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The fractional parentage expansion method is extended from SUt(2) nonrelativistic to SUf(3)
and relativistic dibaryon calculations. A transformation table between physical bases and symmetry
bases for the SUt(3) dibaryon is provided. A program package is written for dibaryon calculation
based on the fractional parentage expansion method.
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X. INTRODUCTION

Quantum chromodynarnics (QCD) is a very promis-
ing theory for fundamental strong interactions. However,
because of the complexity of QCD, for the present time
and for the foreseeable future, one must rely on QCD-
inspired models to study hadron physics. The existing
models (potential, bag, soliton, etc.) are quite successful
for the meson and baryon sectors, but not so successful
for hadronic interactions. Recently, some hope has de-
veloped to obtain the full N-N interaction &om QCD
models [1,2].

Since the Grst prediction of the H particle by JafFe
[3], there have been tremendous efforts both theoreti-
cally and experimentally [4] to find possible candidates
for quasistable dibaryon states. Nevertheless, there re-
mains an outstanding question. Theoretically, all the
QCD models, including lattice QCD calculations, predict
that there should be quasistable dibaryons or dibaryon
resonances, but in contrast, experimentally, no qua-
sistable dibaryon whatsoever has been observed (except
the molecular deuteron state). One has to ask if some
important QCD characteristics are missing in all these
dibaryon calculations. For example, in the potential (or
cluster) model approach, the six-quark Hamiltonian is
usually a direct extension of the three-quark Hamilto-
nian. This extension is neither reasonable nor successful.
The two-body confinement potential yields color van der
Waals forces which are in contradiction with expenmen-
tal observation. Lattice gauge calculations and nonper-
turbative QCD both yield a stringlike structure inside
a hadron instead of two-body confinement. Two-body
confinement may be a reasonable approximation inside
a hadron, but not for the interaction between quarks in
two color-singlet hadrons [5]. Another possible missed
general feature is that the quark, originally confined in
a single hadron, may tunnel (or percolate) to the other

hadron when two hadrons are close together [6]. In the
potential model approach, the internal motion of the
interacting hadrons is assumed to be unchanged. The
product ansatz of the Skyrmion model approach makes
the same approximation. In the bag model approach,
another extreme approximation is assumed; i.e., the six
quarks are merged into a single confinement space. The
real configuration may be in between these two extremes,
which is weil known in molecular physics.

Except for a few cluster model calculations, in which a
phenomenological meson exchange is involved to fit the
N-N scattering, for all the other dibaryon calculations,
the model parameters are only constrained by hadron
spectroscopy. In fact, the six-quark system includes new
color structures, for which a single hadron cannot give
any information. A six-quark Hamiltonian should be con-
strained by the existing baryon-baryon interaction data,
especially the N Ndata; then, -the model dibaryon states
may be really relevant to the experimental measurement

A model, the quark delocalization color screening
model (QDCSM), has been developed which includes the
new QCD-inspired ingredients mentioned above and is
constrained by N-N scattering data [2]. This model has
been applied to a systematic search of the dibaryon can-
didates in the u, d, and s three-fiavor world [7] to provide
a better estimate of dibaryon states on the one hand and
to test the model assumption further on the other hand.

As pointed out in [4], a more realistic systematic
search of dibaryons would be a tremendous task, for
which a systematic and powerful method is indispens-
able. The fractional-parentage (fp) expansion devel-
oped in atomic and nuclear physics is one of such meth-
ods. A major obstacle in applying the fp-expansion
technique to quark models is the occurrence of many
SU(mn) DSU(m) x SU(n) isoscalar factors (ISF's) with
m, n + 2, e.g. , in the two orbits, two spins, nf Qavors,
and three-color quark world. We need the SU(2 x 3 x nf x
2) Z SU (2)xSU(6ny), SU(6nf) DSU'(3)xSU(2nf),
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SU(2ny) DSU (ny) x SU (2) ISF's, where x, c, f, and o
indicate the space or orbit, color, Qavor, and spin, respec-
tively. Before 1991, only the SU(4)DSU(2) xSU(2) ISF
[and some scattered results for the SU(6) &SU(3) x SU(2)
ISF] was available. A breakthrough in group repre-
sentation theory is the recognition of the fact that the
SU(nin2) ~SU(ni) xSU(nz) n2-particle coeKcients of fp
(cfp) are precisely the ISF for the permutation group
chain S(ni + n2) D S(ni) x S(n2) [8(a)], and the former
can be calculated ad tabulated in a rank-independent
way, instead of one m and n at a time. In 1991, Chen
et al. [8(b)] published a book with phase-consistent
SU(mn) DSU(m) xSU(n) ISF's for arbitrary m and n
and for up to six particles. Because of this, we are now in
a position to develop an efBcient algorithm for dibaryon
calculations based on the fp technique. This paper re-
ports the extension of the fp expansion to the nonrela-
tivistic and relativistic SU~(3) quark model calculation
in line with the work of Harvey [9) and of Chen et al.
[1o].

II. PHYSICAL AND SYMMETRY BASES
A dibaryon may be a loosely bound two-q -cluster state

like the deuteron, or it may be a tightly bound q cluster
like Jaffe's version of the H particle. Many cases may be
in between. To describe these states, the physical basis is
preferable because of its apparent dibaryon content in the
asymptotic region without artificial con6nement assump-
tions. The physical basis is nothing else but the cluster
model basis developed in the nuclear cluster model [11].
To show the symmetry property explicitly, we follow the
notation of Chen et al. [8,10], but with a slight modifi-
cation, because we are working in the u, d, 8 three-Bavor
world instead of u, d Bavors.

