solving of the following stationary Schrödinger equation for a coupled motion in dynamical collecitve coordinates of mass asymmetry $\eta = (A_1 - A_2)/A$, with $A = A_1 + A_2$, and relative separation R:

$$H(\eta, R)\psi^{m}(\eta, R) = E^{m}\psi^{m}(\eta, R) , \qquad (2)$$

with the Hamiltonian constructed as

$$H(\eta, R) = V(\eta) + V(R) + V(\eta, R) + \frac{1}{2} B_{\eta\eta} \dot{\eta}^2 + \frac{1}{2} B_{RR} \vec{\dot{R}}^2 + \vec{B}_{\eta R} \dot{\eta} \vec{\dot{R}} .$$
(3)

The charges Z_i (i = 1, 2) of fragments are fixed by minimizing the potential in an equivalent charge asymmetry coordinate $\eta_Z = (Z_1 - Z_2)/Z$. The energies E^m (m = 0, 1, 2, 3, ...) give the energy spectrum of the system in the potential $V(\eta, R)$. The nature of this spectrum will apparently depend on the shape of the system which is specified by the collective coordinates of relative separation R and the mass asymmetry η . For cluster radioactivity, $|\eta|$ is very large, close to unity. For such a nuclear shape, the η motion corresponds mainly to octupole oscillations. Hence, the calculated energies E^m could be said to refer to octupole states of the clustercore system, and these states usually lie higher in energies. Actually, cluster-core models for low lying energy spectra (and other nuclear properties) are expected to be good only for light nuclei [17,18], where the mass asymmetry η is not too large. Within the semimicroscopic algebraic approach, one of us and collaborators [19] have been able to overcome this difficulty of asymmetricity in η motion by introducing antisymmetrization effects of wave functions in the very asymmetric clusterization of heavy nuclei. The low-lying bands calculated for the clustercore configuration ¹⁴C+²¹⁰Pb compare nicely with the experimental energy spectrum of 224 Ra.

In actual practice, the above problem reduces to one

of the decoupled motions since, for collective potentials calculated in Strutinsky method and B_{ij} as cranking masses, both the coupling potential $V(\eta, R)$ and coupling mass $B_{\eta R}$ are small [20-23]. Then, $\psi^m(\eta, R) =$ $\psi^m(\eta)\psi^m(R)$, $E^m = E_{\eta}^m + E_R^m$, with $P_0 \propto |\psi^m(\eta)|^2$ and $P \propto |\psi^m(R)|^2$. We use here only the ground state (m = 0) solutions, since the cluster-decay is considered to occur in the ground-state of the daughter nucleus.

For the η motion, the stationary Schrödinger equation (2) becomes

$$\left(-\frac{\hbar^2}{2\sqrt{B_{\eta\eta}}}\frac{\partial}{\partial\eta}\frac{1}{\sqrt{B_{\eta\eta}}}\frac{\partial}{\partial\eta}+V(\eta)\right)\psi^m(\eta)=E^m_\eta\psi^m(\eta)\;,$$
(4)

whose (numerical) solutions for fixed R give the fractional cluster preformation probabilities (in the groundstate m = 0)

$$P_0(A_2) = |\psi^0(\eta)|^2 \sqrt{B_{\eta\eta}(\eta)} \frac{2}{A} .$$
 (5)

The value of R is taken as the inner turning point $R_a = R_1 + R_2$ (= R_t) or = $C_1 + C_2$ (= C_t), C_i being the Süssmann central radii [24], and the potential $V(\eta)$ for such a two touching spheres approximation is given as the sum of nuclear binding energies, the Coulomb and the proximity [25] potentials. The masses $B_{\eta\eta}$ ($\equiv B_{\xi\xi}$) are the classical hydrodynamical masses of Kröger and Scheid [26], where ξ is, equivalently, the volume asymmetry coordinate ($\eta = \xi$ under constant density approximation).

In Eq. (4), E_n^m are the energies of the cluster-core system in potential $V(\eta)$ at $R = R_t$. In the presence of coupling between R and η motions, these energies due to the η degree of freedom are different for different values of R and, say, for ground state decay E_n^0 should be added to the scattering potential V(R). Notice that the mass parameters $B_{\eta\eta}$, which implies mass transfer, also contribute towards the determination of E_{η}^{m} . The microscopic Cranking masses [20,21] $B_{\eta\eta}$ show strongly peaked behavior (almost like δ function) at η values referring to physical transfer of masses. Thus at specific η values, the probabilities P_0 get enhanced considerably and the energies E_{η}^{m} become very large. In the present calculations, however, we have used the smoothly varying hydrodynamical masses $B_{\xi\xi}$ and further assumed that E_{η}^{m} remain constant in R degree of freedom. For ¹²C decay of ¹¹⁴Ba at $R = R_t$, for example, $E_{\eta}^0 = 13.87$ MeV which is the zero-point vibrational energy of the collective η motion, to be added to the zero-point vibrational energy E_B^0 of the collective R motion (discussed below). The first excited state $(E_{\eta}^{1} - E_{\eta}^{0})$ is calculated to be 4.01 MeV, which is interpreted as an octupole vibrational state in potential $V(\eta)$ of ¹¹⁴Ba (Fig. 1).

For the R motion, instead of solving the corresponding radial Schrödinger equation, as usual Malik and Gupta [6] used the WKB approximation and calculated P analytically by parametrizing V(R) suitably for each η (and η_Z) and for $R \geq R_t$ or C_t . For the penetration path shown in Fig. 1 of Ref. [6], and assuming, for simplicity,

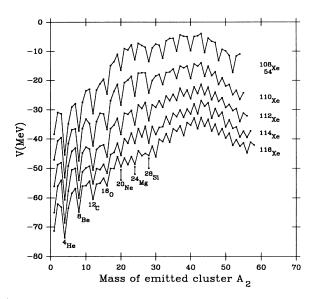


FIG. 1. Fragmentation potentials for $^{108-116}$ Xe parents, at $R_a = C_1 + C_2$.

the internal deexcitation probability $W_i = 1$, the barrier penetrability

$$P = P_i P_b av{6}$$

with the WKB penetrabilities

$$P_{i} = \exp\left(-\frac{2}{\hbar} \int_{R_{t}}^{R_{i}} [2\mu\{V(R) - V(R_{i})\}]^{1/2} dR\right) , \quad (7)$$

$$P_b = \exp\left(-\frac{2}{\hbar} \int_{R_i}^{R_b} [2\mu\{V(R) - Q\}]^{1/2} dR\right) \ . \tag{8}$$

Here, R_i is defined by $V(R_i) = V(R_a)$ with $V(R_a) =$ $V(R_t) = Q + E_i$. E_i is the energy that was considered [6] to represent the decay into the excited states of the daughter nucleus (or the cluster or both). An internal deexcitation probability W_i was introduced that scale exponentially with E_i . For heavy cluster decays $W_i = 1$, as already stated above. Recently, Kumar and Gupta [27,28] have shown that these phenomenological effects of taking $R_a = R_t$ and introducing the idea of internal deexcitation in the model of Malik and Gupta compensate for the neglected deformation effects of both the cluster and daughter nuclei. Inclusion of deformations of both the cluster and daughter nuclei lowers down the barrier considerably with the inner turning point R_a (> R_0 , R_0 is the equivalent spherical radius of the parent nucleus) lying at the Q value. R_b is the outer turning point with $V(R_b) = Q$ value of the decay process.