A baryon in the u, d, 8 three-Havor world is described
by

[v]

@(&)= f~l~ Ivtff1 &~~),
which is a basis vector belonging to the irreducible rep-
resentations (irreps)

( l~j [~j f'

SU(36)z
~

SU*(2) x SU(18)~SU'(3) x SU(6)~ SU~(3)zSU (2) x U (1) x SU (2)
l )

where the first reduction is to orbital times combined
color-Havor-spin symmetry, the second. reduces the latter
to color times combined Havor spin, and the third re-
duces the last to flavor (which is itself reduced to isospin
times hypercharge) times spin. Here [v], etc. , are the
Young diagrams describing the permutational and SU(n)
symmetries. In our calculation, the ground-state baryons
are assumed to be in the totally symmetric orbital state
[v] = [3], while [cr] = [1 ]W is the Weyl tableau for the
SU'(3) state due to color confinement; i.e. , the baryon is
colorless. On the other hand, [p] = [3] as a result of the

I

totally antisymmetry requirement [cr] x [p] m [v] = [1 ],
[v] being the conjugate Young diagram of [v]. [f] and
[Og] are restricted by the condition [f] x [Og] ~ [p] = [3],
and this leads to [f] = [o~] = [3] or [21]; [o~] represents
the spin symmetry, [0J] = [2 + J, 2

—J), and n is the to-
tal number of quarks, i.e. , the SU~(3) decuplet and octet
baryons L, Z*, :-*,0 and N, A, Z, :-. The symbols Y, I,
and J denote the hypercharge, isospin, and spin quan-
turn numbers, respectively. My and Mg, the magnetic
quantum numbers, are omitted in Eq. (1).

A two-baryon physical basis is described by

[cr] I J
4 „(B,B,) = A[/(B, )g(B,)] WM&MJ

[v1] [v~] [cr] I J
[~i][pi][fi]&iIiJi [~2][s 2][f2]&2I2J2 +'MrMJ. , (3)

fcr] I J
here, [ ] ~M~Mg means couplings in terms of the
SU'(3), SU (2), and SU (2) Clebsch-Gordan coefficients
(CGC's) so that it has total color symmetry [o]W, isospin
IMJ, and spin JMJ. Because of color confinement,
only the overall color singlet [0.] = [2s] is allowed. A
is a normalized antisymmetric operator. n = (YIJ)
with Y = Yj + Y2, k represents the quantum numbers
v;, a.;,p;, f, , I;, J; (i = 1, 2).

To take into account the mutual distortion or the in-
ternal orbital excitation of the interacting baryons when
they are near one another, the delocalized single-quark
state l(r) is used for baryon Bi (B2) [2,6,7]

~ = [&L + e(s)&~)P'(s) r = [4~+ ~(s)di]l~(s)

~'( ) =1+ '( )+2 ( )(4' [& ) .

The 8 is the separation between two-q -cluster centers,
and e(s) is a parameter describing the delocalization (or
percolation) efFect, which is determined variationally by
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[&)&'~'

@-~(q') = (~(]]]'(](P(f(&I~M'M') (5)

the q dynamics. Hidden color channels are not included
in Eq. (3), because it has been proven [12] that colorless
hadron channels form a complete Hilbert space if excited
colorless baryon states are included. Also, the concept
of a colorful hadron has not been well defined in @CD
models.

Physical bases are not convenient for matrix element
calculations. To take advantage of the fp-expansion tech-
nique developed in atomic and nuclear physics, one has
to use symmetry bases (group chain classification bases).
This requires an extension of the qs state [Eq. (1)] to the
q case,

Here K represents the quantum numbers [v], [p], P, [f]
appearing in Eq. (5). [o] = [2 ] as a result of color con-
finement. To be consistent with the physical basis choice,
the orbital part is truncated to include the l r config-
uration only. [v] is restricted to be [v] = [3] x [3]

[6] + [51] + [42] + [33]. P is the inner multiplicity index
in the reduction [p] ~ [f] x [0~].

Physical and symmetry bases both form a complete set
in a truncated Hilbert space and are related by a unitary
transformation. Harvey [9] first calculated the transfor-
mation coefFicients for the u, d two-Havor case. Chen et
al. [10] proved that the transformation coefficients are
just a product of (6 + 3 + 3)SU(mn) DSU(m) xSU(n)
isoscalar factors. Here we extend them to the SU~(3)
case,

[V1 ]l [v~]~' l) I
[+i] [Pl][fi]YiIi ~i [(r2] [P'2] [f2]Y2I2 +2 ~MIMg

][~][~] &[I 1p[yl~z &[y]~v I [v]l v

Ir ]]hi~„fr*]fy*]z. ]g, ]v;I, ]y,p;z, (~1~(l'r If(&I&Mrs) .
vg Pf

This expression is written simply as

@ ((&i&2) = ) &(Ic@ z(q');

here, p is an outer multiplicity index in the reduction
[fi] x [f2] ~ [f]. The first two | factors in Eq. (6) are
the SU(18)~SU'(3) xSU(6) and SU(6)zSU~(3) XSU (2)
isoscalar factors, respectively, and the third one is the
SU~(3) ~SU (2) x U (1) isoscalar factor. All these
isoscalar factors can be found in Ref. [8(b)]. The cal-
culated transformation coefficients are listed in Table I.
The Y = 2 part is a revised version (phase consistent and
simplified for I = J = 1 case) of Harvey's Table 11 [9].
(The relationship between our tables and those of Harvey
is discussed in the Appendix. ) The Y' g 2 part is an ex-
tension of Harvey's two-Qavor case to a three-Qavor case.
Because the hidden color channels are not included, this
table can be used to expand the physical bases in terms
of the symmetry bases only. If one wants to expand the
symmetry bases in terms of the physical bases, then the
hidden color physical bases (or other equivalent set of
bases) should be added. One example is

ful baryons X and Y, A, is the Qavor singlet A, and L'
represents an excited colorful baryon with spin 2. In the
prevailing literature, only the first three colorless chan-
nels are given [13]. See the Appendix for a description
of the difference between our meaning for symmetry and
that of Harvey [9].

III. FRACTIQNAL PARENTAGE EXPANSION

A physical six-quark state with quantum number o. =
(YIJ) is expressed as a channel coupling wave function

The channel coupling coefficients Cy are determined
by the diagonalization of the six-quark Hamiltonian as
usual.

To calculate the six-quark Hamiltoniao matrix ele-
ments in the physical basis,

II~(, = &@ ~llHll@ ~),

l~~). +

l~'~'). —

lA, A, ), .

]N=)—

lAA).

lA'A'),

(8)

is tedious. We first express the physical basis in terms of
the symmetry basis by the transformation [Eq. (6)], and
the matrix element [Eq. (10)] is transformed into a sum
of matrix elements in the symmetry basis

&» = p. &~Ic&~ ~ &@-~IH]~'-~ ) .
K,K'

Here ]XYj means the symmetric channel of baryons
X and Y, lX'Y'), means hidden color channel of color-

The matrix elements (4~1clH]C ~ j can be calculated
by the well-known fp expansion method,



EXTENSION OF FRACTIONAL PARENTAGE EXPANSION TO. . . 1651

TABLE I. Transformation coefFicients between physical bases and symmetry bases. The column labels are [v], [p], [f]: where

1 stands for the symmetry label [6]; 2, [51];3, [42]; 4, [33]; 5, [411];6, [321]; 7, [222]. The row labels are BiB&. 1 stand for the
nucleon N; 2, Z; 3, :";4, A; 5, A; 6, Z'; 7, :-";8, A. zy (xy) means symmetric (antisymmetric) channel of baryons z and y.
The transformation coefBcients should be the square root of the entries, and a negative sign means to take the negative square
root.

IJ =33
55

411
1

(a) Y'=2

IJ =32
55

321
1

IJ =31 231 431
4
9

IJ =30 141 341
4
5

IJ =23
55

322
1

IJ =22
15
51
55

232
1
9
0

4
9

322

—1
0

412 432
4

45
0
16
45

IJ =21
15
15
55

142
4

45
0

1
9

232 322
16
45
0

4
9

IJ =20 232 432
4
9

IJ =13
55 5

9
4
9

IJ =12
15
15
55

4
45
0

1
9

323 343
16
45

4
9

4133

IJ =11
11
15
15
55

2133
5

81
20
81

0
20
81

2233
20
81

5
81

0
20
81

0
0

—1
0

413 4y33
4
81

16
81

0
16
81

4233
16
81

4
81

0
16
81

IJ =10
11
55

9
4

45

343
4
9
16
45

IJ =03
55

144
4
5

IJ =02 234
5
9

434
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TABLE I. (Continued)

1
9

4
45

324 344
4
9
16
45

IJ =00
11
55

1
9

4
9

414

411
1
0

4
45

16
45

(b) Y'=1

25
25
56
56

= —25
2

—1
0
0

412 432
4

45

16
45

IJ= —12

25
25
56
56

142

1
9

5
9

232 322
16
45

431

0
4
9

0

432

56
56

1
5

232

5
9

341
4
5

432

56
56

= -'3

5
9

322 433

4
9

IJ= -2
2

16
25
45
25
15
56
16
56

0
1

36
0
0

1
20

0
1

90
1
9

5
72
0
5

144
1

144
0

4
9

0

233
5

72
0

5
16

25
144
0
0
0
0

5
36
0
5

72
25
72
0
0
0
0

322

0
1

16
0

5
16

8
0

0
25
144
0

5
16

5
72
4
9

325

1
8

1
5

0
2

45
4
9

412
1
2
0
1
4
1

20
0
1
5
0
0

432
1

18
0
1

36
1

180
0
16
45

0

16
25
45
25
45
56
16
56

433
1

18
0

1
4

5
36
0
0
0
0

435
1
9

0
1

18
5
18
0
0
0
0

142
1

18

145
2

45

232

0

2313
0

2323

0 25
72

323 325
1

36

342
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TABLE I. (Continued).

25
45
25
45
56
16
56
12
12

0
1

36
1

180
0

1
9

0

0
1

45
1
9
0

1
45

5
144
0
0
25
144
0
25
72
0
0

25
324

5
36

5
162

20
81
5
81

25
1296

5
144

5
648
20
81

20
81

25
72

0
5

72
0

5
36

0
0
0

0
25
144

5
144
0
4
9
0
0
0
0

0
9
16

5
16

0
0
0
0
0
0

0
1

72
5

72
0

0
0

0
1
9
1

45
0

4
9

0
0
0
0

16
25
45
25
45
56
16
56
12
12

3
45

0
4

45
4
9
0
0
0

0
4

45

413
0
5

36
0

1
4

0
1

18
1
9
4
9
0

432

0
1

36
0
0
5

36
0
5
18
0

4313
0

5
81

0

2
81

16
81
4
81

4323

0
5

324
0

1
36

1
162
16
81

16
81
0

435

0
5
18
0
0
1

18
0

1
9

0

IJ= -0
12
12
56
56

0

4
45

232

0
0

5
9

0

0
0
0
16
45

432

0
4
9

0

4
9

IJ= -3
56
56 0

344

0 4
9

0

IJ = -'2

16
25
25
56
16
56

143
16

255

4
225

1
9

0
0

1
25

4
25

0
1
9
0

234

0

5
9

236 323

0

0

343
64

225

16
225

4
9

0

4
25

0
16
25
0
0
0

433

0
4

45
0
0
16
45
0

434

0
0

4
9

0
16
45
0

4
45

IJ= —1

12
14
12
14
56
56
16
25
25
16

144

0
1

18
0

4
45
0
0

146

2
25

0
4

45
0
1

45

2313
0
1

18
1

162
0
20
81
0
16
81

0
4

81

2323

0
2
9

2
81

0
20
81

0
4

81
0

1
81

0

2316
0

1
36
1
4

0

0
1
18

0
2
9
0

2326

0
1

36
1
4

0

0
1

18
0

2
9

0

323

0
0
0

0
1
5

0
4
5

324

0
2
9
0

9
0
0
0
0

326
5
18

0
0
5
18
0

0
16
45
0
4

45

344

16
45

0
0
0

12
14
12

8
45

413

2
5

2
45

2
45

2
405

4323

8
45

8
405

4316

1
45
1
5

4326

1
45
1
5
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TABLE I. (Continued)

14
56
56
16
25
25
16

IJ = -'o

12
14
12
14
56
56

IJ = 23'
57
66
57

8
45

0

0
16
45
0
4

45

143
0
1

10
1

90
0

4
45
0

233
1
3

2
9
0

0
1
9
0
16
45
0
4

45
0

234
1

18
0
0
1
18
0

0
0
1

0
16
81
0
64

405
0
16

405
0

236
5
18
0
0

5
18

0

411

0

0
16
81

0
16

405
0

4
405

323

0
2
5

2
45

0
5
9
0

4
15

8
45

0

0
2

45
0
8

45
0

326

0
1

10
9
10
0
0
0

(c) Y = 0

0
2

45
0

8
45
0

343

0
2
5

2
45
0
16
45
0

414

0
0
2
5
0
1
5

2
45

0
2

45
0
16
45

436

2
9

0

IJ=22
26
35
35
5?
26
66
57

143

1
15
1

15
1

45
2

45

232
1

12
1

36
0

0

233
5
36

5
12

0
0
0
0
0

321
0

0
2
5
0
3
5
0

322'