The impinging frequency ν_0 in Eq. (1) is defined simply as

$$\nu_0 = \frac{v}{R_0} = \frac{\sqrt{2Q/mA_2}}{R_0} , \qquad (9)$$

where mA_2 is the mass of the emitted cluster. Apparently, here the total kinetic energy, shared between the

two fragments, is the positive Q value. Alternatively, ν_0 can be calculated [29,16] by parametrizing V(R) around the parent nucleus radius R_0 to an harmonic oscillator (see, e.g., Fig. 1 in Ref. [6]). This would also require the mass parameter B_{RR} in R degree of freedom, which is usually taken as the reduced mass (see Ref. [16] for details). The two methods, however, give a similar result, which is further illustrated below for the case of ¹²C decay of ¹¹⁴Ba.

The quantity ν_0 represents the zero-point vibrational energy $E_R^0 (= \frac{1}{2}\hbar\omega = \frac{1}{2}h\nu_0)$ due to relative motion R, and can be compared with, say, the empirical estimates of Poenaru et al. [30] for their so-called E_{vib} (see, e.g., Eq. (3) in Ref. [6]). For ${}^{12}C$ decay of ${}^{114}Ba$, we get $E_R^0 = 6.68$ MeV by using Eq. (9) and 4.13 MeV for the alternative procedure [29,16] of approximating the potential $V(R_0 \leq R \leq R_t)$ by an harmonic oscillator. Using the empirical formula of Poenaru *et al.* [30] $E_{\rm vib} = 1.16$ MeV for ¹²C decay of ¹¹⁴Ba which is lower by a factor of 2 to 4 than the above-mentioned two theoretical estimates. Notice that E_R^0 (or E_{vib}) is much smaller compared to E_{η}^{0} and that this factor of 2 to 4 difference in E_{R}^{0} and $E_{\rm vib}$ results in a change of ν_0 value by the same factor, which is not very significant because the order of estimated half-life times does not change. In our case the total zero-point vibrational energy is $E^0 = E_n^0 + E_R^0$, which must be added to the Q value for the penetrability calculation. Remember, however, that E_{η}^{0} would enter the calculation only if its contributions at all R values are added to the scattering V(R), as already discussed above. In any case, E^0 does not enter into our calculations because we have defined our inner turning point by $V(R_a) = V(R_t)$, rather than equal to $Q + E_R^0$ (E_η^0 is taken to be constant, independent of R). For the ¹²C decay of $^{114}\mathrm{Ba},$ the two quantities are nearly the same (compare $V(R_t) = 25.96$ MeV with $Q + E_R^0 = 26.88$ MeV). This means that our inner turning point $R_a = R_t$ lies nearly at the zero point vibrational energy E_R^0 , above the Q value.

III. CALCULATIONS

First of all, we look at the static fragmentation potentials V as a function of cluster mass A_2 . This is illustrated in Fig. 1 for ${}^{108-116}_{54}$ Xe parents. We concentrate here only on the potential energy minima, since the preformation probabilities P_0 for clusters referring to minima are always larger compared to their neighboring clusters [31]. We notice that for the N = Z nucleus (here 108 Xe), in agreement with earlier works of Refs. [1] and [3], the potential energy minima occur only at $A_2 = 4n$ α nuclei. We shall see in the following that cluster-decay constant λ is largest (or the decay half-life $T_{1/2}$ smallest) for such a highly neutron deficient parent to decay with a $A_2 = 4n$, $Z_2 = N_2$ cluster referring to doubly magic $Z_1 = N_1 = 50^{-100}$ Sn daughter. As the neutron-proton ratios N/Z of the parent nuclei increase, the potential energy minima at $A_2 = 4n + 2$ clusters also start appearing. For $N \gg Z$ parents (see, e.g., ¹¹⁴Xe or ¹¹⁶Xe), some of the minima at $A_2 = 4n + 2$ are as deep as at $A_2 = 4n$ clusters. In the following, we discuss our cal-

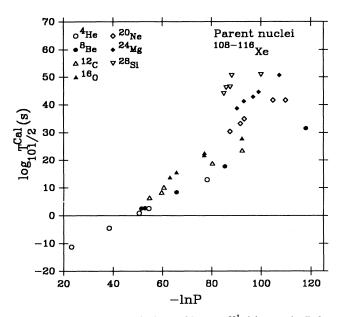


FIG. 2. Geiger-Nuttall plots of $\log_{10} T_{1/2}^{cal}$ (s) vs $-\ln P$ for various clusters emitted from $^{108-116}$ Xe.

culations of the dynamical cluster-decay process for both the $A_2 = 4n$ and 4n + 2 clusters, though the present experiments are directed more towards the more exotic, and highly probable $A_2 = 4n$ (α nuclei) decays of Z = Nparents.

A. $A_2 = 4n$ cluster decays

We have first analyzed the Geiger-Nuttall (GN) plots for all the parents. In each case, the structure effects of nuclear proximity potential or the binding energies (the

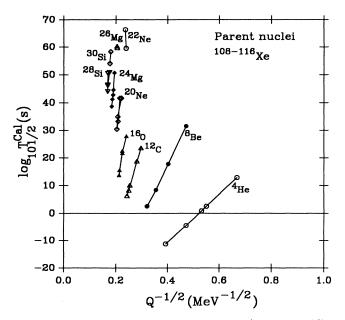


FIG. 3. Geiger-Nuttall plots of $\log_{10} T_{1/2}^{cal}$ (s) vs $Q^{-1/2}$ for various clusters emitted from $^{108-116}$ Xe.

shell effects) are evident. This is illustrated in Figs. 2 and 3 for Xe isotopes. The $\log_{10} T_{1/2}^{cal}(s)$ vs $-\ln P$ plots in Fig. 2 show the role of nuclear (proximity) potential in terms of differences in slopes and small deviations from straight lines (the GN law is an equation of straight line for P as the pure Coulomb barrier penetrability). Similarly, Fig. 3 shows that $\log_{10} T_{10}^{cal}(s)$ vs $Q^{-1/2}$ plots represent different GN laws (the equations of straight lines) for different clusters, which is associated [3] with each cluster having a different preformation factor P_0 . This later result is demonstrated in Fig. 4 for Xe and Ce parents. We notice that ⁴He is always preformed with the largest probability (smallest $-\log_{10} P_0$ value) and,

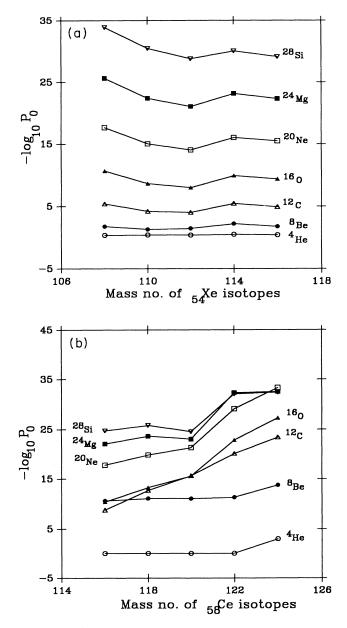


FIG. 4. (a) Logarithm of cluster preformation probability P_0 vs mass of parent nuclei $^{108-116}$ Xe, for the emission of different clusters; (b) Same as in Fig. 4(a), but for $^{116-124}$ Ce.

TABLE I. Predicted half-lives $T_{1/2}$ (s) and other characteristics for cluster decays of some neutron deficient parents from Xe to Gd. For Q-value estimates the masses for Xe to Nd parents are taken from Möller and Nix [32] for $A \ge 16$ and Wapstra *et al.* [32] for A < 16 (except other wise stated) and for Sm and Gd parents from Comey *et al.* [32] and Wapstra *et al.* [32].

L	· · · · · · · · · · · · · · · · · · ·				and an experimental second			
				Preformation	Decay			
Parent	$\mathbf{Emitted}$	$\mathbf{Daughter}$	Q value	$\mathbf{probability}$	constant		$\log_{10} T_{1/2}^{\rm cal} \ ({ m s})$	
nucleus	cluster	nucleus	(MeV)	P_0	$\lambda~({ m s}^{-1})$	Present	Ref. [9]	Ref. [10
¹⁰⁸ Xe	⁴ He	¹⁰⁴ Te	6.49	4.40×10^{-1}	$1.25 imes 10^{11}$	-11.26		
	$^{8}\mathrm{Be}$	¹⁰⁰ Sn	9.77	1.70×10^{-2}	2.20×10^{-3}	2.50		
	^{12}C	^{96}Cd	15.45	$3.74{ imes}10^{-6}$	5.44×10^{-11}	10.11		
	¹⁶ O	⁹² Pd	19.71	$2.06 imes 10^{-11}$	$1.94{ imes}10^{-23}$	22.55		
	²⁰ Ne	⁸⁸ Ru	21.56	$2.13{ imes}10^{-18}$	$1.67{ imes}10^{-42}$	41.62		
	²⁴ Mg	^{84}Mo	26.58	$2.31{ imes}10^{-26}$	$1.49{ imes}10^{-51}$	50.67		
	²⁸ Si	80 Zr	35.00	1.40×10^{-34}	2.06×10^{-51}	50.53		
¹¹⁰ Xe	4 He	$^{106}\mathrm{Te}$	4.49	4.00×10^{-1}	$2.11{ imes}10^4$	-4.48		
	⁸ Be	¹⁰² Sn	9.71	4.91×10^{-2}	1.51×10^{-3}	2.66		
	^{12}C	⁹⁸ Cd	16.88	6.25×10^{-5}	3.26×10^{-7}	6.33		
	¹⁶ O	94Pd	21.74	2.14×10^{-9}	1.87×10^{-16}	15.57		
	²⁰ Ne	⁹⁰ Ru	23.19	9.02×10^{-16}	3.70×10^{-34}	33.27		
	²⁴ Mg	⁸⁶ Mo	28.88	3.79×10^{-23}	3.89×10^{-42}	41.25		
	²⁸ Si	⁸² Zr	20.00 35.55	3.69×10^{-31}	4.83×10^{-47}	$41.25 \\ 46.16$		
110								
¹¹² Xe	⁴ He	$^{108}{ m Te}{ m n}{ m sn}$	3.31	4.10×10^{-1}	2.01×10^{-3}	2.54		
	⁸ Be	100 Sn	7.95	3.56×10^{-2}	2.79×10^{-9}	8.40		
	¹² C	¹⁰⁰ Cd	15.96	9.27×10^{-5}	3.67×10^{-9}	8.28		
	¹⁶ O	⁹⁶ Pd	22.19	9.30×10^{-9}	1.23×10^{-14}	13.75		
	²⁰ Ne	⁹² Ru	24.17	9.10×10^{-15}	2.68×10^{-31}	30.41		
	²⁴ Mg	⁸⁸ Mo	29.43	8.47×10^{-22}	1.43×10^{-39}	38.69		
	²⁸ Si	⁸⁴ Zr	35.55	1.76×10^{-29}	6.36×10^{-45}	44.04		
¹¹⁴ Xe	⁴ He	110 Te	3.35	3.30×10^{-1}	8.63×10^{-2}	0.90		
	⁸ Be	¹⁰⁶ Sn	6.18	6.30×10^{-3}	1.13×10^{-18}	17.79		
	^{12}C	¹⁰² Cd	12.70	$3.29 imes 10^{-6}$	1.13×10^{-19}	18.79		
	¹⁶ O	⁹⁸ Pd	19.71	1.16×10^{-10}	$1.22 imes10^{-22}$	21.76		
	²⁰ Ne	⁹⁴ Ru	23.29	9.40×10^{-17}	8.16×10^{-36}	34.93		
	²² Ne	⁹² Ru	17.55	3.07×10^{-20}	$2.19{ imes}10^{-60}$	59.50		
	²⁴ Mg	⁹⁰ Mo	27.77	6.66×10^{-24}	1.77×10^{-45}	44.59		
	²⁶ Mg	⁸⁸ Mo	24.11	9.03×10^{-28}	3.80×10^{-61}	60.26		
	²⁸ Si	$^{86}{ m Zr}$	35.09	1.00×10^{-30}	2.64×10^{-47}	46.42		
¹¹⁶ Xe	⁴ He	$^{112}\mathrm{Te}$	2.24	4.00×10^{-1}	$8.79{ imes}10^{-14}$	12.99		
	${}^{8}\mathrm{Be}$	108 Sn	4.50	1.73×10^{-2}	1.91×10^{-32}	31.56		
	^{12}C	104 Cd	11.32	1.15×10^{-5}	1.93×10^{-24}	23.55		
	¹⁶ O	100 Pd	17.35	$3.87{ imes}10^{-10}$	8.19×10^{-29}	27.93		
	²⁰ Ne	⁹⁶ Ru	20.51	3.20×10^{-16}	1.62×10^{-42}	41.63		
	²² Ne	⁹⁴ Ru	17.99	1.43×10^{-19}	3.10×10^{-67}	66.35		
	²⁴ Mg	⁹² Mo	28.13	4.58×10^{-23}	1.10×10^{-43}	42.80		
	²⁶ Mg	⁹⁰ Mo	23.77	9.38×10^{-27}	1.33×10^{-60}	59.72		
	²⁸ Si	⁸⁸ Zr	32.51	8.38×10^{-30}	8.64×10^{-52}	50.90		
116 Ce	⁴ He	112 Ba	3.09	9.97×10^{-1}	4.94×10^{-7}	6.15		
00	⁸ Be	¹⁰⁸ Xe	7.32	2.53×10^{-11}	2.09×10^{-24}	23.52		
	^{12}C	104 Te	21.17	1.73×10^{-9}	4.38×10^{-7}	6.20		
	¹⁶ O	¹⁰⁰ Sn	31.71	4.23×10^{-11}	5.06×10^{-7}	6.14		
	²⁰ Ne	⁹⁶ Cd	34.76	1.66×10^{-18}	1.45×10^{-20}	19.68		
	²⁴ Mg	⁹² Pd	41.16	7.87×10^{-23}	1.43×10 1.07×10^{-26}	15.03 25.81		
	²⁸ Si	⁸⁸ Ru	41.10	1.80×10^{-25}	1.45×10^{-28}	25.81 27.68		
¹¹⁸ Ce	⁴ He	114 Ba	2.58	9.97×10^{-1}	6.34×10^{-12}			
	⁸ Be	110 Xe		9.97×10^{-12} 8.38×10^{-12}	0.34×10^{-10} 2.27×10^{-36}	11.04		
	⁻ Be ¹² C	106 Te	5.61 17.46	8.38×10^{-13} 2.03×10^{-13}	2.27×10^{-17} 2.38×10^{-17}	35.48		
	¹⁶ O	¹⁰² Sn	17.46	2.03×10^{-13} 5.29×10^{-14}		16.47	11.0	0.08
	²⁰ Ne		29.94		${\begin{array}{*{20}c} 1.13 \times 10^{-11} \\ 3.05 \times 10^{-23} \end{array}}$	10.79	11.0	9.6^{a}
	24 N C	⁹⁸ Cd 94D4	34.48	1.40×10^{-20}		22.36		
	²⁴ Mg ²⁸ Si	⁹⁴ Pd ⁹⁰ Ru	41.53	$\substack{2.24 \times 10^{-24} \\ 1.55 \times 10^{-26}}$	$2.81{ imes}10^{-27}\ 2.17{ imes}10^{-29}$	26.39		
		~~ H 11	48.18	L 55 X 10 20	2.17×10=**	28.50		