0
0

1
4

0
0

323

0
0

5
12

4
15
5

36
8

45
0

343

0
0

4
15
4
15

4
45
8

45
0

412

0

0
0

432
1

15
1

45
0

16
45

433
1
9

1
3

0
0
0
0

IJ=21
26
35
35
57
26
57
66
22

142
1

15
1

45
0
0
0

1
9

0

231

0

0
0

1
3

0

0
0
5

36
0
5
12
0
0
0

2313

0
5

27
4
27

5
81

0
8

81
5

81

2323

5
108

4
27
5

324
0
8

81
20
81

322
5
12
5

36

0
0
4

0
0

1
4

3
4
0
0
0

0
0
0

4
15
4

45

0

4
9

0

413

1
3

1
15
1
9

2
45

4
9

431
0
0
0

8
45

0
4
15

0

26
35
35
57
26
57
66
22

432
0
0
1

0
1
3
0
0
0

4313
0

4
27
16

135
4

81
0
32

405
4

31

4323
0

1
27

16
135

1
81

0
32

405
16
31

IJ =20
57
66
57
22

141
2

25
3

25
0
0

143
4
75

8
225
0
1
9

232

0
5
9

1
3

2
9

0
4
9

341
8

25
12
25

0
0

343
16
75

32
225
0
4
9

432

0
4
9

0
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TABLE I. (Continued).

57
66
57

144
2
15

1
15
0

233

0
0

322 344
3
15

15

433
0

4
9

17
26
35
46
35
57
26
46
17
57
66

143
0
1

25
1

225
0
0

2
75

4
225

1
9

0

146

0
2

75
8

75
0

1
25

2
75

232
1

27

0
1

18
1

108
4

27
1

108
0

8
27

0
1
6
1

36
0

234

0
0
0
0
0
10
27

0

5
27

235
5

27

0
0
5

27
0
5

27
0
0
0
0

2
27

0
1
9

8
27

0
2

27

322

0
1

12
1

12

0
0
0

1
2
1
3

323
0
1
4

1
36
0

1
6

1
9
4
9

325

0
1
3
1
3

0
0

0
1
3
0
0

17
26
35
46
35
57
26
46
17
57
66

343
0
4

25
4

225
0
0
0

8
75

16
225

4
9

0

346

0
8

75
32
75

0
0

4
25

8
75

0

412
4
15
0
0
2
5
1

15
1

15
1

15
0

2
15

4
135

0
2

45
1

135
16

135

135
0

32
135

4
45

0
2
15
1

45
0

0
0
0

0
0
0
0
0

8
27

0

4
27

435
4

27

0
0
4

27
0

27
0

436
8

135
0
0
4

45
32
135
0
8

135

0
0
0

IJ =11
17
26
35
46
35
57
26
46
66
17
57
13
22
24
13
42

142
4

135
0
0
2

45
1

135
1

27
1

135
0

2
27

0
0
0
0
0
0
0

144

0
0
0
0
0

8
135
0
0
4

135
0
0
0
1

54
0
1

27
1

18

145
8

135
0

0
8

135
0
8

135
0

0
1

270
0
1

135
1

90

146
2

135

0
1

45
8

135
0

2
135

0
8

135
0

4
135
0

232

0
5

108
5

108
0
0
0
0
5
18
0
5

27
0
0
0
0

0
1
9

1
81
0

2
27

4
81

20
81
2

81
0
1

27
0

2323

0
1

36
1

324
0

0
1

54
0

1
81
20
81

8
81
0
4

27

235

0
5

27
5

27
0
0
0
0
0
0

5
27

2316
0
1

27

27
0

1
18

1
27

0
1
6

0
1
9
0

2326

0
1

27
4

27
0

1
18

0
1

27

6
0
1
9
0

17
26
35
46
35
57
26
46

322
5

27

0
5
18
5

108
4

27
5

108
0

323
1
5

0
3
10
1

20
0

9
20

324

0
0
0
0
0
10
27
0

325
1

27

0

1
27

1
27

8
135

0
4

45
32
135
0

8
135

16
135

8
45
4

135
4

27
24
135

0
0
0
0
0
32
135
0

345
32
135

0
0
32
135
0
32
135
0

346
8

135

0
4

45
32
135
0

8
135

413
0
1
5

1
45

0
0
0
0

2
15
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TABLE I. (Continued)

66
17

57
13
22
24
13
42

8
27

0
0
0
0
0
0

0
0

0
0
0
0

5
27

0

0
2

27
0
4
27
2
9

0
0

0
4

27
0
8

27
4
9

0
0

0
10
27

0
5

27
0

8
27

0
0
0
0
0
0

16
135

0
0
2

27
0
4

27
2
9

0
0

0
2

135
0

135
2

45

0
0

0
32
135
0
16
135
0

4
45
1
9
8

45
0
4
15
0

17
26
35
46
35
57
26
46
66
17
57
13
22
24
13
42

432

0
1

27
1

27
0

0
2
9
0
4
27
0
0
0
0
0
0

4313
0

4
45

4
405
0
0

8
135
0
16

405
16
81
8

405
0

135
0

4323

0
1

45
1

405
0

0
2

135
0

4
405
16
81

32
405
0
16
135
0

435

0
4

27
4

27
0
0
0
0
0
0

4
27

0
0
0
0
0
0

4316
0
4

135
16
135
0

0
2

45
0

4
135
0

2
15

0
4

45
0

4326

0
4

135
16

135
0

2
45

4
135
0

2
15

0
4

45
0

IJ= 10
i

13
24
13
42
57
57
66
22

2
45
1

15

0
4

45
0

0
0

0
5

27
0
10
27

0

234

1
27
1

18
8

27
0
4

27
1

54

235

5
27

5
18

5
54

236

5
27

10
27

8
45
4
15

0
0
5
9
0
0

3
5

2
5

0
0
0
0
0
0

343
8

45
4
15

0
0
16
45

0
0

414

4
15
2
5
2
15
0

1
15

2
15

432

0

0
4

27
0

8
27

0

13
24
13
42
57
57
66
22

434

0
0
4

135
2

45
32
135
0
16

135
2

135

435

4
27

2
9

2
27

436

0
0

27
0
0

8
27

IJ =03 233
5
9

4
9

17
26
26
66
17

143
4

75

8
225

1
9

0

146
2

25
0
3

25
0

233
0
2
9
0

0
2
9

323 343
16
75

32
225

4
9

0

346
8

25

12
25

0
8

45
0
0
4
15

0
4
15
0

8
45
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TABLE I. (Conti nued)

IJ =01
13
17
26
13
26
17
22
44
66

13
17
26
13
26
17
22
44
66

146
4

45
0

1
15

0
0
2

45
0
0
0

4313
0
16

135
0

2
135
32

405
0

1
810
1

30
16
81

2313
0

4
27

0
1

54
8

81
0

1
648
1

24
20
81

4323

0
4

135
0

8
135

8
405
0

2
405
2
15

16
81

2323

0
1

27
0

2
27
2

81

1
162
1
6
20
81

4316
0

4
45
0

2
45

2
15
0

2
15
2

45
0

2316

0
1
9

0
1

18
1
6
0

1
6
1

18
0

4326

0
4

45
0

2
45
2
15

0
2
15
2

45
0

2326

0
1
9
0

1
18
1
6

0
1
6
1

18
0

437
0
0
0
2
9
0
0

1
6

1
18
0

0
0
0

18
0

5
24

5
72
0

0
0

0
0

3
5

0
0
0

326
5
9

0
4
15

0
0

45
0
0
0

346
16
45
0

4
15

0
0
8

45
0
0
0

413
0
4
15
0

2
15

8
45
0

1
90

3
10
1
9

IJ =00
13
22

13
44
66

0
1

360

1
30
3

40
4

45

147
0
3

40

1
10
1

40

236

0

0
0
0

0
1

90

2
15

3
10
5
9

326

0

1
5
1
5
0

343
0

1
90

2
15

3
1016
45

347
0
3
10

2
5
1
10

0

436
4

0

0
0
0

IJ = -', 3~

58
67
67
58

144

0
0
1
10

1
10

233
1
2

1
18
0
0

322

0 0
0

(d) Y = —1

411
1
10
9
10
0

433
2
5

2
45
0
0

IJ= —2

27
36
58
36
67
27
67
58

143
0
0

1
10
2

45
1

90
2

45
0
0

232
1

18
1

18
0
0
0
0

2
9
2
9

233
5
18

5
18

0
0
0
0
0
0

234

0
0
0

0

5
18

5
18

321
0
0
1
10
0
9
10
0
0
0

322

0
0
0

0
1
2

0
0

323

0
2
5

5
18
2

45
5
18
0
0

343

0
0

2
5
8

45
2

45
8

45
0
0

412

0
0
0
0
1

10
1

10

2
45
2

45
0
0
0
0

8
45
8

45

27
36
58
36
67
27
67
58

433
2
9

2
9

0
0
0
0
0
0

434

0
0
0
0

0
2
g

2
9
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TABLE I. (Continued)

IJ= 21
27
36
58
36
67
27
67
58
23
23

142
2

45
2

45
0
0
0
0

1
18
1
18

0
0

144

0
0
0
0

0
2

45
2

45

231

0
1

18
0

1
2

0
0
0
0
0

0
0
0

18
Q

5
18
0
0
0

2313

0
2
9
10
81

2
81
10
81
0
0
5

81
0

2323

2
9

5
162

2
81

5
162

0
20
81
0

5
18
5
18
0
0
0

1
2

1
2
0
0
0
0
0
0
0
0

0
0
0
0
0
0

5
18

5
18

342
8

45
8

45

2
9
2
9

27
36
58
36
67
27
67
58
23
23

344
0
0
0

0
0
8

45
8

45
0

413
0
0
1
10

2
9
1

90
2
9
0
0
4
9
0

431

0
2

45
0

2
5

0
0
0
0
0

432
0
Q

0
2

0
2
9
0
0
0
0

4313
0

8
45
8

81
8

405
8

81

0
4

81
0

4323
0
0

8
45

2
81
8

405
2
81

0
0
16
81
0

IJ= -02 141 143 232 234 323 341 343 414 434

58
67
67
58
23
23

1
50
a

50
0
0
0
0

2
25

2
225
0
0
1
a
0

0
0

5
18
5
18

0
2
9

2
9

1
2

1
18

0
4
9
0

2
25
18
25

0
0
0
0

8
25

8
225

1
10

1
10
0

2
9
2
9

0

8
45

8
45

4
45

IJ= -3
2

67
67

233

5
9

322

1
0

433

4
9

18
27
36
47
36
67
27
47
67
18

143
0
49

aoo
1

225
0
0
0
0

1
100

1
9

1
50

146
0
1

25
1

25
0
0
0
0
1

25
0

2
25

232

0
0
1

16
1

36
4
9

1
144
0
0
0

0
1

16
1

36
0
49
144
0

235
5

36

5
72

5
18

5
72

236

0
1
9

1
9

0

322

0
1

16
1
4

0

9
16

1
8

323

0
49
144

1
36
0
0
0
0

1
16

4
9
1
8

325

0
1
8
1
2

0

343
0
49

225
4

225
0

1
25
4
9

2
25

18
27
36
47
36
67
27

346
0
4

25
4

25
0
0
0
0

412
1
10
0
0
9

20
1
5
1
5
1

20

432
1

ao
0
0
1

20
1

45
16
45
1

180

1
10

0
1

20
1

45
0
49
180

1
9

0
1
18

2
9
0
1

18

8
45

0

45
4

45
0
4

45
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TABLE I. (Continued)