Parent nucleus	Emitted cluster	Daughter nucleus	Q value $({ m MeV})$	$\begin{array}{c} \text{Preformation} \\ \text{probability} \\ P_0 \end{array}$	$\begin{array}{c} \text{Decay}\\ \text{constant}\\ \lambda \ (\text{s}^{-1}) \end{array}$	Present	$\begin{array}{c} \log_{10} T_{1/2}^{\rm cal} ({\rm s}) \\ {\rm Ref.} [9] \end{array}$	Ref. [10]
¹²⁰ Ce	4 He	^{116}Ba	2.33	9.98×10^{-1}	7.23×10^{-14}	12.98		
	⁸ Be	112 Xe	4.55	9.06×10^{-12}	6.76×10^{-50}	49.01		
	¹² C	$^{108}\mathrm{Te}$	15.19	2.21×10^{-16}	5.84×10^{-26}	25.08		
	¹⁶ O	¹⁰⁴ Sn	27.12	2.63×10^{-16}	1.12×10^{-17}	16.79	16.6	14.0^{b}
	²⁰ Ne	^{100}Cd	32.50	4.57×10^{-21}	1.06×10^{-27}	26.82		
	²⁴ Mg	⁹⁶ Pd	40.87	9.17×10^{-24}	2.20×10^{-27}	26.50		
	²⁸ Si	⁹² Ru	48.10	2.98×10^{-25}	2.22×10^{-28}	27.50		
122 Ce	$^{4}\mathrm{He}$	118 Ba	2.09	9.96×10^{-1}	$1.27{ imes}10^{-15}$	14.74		
	$^{8}\mathrm{Be}$	114 Xe	3.89	5.11×10^{-12}	$3.01{ imes}10^{-56}$	55.36		
	^{12}C	$^{110}\mathrm{Te}$	14.80	7.75×10^{-21}	1.88×10^{-31}	30.57		
	¹⁶ O	106 Sn	24.69	1.39×10^{-23}	5.90×10^{-29}	28.07	21.9	$20.1^{ m b}$
	20 Ne	$^{102}\mathrm{Cd}$	28.58	8.13×10^{-30}	4.87×10^{-42}	41.15		
	²² Ne	100 Cd	26.38	7.84×10^{-33}	$7.27{ imes}10^{-51}$	49.98		
	²⁴ Mg	$^{98}\mathrm{Pd}$	37.73	4.99×10^{-33}	$2.56{ imes}10^{-41}$	40.43		
	^{26}Mg	$^{96}\mathrm{Pd}$	34.89	6.66×10^{-34}	$1.13{ imes}10^{-47}$	46.79		
	²⁸ Si	⁹⁴ Ru	46.56	8.85×10^{-33}	$3.67{ imes}10^{-38}$	37.28		
¹²⁴ Ce	$^{4}\mathrm{He}$	¹²⁰ Ba	1.73	9.90×10^{-4}	2.31×10^{-22}	21.48		
	⁸ Be	^{116}Xe	3.17	1.79×10^{-14}	$6.53{ imes}10^{-67}$	66.03		
	^{12}C	112 Te	12.77	3.86×10^{-24}	$1.19{ imes}10^{-41}$	40.77		
	¹⁶ O	¹⁰⁸ Sn	22.26	5.24×10^{-28}	$2.85 imes 10^{-38}$	37.39	27.9	27.0^{b}
	²⁰ Ne	¹⁰⁴ Cd	26.53	4.93×10^{-34}	$5.38{ imes}10^{-51}$	50.11		
	²² Ne	¹⁰² Cd	26.10	9.69×10^{-36}	9.60×10^{-55}	53.86		
	^{24}Mg	¹⁰⁰ Pd	34.65	3.18×10^{-33}	8.99×10^{-47}	45.89		
	²⁶ Mg	⁹⁸ Pd	33.01	1.01×10^{-30}	7.71×10^{-48}	46.95		
	²⁸ Si	⁹⁶ Ru	43.06	4.31×10^{-33}	1.42×10^{-42}	41.69		
¹²⁰ Nd	$^{4}\mathrm{He}$	116 Ce	3.03	9.96×10^{-1}	1.43×10^{-7}	6.69		
	⁸ Be	^{112}Ba	6.02	6.03×10^{-12}	$5.77{ imes}10^{-36}$	35.08		
	^{12}C	108 Xe	17.71	$1.14{ imes}10^{-16}$	1.04×10^{-21}	20.83		
	¹⁶ O	104 Te	31.36	1.79×10^{-15}	8.67×10^{-13}	11.90		
	²⁰ Ne	100 Sn	39.41	$1.99{ imes}10^{-19}$	6.26×10^{-18}	17.04		
	^{24}Mg	^{96}Cd	47.09	1.25×10^{-22}	1.02×10^{-21}	20.83		
	²⁸ Si	$^{92}\mathrm{Pd}$	54.17	3.95×10^{-25}	1.20×10^{-24}	23.76		
¹²² Nd	$^{4}\mathrm{He}$	118 Ce	2.95	9.97×10^{-1}	1.93×10^{-8}	7.56		
	⁸ Be	^{114}Ba	5.43	1.18×10^{-11}	1.38×10^{-40}	39.70		
	^{12}C	¹¹⁰ Xe	15.92	1.33×10^{-16}	1.82×10^{-26}	25.58		
	¹⁶ O	$^{106}\mathrm{Te}$	22.57	1.36×10^{-17}	5.26×10^{-21}	20.12	23.0°	$16.4^{\mathbf{a}}$
	²⁰ Ne	102 Sn	37.62	$4.41 imes10^{-19}$	$1.42 imes10^{-19}$	18.69		
	²⁴ Mg	$^{98}\mathrm{Cd}$	46.76	$2.36 imes10^{-20}$	$1.16 imes10^{-19}$	18.78		
	²⁸ Si	⁹⁴ Pd	54.41	6.37×10^{-22}	6.90×10^{-21}	20.00		
124 Nd	⁴ He	¹²⁰ Ce	2.81	$9.97 imes10^{-1}$	$1.34 imes10^{-9}$	8.71		
	⁸ Be	116 Ba	5.04	$1.04 imes10^{-11}$	$1.21 imes 10^{-44}$	43.76		
	^{12}C	112 Xe	14.72	$3.55 imes10^{-20}$	$1.36 imes10^{-33}$	32.71		
	¹⁶ O	$^{108}\mathrm{Te}$	25.16	$1.48 imes10^{-22}$	$2.25 imes 10^{-29}$	28.49		
	²⁰ Ne	¹⁰⁴ Sn	34.66	$1.08 imes10^{-24}$	$5.90 imes10^{-29}$	28.07		
	²⁴ Mg ²⁸ Si	$^{100}\mathrm{Cd}$ $^{96}\mathrm{Pd}$	$44.61 \\ 53.66$	$\begin{array}{c} 4.76 \times 10^{-25} \\ 3.43 \times 10^{-25} \end{array}$	$\frac{1.63\times 10^{-26}}{9.30\times 10^{-25}}$	$25.63 \\ 23.87$		
¹²⁴ Sm								
	⁴ He	120 Nd	2.89	9.97×10^{-1}	1.59×10^{-7}	6.64		
	⁸ Be	¹¹⁶ Ce	5.99	7.47×10^{-12}	1.61×10^{-38}	37.63		
	¹² C	^{112}Ba	17.87	1.60×10^{-15}	3.28×10^{-22}	21.33		
	¹⁶ O 20 M	108 Xe	28.45	3.89×10^{-18}	1.14×10^{-21}	20.78		
	²⁰ Ne	$^{104}{ m Te}$	36.77	$\begin{array}{c} 7.59 \times 10^{-22} \\ 7.64 \times 10^{-20} \end{array}$	$\begin{array}{c} 6.77 \times 10^{-26} \\ 3.30 \times 10^{-18} \end{array}$	$\begin{array}{c} 25.01 \\ 17.32 \end{array}$		
	²⁴ Mg	¹⁰⁰ Sn	49.70	4.68×10^{-23}	3.30×10^{-22} 1.30×10^{-22}	17.32 21.73		
	²⁸ Si	^{96}Cd	56.23	4.08×10^{-13}	1.30×10^{-10}	21.73		