47
67
18

4
25

8
25

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

IJ = -'0
2

23
23
34
34
67
67

143
0

1
90
1

10
0

4
45

0
0
0

5
9

0

5
18

0
0
5
18
0

5
18
0
0

18
0
0

323
0

2
45
2
5
0
0

326

0
9
10
1

10
0
0
0

2
45
2
5
0

16
45

0
0
0

4
g

0

435

0
2
9
0

436

0
0
2
9
0
0

IJ = -'1

18
27
36
47
36
67
27
47
67
18
23
23
34
34

142
1

90

0
1

20
1

45
1
9

1
180
0
0
0
0
0
0
0

2
45

0
1

45
4

45
0
1

45
0

0
1

90
0
0

1
90

2
45

0
1

45
1

45
0

1
45
0

0
2

45
0

2
45

0
5

144
5

36
0

0
5
16
0
5

72
0
0
0
0

0
49

324
1

81
0

0

1
36
20
81

1
18

162
1
18

0
49

1296
1

324
0

0

1
144

20
81
1

72

2
81

2
9

0
5

72
5
18
0

5
72

0
5

36

0
0
0

0
1

18
1

18
0
0
0
0
1

18
0

1
9

1
4
1

36
0

0
1

18
1

18
0
0

18
0

0
1
4
1

36
0

322
5

72
0
G
5
16
5

36
4
9
5

144
0
0
0
0
0
0
0

18
27
36
47
36
67

27
47
67
18
23
23
34
34

9
40

0
9

80
1

20
0

49
80

0
0
0
0
0
0

1
36

0
1

72
1
18

0

0
4
9
0
0

4
g

326
2

45

1
5
4

45

9

0
0
0

0
0

0

342
8

45

0
4

45
16
45
0

4
45
0

0
2

45
0

2
45

345
8

45
0
0

4
45

4
45
0

0
0
0
8

45
0

8
45

346

0
49
180

1
45

0
0
0

0
1

20
1
9
1

10
0

2
45

0

413
0
1

36
1
9
0
0
0

0
1
4
0
1

18
0
0
0
0

432

0
49

405
4

405
0
0
0

0
1

45
16
81

2
45

2
405
2

45

4313
0
49

1620
1

405
0

1
180

16
81
1

90

8
405
8

45
0

4323

0
1

18
2
9
0
0
0

0
1
18

0
1
9

0
0
0
0

18
27
36
47
36
67
27
47
67
18
23

435

0
2

45
2

45
0

0
2

45
0

4
45

0

4316
0

2
45

2
45
0
0

0
2

45
0
4

45
0

4326
8

45

0
4

45
4

45
0

0
0

5
18
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TABLE I. (Continued)

23
34
34

1
5
1

45

1
5
1

45
0

0
0

5
18

IJ =13
68
77
68

233
1
3

2
9
0

322

0

1 0

433
4
15

8
45
0

143 232 233 321 323 343 412

28
37
68
37
77
28
68

0
0

1
15
1

45
2

45
1
15

1
36
1

12
0
0
0
0

4
9

5
12

5
36

0
0
0
0

0
0
2
5
0
3
5
0

0
0
0

0

3
4

4
15

5
36
8

45
5
12
0

0

15
4

45
8

45
4
15

0
0

1
45
1

15

16
45

1
3

1
9

0
0
0
0
0

IJ =11
28
37
68
37
28
68
7?
33

142
1

45
1
15
0
0
0

1
9

0
0

231
0
0

0

0
1
3

0

232

0
0
0

12
5

36
0
0
0

2313

0
0
4
27
5
Sl

5
27

0
8
81

5
81

2323

0
0

27
5

324
5

aos

8
81
20
81

322
5
36
5
12

9
0
0

323
3
4

1
4
0
0
0
0
0
0

0
0

4
9

342
4

45
4
15

413

0
1
15

1
9

a
3
0

2
45

4
9

431
0
0

8
45

0

0
4
15

0

28
37
68
37
28
68
77
33

432

0
0
0
1
3
1
9
0
0
0

0

16
135
4

81

27
0

32
405

4
81

4323

0

16
135

1
81

1
27

0
32

40516
81

0

143
4
75

8
225
0
1
9

0
0

0

5
9

323
1
3

2
9

0
4
9

0

8
25
12
25

343
16
75

32
225
0
4
9

432

0

IJ =03
77

IJ =02
37
48
37
7?
48

232

0
1

18
1

18

9
0

235

0
5
18

5
18
0
0

0
0
0

325
1
2

0
0
0

412
0
2
5
2
5
1
5
0

2

2
45

16
45

0
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TABLE I. (Continued).

IJ =01
37
48
37

77
48
33

IJ =00

0
2

45
2

45
1
9

0

145

4
45

4
45

1
45

232

18
0
0

0
5
18
0

235

18
0
0

5
18

0
5
18
5
18

4
9
0

1
1e

1
18

342

S
45
8

45

345

0
16
45

16
45

4
45

432
2
9
0
0

0
2
9

0

IJ = -'3

78
78

9
0

322

0
1

5
9

9
0

411
1

0

4
9

(f) Y= —3

IJ= ~2
38
78
38
78 4

9

321
0
0

—1
0

412 432
4

45

16
45

IJ= -1
38
78
38
78

IJ = -'0

78
78

142
4

45

1
9

141

0
5
9

0

232

322

342

342
16
45

4
9

0
4
9

0

432

IJ =03
88

411
1

(g) Y=-4

IJ =02
88

IJ =01
88 5

9

431
4
9

88

&4' icl&l@-J~ &
= ) I I

&o-Jt l~iKi ~2K2) &~~Kg, ~2K2I@ It &&~iK~l~iKi&(~2K2l~ssl~2K2) .
2 I

Here (o.&Kqla~K&) is the four-quark overlap and is a little more complicated than the atomic and nuclear shell model
case because of the nonorthogonal property of the single-quark orbital state (see below). (n2K2lHssla2K2) is the

two-body matrix element, and JIss represents the two-body operator for the last pair.
l 2 l

= 15 is the interacting(6~
&2)

pair number. To simplify the computer program, the one-body operator matrix elements are calculated by the same
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t'6')
expansion [Eq. (12)] with the obvious substitution Hss ~ Hs + Hs and —

&
— = 3 (only 6 one-body operatorsE2)

altogether instead of 15 pair interactions).
(@~~~arKr, a2K2) and (aiKi, n2K2[O Jr ) are the total Clebsch-Gordan coefficients (CGC's). They are calculated

as follows [8(b)]:

(
[v]l v [V1]W1 [v2] W2

I~]le'Ir I)i[f)&IJMrMr I~i~i Ir r]ffrl~iir&rMi, Mr I»l~r [r 2]lf2]~2I2+2~1 Mr )

+[~]W CIMI +JMJ +[v]& &

[~y]W1 & [~2]~2 I1MIy &I2 MI2 Jl MJy i J2 MJ2 [v&]Wy & l 2]W2
y

~[~'][v] [vl ~[v] [~][C ] ~[ ]~[f]» g[f]»I
[1 ][v1][v1],[1 ][v2] [v2] fva] [~1][p1]i[v2] [~2]fp2] [p1][fz][J1]&[p2] [f2][~2] [fx]&aI1 ) [f2]&2I2

The first four C's are the SU'(3), SU (2), SU (2), and SU (2) CGC's, the next three C's are the
SU(36)~SU (2) xSU(18), SU(18)~SU (3)xSU(6), and SU(6)~SUf(3) xSU (2) isoscalar factors, and the last one
is the SU~(3)~SU (2) xU (1) isoscalar factor. All these isoscalar factors (for particle number ( 6) can be found in

)S S
Ref. [8(b)]. The SU (2) orbital CGC C~~"jj~.

~
~~. is called the orbital two-body cfp by Harvey and listed in his

Table 4 [9]. It is obvious that it is better to use the standard phase convention of the SU(2) CGC. Then the entries
under [4: [11]a b: ab, [31]:[2]ab: a, and [31]:[2]a b: ab should be assigned opposite signs.

The four-quark state ~nrKr) can be expressed as [10]

[»]w;
l~rirr) = I&rl~r Ir rllfrf&ilr&rMrMr), ,

= ) (h, ) 'A ' ' '
)

' [ar]Wr'Irrr]]fr]YrJrMrMr);, ,

here, m(m) is the Yamanouchi number of the Young tableau, (Ir„,) 2A"' is the CGC for [vi] x [vi] ~ [1 ] of the
permutation group. The color-flavor-spin part

[vi] I»]W [r]]f ]Yri IrrJr Mrr, Mrr, )
is orthogonal as usual,

f

I»l~r Ir rlffrl&ilr~rMrMr, "-' I&i]~i"Ir 'if]fr'l~a'ii~iMrMr, ) = &» (15)

here, bqq is a product of b„, ,b, . . ., which includes
every pair of quantum numbers. The only complication
is caused by the nonorthogonality of the single-quark or-
bital state,

I»87 I~rl &* ~,~, I»l~r I~r'1 ~i"
)m v, v,' mmf m m'

(16)
Finally, we have the four-quark overlap

(rrrKrlrr'K') = ii lr ') I ' ' I 'I '
)m

vg W~ vg R~
(»)

This four-body overlap is listed by Harvey in his Table
6 [9]. To be consistent with the standard SU (2) CGC

phase convention, all the entries in his Table 6 should
have positive signs. Another modification is caused by
the delocalized orbit [Eq. (4)]: The m in Harvey's Table
6 should be replaced by

m ~ [2~+ (1+e')F]/(1+ ~'+ 2eF), F = (Pl, ]/z) .

Harvey's result is our ~ = G limit.
The two-quark state

[v, ]W2
l~rIC*) = I»1~2]r rl]fr]~~12+rMi Mr

)
can be expressed in a similar form as Eq. (14). But the
[v2], [cr2], [p2], and [f2] are either syrnrnetric [2] or anti-
symmetric [1 ], and Eq. (18) is in fact just a product of
the orbital, color, flavor, and spin parts. The two-body
interaction matri- elements can be factorized too,
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[»]:. [~2] [~2] ~ [&'] [f2] t [f2'] I
(n2K2 ~Hss ~n2K2) ~~ rs ~/~ ~g H5s I/I//~ y I M H5g //I/ M/ (J2Mg ~Hss ~

J2 gp )
2 2 2 W' 2 2 I2 2 2 I2

Here we have used the fact that the two-body inter-
action is a sum of terms of the form which we take as a
single term for simplicity:

in a Dirac cluster model, only the lowest Dirac state is
used and the lowest state of a Dirac particle moving in
a central potential can be expressed as a product of a
pseudo orbit and a Pauli spinor [14],

H56 ——H56 x H56 x H56 x H56 . (20)

For the nonrelativistic case, H is a scalar of SU'(3),
SU (2), and SU (2), the two-body matrix elements are
W2, MI, , and MJ, independent, and the Grst three
CGC's in Eq. (13) will disappear in the matrix element
(4 Ic~H~C' lc ) of Eq. (12) as a result of the orthonormal
property of CGC's.

For the one-body operator (kinetic energy in a nonrel-
ativistic model, kinetic energy and mean Geld in a rela-
tivistic model),

H56 ——H5 + H6,
by expanding the coupled state into the product of two-
particle states with CGC's and using the orthonormal
property of CGC's, the 2 one-body operator matrix el-
ements can be calculated very easily. The 6 ~ 5 + 1fp
expansion can be avoided, and only the 6 ~ 4 + 2'
coefficients need to be included in a computer program
package.

IV. RELATIVISTIC EXTENSION

It is commonly believed that the classification scheme
[Eq. (2)] can be applied to the nonrelativistic quark only,
because the spin and orbital parts are intrinsically cou-
pled into a Dirac spinor for a relativistic quark. However,

/

P//(r ) =
~

.
/y ( /) 1X +oo(0 4')

Here r' = r —s/2 or r + s/2 depends on the confine-
ment center, y is the usual Pauli spinor, o = j,

Ype —— 4, and P„and Pd are the uPPer and

lower (down) components of the Dirac WF. Taking the
I

4 . ~",&' ~, ~
as a pseudo-orbit WF equivalent to

CX

that for the nonrelativistic orbital WF, we obtain two
linear independent states as the bases of a pseudo-orbit
SU (2) for the Dirac quark. In this way we can use the
same classification scheme [Eq. (2)] to describe the six-
Dirac-quark system [15]. The whole calculation method
discussed in Secs. II and III can be extended to a Dirac
quark cluster model directly. The only difference is that
when we calculate the one- and two-body matrix ele-
ments, we have to recombine the pseudo orbit and the
Pauli spinor together to be a Dirac spinor. For the four-
quark overlap calculation, recombination of the pseudo
orbit and Pauli spinor seems to be needed too. However,
because we only use the lowest Dirac state WF [Eq. (21)],
the single-particle overlap still can be separated into a
pseudo-orbit part and a Pauli spinor part,

f 1
(@,(ri) ~@,(r2)) = y, — dr(@„(ri),i/r ri@d(ri)) (@„(r2), io r2@—d(r2))y,

1= X', — dr[4 (ri)4. (r2) + ~.ri~. r2@d(rl)@d(r2)]X,

1
X X dr[ 0 (rl)0 (r2) + rl r24'd(rl) 4(r2)] (22)

The spin-dependent part is identically zero [16],

1
icr . (r"i x r"2)i//d(ri)i//d(r2)dr—:0 .