TABLE I. (Continued).

Parent nucleus	Emitted cluster	Daughter nucleus	Q value $({ m MeV})$	$\begin{array}{c} \text{Preformation} \\ \text{probability} \\ P_0 \end{array}$	$egin{array}{l} { m Decay} \ { m constant} \ \lambda \ ({ m s}^{-1}) \end{array}$	Present	$\begin{array}{c} \log_{10} T_{1/2}^{\rm cal} ({\rm s}) \\ {\rm Ref.} [9] \end{array}$	Ref. [10]
¹²⁶ Sm	⁴ He	¹²² Nd	2.65	9.98×10^{-1}	1.27×10^{-9}	8.74	[-]	
	⁸ Be	¹¹⁸ Ce	4.52	$2.17 imes10^{-12}$	1.83×10^{-54}	53.58		
	¹² C	¹¹⁴ Ba	15.92	$5.77 imes 10^{-21}$	$\frac{1.03\times10}{8.58\times10^{-33}}$	31.91		
	¹⁶ O	¹¹⁰ Xe	26.65	$1.09 imes 10^{-23}$	6.52×10^{-31}	30.03		
	²⁰ Ne	106 Te	34.69	$4.59 imes 10^{-28}$	3.76×10^{-35}	34.26		
	²⁴ Mg	¹⁰² Sn	47.66	9.39×10^{-26}	1.51×10^{-26}	25.66		
	²⁸ Si	⁹⁸ Cd	56.95	2.74×10^{-26}	5.29×10^{-25}	24.12		
$^{128}\mathrm{Sm}$	$^{4}\mathrm{He}$	¹²⁴ Nd	3.22	9.98×10^{-1}	2.09×10^{-6}	5.52		
	${}^{8}\mathrm{Be}$	120 Ce	4.47	2.02×10^{-12}	$3.33{ imes}10^{-55}$	54.32		
	^{12}C	116 Ba	14.87	$1.44{ imes}10^{-23}$	1.17×10^{-38}	37.77		
	¹⁶ O	112 Xe	24.83	4.04×10^{-33}	9.83×10^{-43}	41.85		
	²⁰ Ne	$^{108}\mathrm{Te}$	33.04	$2.95 imes 10^{-38}$	6.82×10^{-48}	47.01		
	²⁴ Mg	104 Sn	46.12	2.46×10^{-35}	1.51×10^{-37}	36.66		
	²⁸ Si	100 Cd	54.91	2.63×10^{-36}	6.98×10^{-37}	36.00	$25.4^{ m c}$	
$^{128}\mathrm{Gd}$	⁴ He	124 Sm	3.70	3.96×10^{-1}	3.67×10^{-4}	3.28		
	$^{8}\mathrm{Be}$	120 Nd	6.12	1.27×10^{-2}	2.00×10^{-31}	30.54		
	¹² C	^{116}Ce	17.51	$7.73 { imes} 10^{-6}$	1.55×10^{-15}	14.65		
	¹⁶ O	112 Ba	28.67	$4.30{ imes}10^{-10}$	1.63×10^{-15}	14.63		
	²⁰ Ne	108 Xe	36.78	$1.14{ imes}10^{-15}$	$2.93{ imes}10^{-22}$	21.37		
	²⁴ Mg	$^{104}\mathrm{Te}$	50.02	$3.27{ imes}10^{-19}$	7.05×10^{-20}	18.99		
	²⁸ Si	¹⁰⁰ Sn	63.03	1.29×10^{-16}	6.84×10^{-13}	12.01		
¹³⁰ Gd	${}^{4}\mathrm{He}$	$^{126}\mathrm{Sm}$	4.16	3.89×10^{-1}	1.94×10^{-2}	1.55		
	⁸ Be	¹²² Nd	6.37	1.57×10^{-2}	7.02×10^{-28}	26.99		
	^{12}C	¹¹⁸ Ce	16.50	1.08×10^{-5}	1.51×10^{-18}	17.66		
	¹⁶ O	¹¹⁴ Ba	27.18	7.74×10^{-10}	7.58×10^{-18}	16.96		
	²⁰ Ne	¹¹⁰ Xe	35.44	2.85×10^{-15}	4.34×10^{-24}	23.20		
	²⁴ Mg	106 Te	48.48	2.21×10^{-20}	2.00×10^{-22}	21.54		
	²⁸ Si	102 Sn	61.42	1.52×10^{-16}	$5.70{ imes}10^{-16}$	15.08		
$^{132}\mathrm{Gd}$	⁴ He	¹²⁸ Sm	3.90	3.76×10^{-1}	1.21×10^{-4}	3.76		
	⁸ Be	124 Nd	6.65	2.07×10^{-2}	$2.33{ imes}10^{-26}$	25.47		
	¹² C	¹²⁰ Ce	16.19	1.98×10^{-5}	4.76×10^{-19}	18.16		
	¹⁶ O	¹¹⁶ Ba	25.84	1.46×10^{-9}	4.36×10^{-20}	19.20		
	²⁰ Ne	112 Xe	33.36	5.64×10^{-15}	2.73×10^{-27}	26.40		
	²⁴ Mg	¹⁰⁸ Te	46.57	9.47×10^{-21}	3.36×10^{-25}	24.31		
	²⁸ Si	104 Sn	59.62	7.18×10^{-20}	7.75×10^{-19}	17.95		

TABLE I. (Continued).

^aMasses are from Tachibana et al. [32] and Wapstra et al. [32].

^bMasses are from Masson et al. [32] and Wapstra et al. [32].

^cMasses are from Spanier et al. [32] and Wapstra et al. [32].

in general, the probability P_0 decreases as the size of the cluster increases. The nuclear shell structure effects are also demonstrated in P_0 by its being larger for clusters referring to doubly closed shell ¹⁰⁰Sn daughter (refer to ⁸Be and ¹⁶O clusters being preformed with almost largest P_0 values, respectively, in ¹⁰⁸₅₄Xe and ¹⁵⁶₅₆Ce parents). Notice, how ¹⁶O cluster preformation probability increases as it approaches the ¹⁰⁰Sn daughter. The same is true of other clusters referring to the doubly closed ¹⁰⁰Sn or its neighboring daughter. In other words, the shell structure effects are evident in these plots in terms of the minima (largest P_0) or coming down of the graph of one cluster with respect to another.

Finally, the calculated decay half-lives, preformation

probabilities P_0 and Q values are presented in Table I for various clusters. The calculations for Ba isotopes are given in Ref. [3], which together with Table I give a complete picture of the region studied here. The other model calculations are also shown in Table I for comparisons, where ever available [9,10]. We notice that our calculations here for the neutron-deficient parents match with other available calculations [9,10] as good as in the case of earlier neutron-rich radioactive or "stable" parents [2,16]. The agreement is very good in some cases (like ¹⁶O decay of ¹¹⁸Ce) but very bad in other cases (like ¹⁶O decay of ¹²²Ce). Specifically, for the only observed ¹²C decay of ¹¹⁴Ba, our calculations [3] predict $T_{1/2} \approx 10^5$ s where as the other calculations [9,10] predict $T_{1/2} \approx 10^7-10^8$

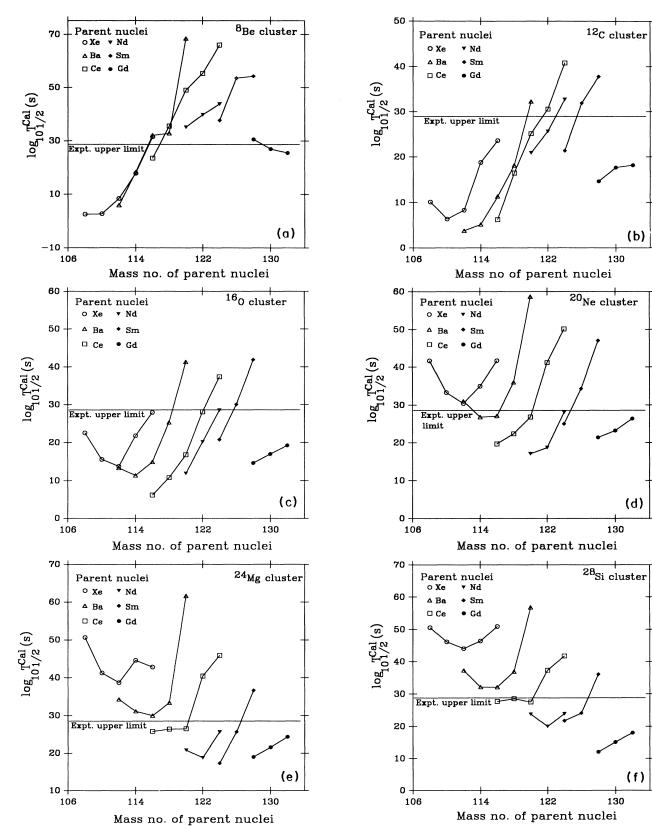


FIG. 5. (a) Logarithm of calculated half-lives vs mass of the parent nuclei ¹⁰⁸⁻¹¹⁶Xe, ¹¹²⁻¹²⁰Ba, ¹¹⁶⁻¹²⁴Ce, ¹²⁰⁻¹²⁴Nd, ¹²⁴⁻¹²⁸Sm, and ¹²⁸⁻¹³²Gd, for ⁸Be cluster. The results of calculation for Ba-isotopes are from Ref. [3]. The limit of present experiments is also shown. (b) Same as in (a), but for ¹²C cluster. (c) Same as in (a), but for ¹⁶O cluster. (d) Same as in (a), but for ²⁰Ne cluster. (e) Same as in (a), but for ²⁴Mg cluster. (f) Same as in (a), but for ²⁸Si cluster.