4m
(23)

All the needed SU(mn) DSU(m) x SU(n) isoscalar fac-
tors can be found directly &om Ref. [8(b)]; the needed

Therefore the four-quark overlap calculation can be done
in exactly the same way as that for the nonrelativistic
case, i.e. , separated into a pseudo-orbital part and a spin
part.

V. COMPUTERIZED
FRACTIONAL PARENTAGE EXPANSION

I

SU(3) DSU(2) x U(1) isoscalar factors can be obtained
&om the SU(3) CGC of Chen et al. [8(b)] and the
standard SU(2) CGC. [Some SU(3) CGC's not explicitly
listed there can be obtained by the symmetry properties
&om the listed ones. Table II gives the additional needed
phase factors t'2 which are missing in Table 5 of Sec. II
of Ref. [8(b)].]

It is time consuming and requires a good grasp of group
theory to combine the individual isoscalar factors into the
transformation coefficients between physical bases and
symmetry bases and the 6 ~ 4 + 2 cfp for the matrix
element calculations.

In order to make the calculation automatic and to fa-
cilitate others using this fp-expansion technique, a com-
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TABLE II. Additional phase factor es(vi v2v).

[4] [»]

[31] [11]

[»1
[411]
[42]

[321]
[31']
[411]

C2

1
1
1
1

—1
—1

[22] [11]

[211] [11]

[33]
[321]
[2211]
[321]
[222]
[31']

E'2

1
—1
—1
1

1

Vy Vg

[211] [11]

[1'1 [»1

[2211]
[21 ]

[2211]
[21']
[1']

E2

1
1
1

—1
1

puter program has been written. All the needed isoscalar
factors are stored in the program. After inputting the
quantum numbers n = (YI1), the program will automat-
ically yield the physical bases, symmetry bases, and the
transformation coeKcients between these two bases, and
the 6 ~ 4+2 cfp for the symmetry bases. This part may
be useful for other dibaryon model practitioners if they
want to use fp-expansion methods. For our own prob-
lem, the program continues on to calculate the one- and
two-body matrix elements and the four-body overlap,
combine them together into the six-quark Hamiltonian
matrix elements in the physical bases, diagonalize the
Hamiltonian in the nonorthogonal physical basis space,
minimize the eigenenergy, fix the eigen-WF with respect
to the delocalization parameter e(s), repeat this calcula-
tion for diferent separations s between two q clusters
from s = 0.1 to 3 fm, and finally output the adiabatic
potential V (s). This program greatly reduced the labor
involved in the systematic search of dibaryon candidates
in the u, d, and s three-Qavor world. . Only minor modifi-
cation of the subroutine for the one- and two-body matrix
elements calculations sufBces to adapt the program to a
relativistic quark model dibaryon search. We expect it is
also easy to apply this program to other nonrelativistic
and relativistic dibaryon calculations with minor modifi-
cations, particularly as the fp-expansion part is universal
for this kind of dibaryon model calculation.
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APPENDIX

Our tables for the symmetry decompositions might ap-
pear to contradict Harvey's results [9]. This is due to a
diQ'erence in terminology: Harvey used "symmetric" and
"antisymmetric" to refer only to the orbital components
when discussing nonidentical particles. We prefer to use
the more inclusive definition below, since we believe it al-
lows for a more natural relation to the identical particle
case.

The symmetric (antisymmetric) combination xy (xy)
of two baryon state is defined as

xy+ yx zy —yxxy=, 2'y= (A1)

Let us use the NL two-baryon state as an exam-
ple to show the symmetry property. Below, y is
the color-singlet three-quark state N (A ) is
a three-quark N(A) spin-isospin symmetric state with
spin-isospin projection quantum numbers mIv re (m~r~),
l(123) is a product orbital state l(l)l(2)l(3), where l is
defined in Eq. (4), r(456) has the parallel meaning, and
C~~"& ~ & is the spin (isospin) CGC. Then

(N&)Iz = &~&I ~,I ~ &I ~ I ~ y, (123)N~~~ (123)l(123)y,(456)D (456)r(456)
1 J

I~~~,~~~~&I~~~,I~~~(X (123)y (456)[N „„(123)A ~ ~(456)l(123)r(456)

N„(456)A — (123)l(456)r(123)] + j, (A2)

( )II = ~&g~~~ J~~~&I~~~ I~~~ y~(123)A~~„~ (123)l(123)y,(456)N (456)r(456)
1 J

urn~, J~rn~ I~v~, I~~~ (Xc(123)y~(456)[4~~~~ (123)N~~7~ (456)l(123)r(456)

(456)N (123)l(456)r(123)] + (A3)

where + represents all of the other permutations:



51 EXTENSION OF FRACTIONAL PARENTAGE EXPANSION TO. . . 1665

(Nb. )rg + (AN) lg
~2

~~;„=„,.~,'.„I..(x.(»3)~.(456)
40

x (N (123)D (456) [l(123)r(456) —(—)
~+ + + l(456)r(123)]

N — (456)b, (123)[l(456)r(123) —(—)
~+ + ~+ ~ l(123)r(456)]) + ) . (A4)

C 123456 l .
The orbital symmetry property (the parity) of a two-baryon state under the permutation

] ]
is dependent on

the spin-isospin quantum numbers, instead of directly related to the symmetry (antisymmetry) zy (zy) combination
as explained in [9].

In deriving (A4), we have used the well-known SU(2) relation

gKk ( )K +Kg —KgKk (A5)

Note, for example, that if the 4 were replaced by a second N and I + J is even, the erst and fourth terms become
identical as do the second and third terms, etc. The result has only antisymmetric orbital parts. The (NN)I~ = 0
for odd I + J. Conversely, for (NN)lg, only the odd I + J symmetric orbital parts exist (as, for example, in the
deuteron).
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