s; ours being much closer to experiments [5] $[T_{1/2}^{\exp}(^{12}\text{C}) \approx 1.7 \times 10^4 \text{ s}]$. All these calculations, however, depend strongly on the Q values used for calculating the penetrabilities P. Notice that in our case, the role of Q values (through the use of binding energies) also come in the calculation of preformation factor P_0 .

Very recently,³ a microscopic calculation [8] based on large single-particle basis and pairing two-body interaction has also become available for the cluster preformation factor P_0 in nuclei of the region under investigation. For the only calculation made for ¹²C decay of ¹¹⁴Ba, these authors [8] obtain $P_0 = 1.8 \times 10^{-7}$ which, for a similar Q value, compared nicely with our calculation [3] of $P_0 = 4.08 \times 10^{-8}$. As already stated in the introduction, the calculated half-lives in two models also agree within less than one order of magnitude.

Table I also shows that all the parents studied here (plus the Ba isotopes studied in Ref. [3]) are α emitters, and keeping in mind that the model of Malik and Gupta underestimates the α decay half-lives, all the calculated decay half-lives here lie below the present upper limit of experiments. The most probable (shortest $T_{1/2}$) α emitter is ${}^{108}_{54}$ Xe, since its daughter ${}^{104}_{52}$ Te₅₂ lies closest to the doubly magic Z = N = 50 shells. Perhaps, the α decay of ${}^{104}_{52}$ Te parent (not studied here) will be even more probable, since the daughter will then be the doubly magic ${}^{100}_{50}$ Sn nucleus itself. It is also evident from Table I that heavier deformed parents (like Sm or Gd) tend to become as good α emitters as the lighter parents like Xe or Ba. The same is true of heavier-cluster decays, up to ${}^{16}O$, which is depicted in Figs. 5(a) to tively, that ⁸Be cluster from ^{108–114}Xe, ^{112,114}Ba, ¹¹⁶Ce, and ^{130,132}Gd parents, ¹²C from ^{108–114}Xe, ^{112–118}Ba, ^{116–120}Ce, ^{120,122}Nd, ¹²⁴Sm, and ^{128–132}Gd parents, and ¹⁶O from ^{108–116}Xe, ^{112–118}Ba, ^{116–122}Ce, ^{120–124}Nd, ¹²⁴Sm, and ^{128–132}Gd parents are the possible measurable cases with the present experimental methods. For clusters heavier than ${}^{16}O$ [Figs. 5(d) to 5(f)], the heavier parents are shown to decay more favorably (shorter $T_{1/2}$ values). Specifically, ²⁰Ne cluster decays of ^{114,116}Ba, ^{116–120}Ce, ^{120–124}Nd, ¹²⁴Sm, and ^{128–132}Gd parents [Fig. 5(d)], ²⁴Mg decays of ^{116–120}Ce, ^{120–124}Nd, ^{124,126}Sm, and ^{128–132}Gd parents [Fig. 5(e)], and ²⁸Si decays of ¹¹⁶⁻¹²⁰Ce, ¹²⁰⁻¹²⁴Nd, ^{124,126}Sm, and ¹²⁸⁻¹³²Gd [Fig. 5(f)] parents, are predicted to lie below the upper limit of present experiments. Apparently, all these results fit nicely with the known fact that, being the still heavier nuclei, the radioactive parents are not only the best α emitters, but also the best heavy-cluster emitters. The interesting result here is that ^{108–114}Xe, ^{112–116}Ba, and ^{116,118}Ce are also predicted to be very good α emitters, as well as emitters of ⁸Be, ¹²C, and/or ¹⁶O clusters. Similar to that for radioactive parents [16], the α -decay probabilities in this region of nuclei are also much larger (shorter $T_{1/2}$) than the heavy-cluster decay probabilities.

The dominance of ${}^{100}_{50}$ Sn daughter is also evident in

Figs. 5(a) to 5(f) for the heavier cluster decays. The emission of ⁸₄Be from ¹⁰⁸₅₄Xe [Fig. 5(a)], ¹²₆C from ¹¹²₅₆Ba [Fig. 5(b)], ¹⁶₄O from ¹¹⁶₅₈Ce [Fig. 5(c)], ²⁰₁₀Ne from ¹²⁰₆₀Nd [Fig. 5(d)], ²¹₂₄Mg from ²⁶₆₂Sm [Fig. 5(e)], and ²⁸₁₄Si from ¹²⁸₆₄Gd [Fig. 5(f)] are shown to be the most probable ones (smallest $T_{1/2}$ values). These are all $A_2 = 4n$, $Z_2 = N_2$ (α nuclei) cluster decays of N = Z parents. Table I shows that for a given cluster decay, of all the parents, the Q value for the N = Z parent is also the largest. This establishes that the ¹⁰⁰Sn daughter is associated with the $A_2 = 4n$, $Z_2 = N_2$ (α nuclei) cluster decays, and is referred to as Sn radioactivity. This new radiactivity is most probable for the N = Z parents. Such a result is further strengthened when we study, in the following subsection, the $A_2 = 4n + 2$ cluster-decays.

B. $A_2 = 4n + 2$ cluster decays

As already pointed out above, Fig. 1 shows the potential energy minima at $A_2 = 4n + 2$ clusters for $N \gg Z$ parents only. Then, Table I and the GN plots in Fig. 3 show that, though the Q values for $A_2 = 4n + 2$ clusters are of the same order as for their neighbors $(A_2 = 4n)$, the calculated $T_{1/2}$ values are always very large, i.e., beyond the present day experiments. For this reason we have not plotted the calculations for $A_2 = 4n + 2$ in any other graph. Hence, $A_2 = 4n + 2$ cluster-decays of all the parents studied here and in Ref. [3], are far less favorable than the $A_2 = 4n$ cluster decays.

IV. SUMMARY AND CONCLUSIONS

We have presented the cluster-decay calculations for the even-even neutron-deficient $^{108-116}$ Xe, $^{116-124}$ Ce, $^{120-124}$ Nd, $^{124-128}$ Sm, and $^{128-132}$ Gd parents, which combined with results of $^{112-120}$ Ba from Ref. [3] constitute the region of possible $^{100}_{50}$ Sn-radioactivity. The calculations are based on the well studied preformed cluster model (PCM) of Malik and Gupta.

We find that all the parents studied are good α emitters. For the heavy cluster decays, the systematics of calculated $T_{1/2}$ values fit nicely with the known properties of radioactive nuclei being as best α and heavy-cluster emitters. The ¹⁰⁸⁻¹¹⁴Xe, ¹¹²⁻¹¹⁶Ba, and ^{116,118}Ce are predicted to be very good emitters of not only the α particle, but also the heavy ⁸Be, ¹²C, and/or ¹⁶O clusters. In general, the $A_2 = 4n, Z_2 = N_2$ clusters are predicted to be far more probable than the $A_2 = 4n + 2$ clusters. Furthermore, $A_2 = 4n$, $Z_2 = N_2$ (α nuclei) cluster decays of the Z = N parents are predicted to be the most probable cases for measurements. This refers to clusters from ⁸Be to 28 Si nuclei with $^{100}_{50}$ Sn daughter, called Sn radioactivity. Hence, we have established here that Sn radioactivity is associated with the emission of $A_2 = 4n, Z_2 = N_2$ (α nuclei) clusters, whereas it is known [16] that the already measured Pb radioactivity prefers the $A_2 \neq 4n, N_2 > Z_2$ clusters.

The nuclear structure effects of proximity potential or binding energies (shell effects) are shown to be contained in the GN plots, since all the plots deviate from straight

³See footnote 1.

lines and have different slopes and intercepts. The associated cluster preformation probability P_0 show the (doubly) closed shell effects of ${}^{100}_{50}$ Sn daughter interms of its value becoming maximum or rising suddenly (refers to minima or coming down of the $-\log_{10} P_0$ vs parent mass A graphs). This happens for $A_2 = 4n$, $Z_2 = N_2$ (α nuclei) clusters emitted from Z = N parents. Also, the P_0 values for α decay are the largest for all parents.

- R. K. Gupta, in Proceedings of the 5th International Conference on Nuclear Reaction Mechanisms, 1988, Varenna, Italy, edited by E. Gadioli (Ricerca Scientifica Educazione Permanente, Italy, in press), p. 416; S. S. Malik, S. Singh, R. K. Puri, S. Kumar, and R. K. Gupta, Pramana J. Phys. 32, 419 (1989).
- [2] R. K. Gupta, S. Singh, R. K. Puri, and W. Scheid, Phys. Rev. C 47, 561 (1993).
- [3] S. Kumar and R. K. Gupta, Phys. Rev. C 49, 1922 (1994).
- [4] Yu. Ts. Oganessian et al., JINR, Dubna, Report No. E7-93-57, 1993.
- [5] A. Guglielmetti, B. Blank, R. Bonetti, Z. Janas, H. Keller, R. Kirchner, O. Klepper, A. Piechaczek, A. Plochocki, G. Poli, P. B. Price, E. Roeckel, K. Schmidt, J. Szerypo, and A. J. Westphal, Nucl. Phys. A (to be published).
- [6] S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989).
- [7] R. Blendowske, T. Fliessback, and H. Walliser, Nucl. Phys. A464, 75 (1987).
- [8] D. S. Delion, A. Insolia, and R. J. Liotta, J. Phys. G 20, 1483 (1994).
- [9] D. N. Poenaru, W. Greiner, and R. Gherghescu, Phys. Rev. C 47, 2030 (1993).
- [10] G. Shanmugam, G. M. Carmel-Vigila-Bai, and G. Suresh, DAE Symposium on Nuclear Physics (India) 36B, 108 (1993).
- [11] R. K. Puri, S. S. Malik, and R. K. Gupta, Europhys. Lett. 9, 767 (1989).
- [12] R. K. Gupta, W. Scheid, and W. Greiner, J. Phys. G 17, 1731 (1991).
- [13] S. Singh, R. K. Gupta, W. Scheid, and W. Greiner, J. Phys. G 18, 1243 (1992).
- [14] R. K. Gupta, S. Singh, R. K. Puri, A. Sandulescu, W. Greiner, and W. Scheid, J. Phys. G 18, 1533 (1992).
- [15] S. Kumar and R. K. Gupta, Int. J. Mod. Phys. E 3, 195

(1994).

- [16] R. K. Gupta and W. Greiner, Int. J. Mod. Phys. E 3, 335 (1994, Supp.).
- [17] B. Buck, C. B. Dover, and J. P. Vary, Phys. Rev. C 11, 1803 (1975); B. Buck and A. C. Merchant, *ibid.* 39, 2097 (1989).
- [18] J. Cseh, Phys. Lett. B 281, 173 (1992); G. Lavai, J. Cseh, and W. Scheid, Phys. Rev. C 46, 548 (1992).
- [19] J. Cseh, R. K. Gupta, and W. Scheid, Phys. Lett. B 299, 205 (1993).
- [20] R. K. Gupta, W. Scheid, and W. Greiner, Phys. Rev. Lett. 35, 353 (1975).
- [21] J. A. Maruhn and W. Greiner, Phys. Rev. Lett. 32, 548 (1974).
- [22] D. R. Saroha and R. K. Gupta, J. Phys. G 12 1265 (1986).
- [23] S. S. Malik, N. Malhotra, D. R. Saroha, and R. K. Gupta, International Centre for Theoretical Physics, Trieste, Italy, Report No. IC/86/128, 1986 (unpublished).
- [24] G. Süssmann, Z. Phys. A 274, 145 (1975).
- [25] J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann. Phys. (N.Y.) 105, 427 (1977).
- [26] H. Kröger and W. Scheid, J. Phys. G 6, L85 (1980).
- [27] S. Kumar, Ph.D. thesis 1993, Panjab University, Chandigarh, India.
- [28] R. K. Gupta, Frontier Topics in Nuclear Physics, NATO Advanced Study Institute, edited by W. Scheid and A. Sandulescu (Plenum, New York, 1993).
- [29] G. A. Pik-Pichak, Yad. Fiz. 44, 1421 (1986) [Sov. J. Nucl. Phys. 44, 923 (1986)].
- [30] D. N. Poenaru, M. Ivascu, A. Sandulescu, and W. Greiner, Phys. Rev. C 32, 572 (1985).
- [31] R. K. Gupta, Fiz. Elem. Chastits At. Yadra 8, 717 (1977)
 [Sov. J. Part. Nucl. 8, 289 (1977)].
- [32] P. E. Haustein, At. Data Nucl. Data Tables 39, 185 (1988).