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Behavior of negative parity spin modes as a function of the strength of the tensor
interaction: Shell model vs one particle one hole (or random-phase approximation)
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We consider negative parity excitations in He, J =0, 1, and 2 with isospin T=O and 1. In
a one-particle one-hole calculation the unnatural parity states, J=O and 2 come down in energy
linearly with the increasing strength of the tensor interaction, ultimately coming below the original
J=O+ ground state. However in a shell model diagonalization in a sufBciently large space, although
the states may start to come down, there is a turnaround so that the excitation energies of these
states thereafter increases with increasing tensor strength, and there is no energy inversion with the
J=O+ state.

PACS number(s): 21.30.+y, 21.10.Re, 21.60.Cs, 27.10.+h

I. INTRODUCTION

In this paper we wish to study the behavior of negative
parity excitations in a closed shell nucleus as a function of
the strength of the tensor interaction. We are especially
interested in spin modes, such as the J=O states which
in LS coupling have the quantum numbers L=1, S=l,
J=O. We will also consider J=l states which are partly
spin mode and partly not and J=2 which again are
pure spin modes. The J=0 and 2 states are called
unnatural parity states.

One motivation for studying these states is that their
properties have been proposed as signatures of precursors
to pion condensation. If the T=1 spin mode states were
to come down very low in energy, this would be a good
signature.

In this paper we will not deal directly with the problem
of precursors to pion condensation or pion condensation
itself. Rather we will consider a related problem of study-
ing how the energies of these states respond to increas-
ing the strength of the tensor interaction. We feel that in
the consideration of problems like precursors, the nuclear
structure has often been oversimplified to such an extent
that wrong conclusions could be drawn. We will there-
fore focus on a problem over which we have very good
control and make a comparison of simplified pictures of
the spin mode excitations, e.g. , 1p-1h excitations [or the
random-phase approximation (RPA) generalization] and
the more exact large shell model diagonalizations.

II. METHOD

A. Lowest order

In lowest order, the configuration for the ground state
of He is (Os)4, and the excited states mentioned above
are one-particle one-hole configurations. The 0 state in
lowest order has the unique configuration (Op2 Os 2 ).
The energy of this state is given by

where e, are the single-particle energies and the last term
is the particle-hole interaction. It should be mentioned
that we calculate the single-particle energies with the
same interaction that is used to calculate the two-particle
matrix elements. We used the schematic (or democratic)
interaction described in a work by Zheng and Zamick [1].
It is of the form

V = V. ++V,.+yV, , (2)

where c = central, so = spin orbit, and t—:tensor. For
2; = 1, y = 1 one gets a fairly good fit to the two-body
matrix elements of more realistic interactions like Bonn
A. We focus on the effects of the tensor interaction on
the energies of the unnatural parity states in He. We do
this by varying y, the strength of the tensor interaction.
In the simple one-particle one-hoLe picture, the single-
particle energies do not depend on y (i.e. , the first-order
tensor contribution to these energies is zero) and only the
particle-hole matrix element is affected. In the full shell
model calculation the situation is more complicated—
there are many configurations.

In a 1p-1h calculation, the J=0 states have unique
configurations (Opiosi )

= ' with T=o or 1. Using
2 2

Eq. (1) we note that as we increase y, the single-particle
energies e do not change. Obviously, the particle-hole
interaction

V„h = ((Op Os )~V~(opiosi ))

will be linear in y. We find

Vrh, (T = 0) = 2.575 —3.820y MeV,

Vrh(T = 1) = 3.445 —1.270y MeV .

Note that the coefBcient of y for T=l, i.e. , the slope,

E(0,T)
= .„,—e... + ((Op, Os. -')

~ V (Op, Os, -'))' ~,
2 2
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is 3 of that for T=O. The excitation energy will de-
crease linearly in y and we clearly can get the 0 states
coming below the ground state by making y su%ciently
large. The T=l state in this model is always higher in
energy than the T=O, J=O states. We have not per-
formed RPA calculations but we know from experience
that when states come down in energy in Tamm-Dancoff
approximation (TDA) calculations they come down even
faster in RPA calculations. Beyond the point where the
energy of the unnatural parity state has zero excitation
energy the RPA energies become imaginary.

It should be remarked that a tensor force instability,
such as the one described above, was noted by Bleuler in
his 1966 Varenna Lectures, "Parity Mixing in Spherical
Nuclei" [2]. The results we have so far are much as he de-
scribes. The linear behavior that we get for the energy of
J=O is also similar to that shown in the book by Eisen-
berg and Koltun [3] in the section where they present a
schematic model of pion condensation. However, the pa-
rameter they vary is the pion-nucleon coupling constant,
not the overall strength of the tensor interaction.

We further cite the work of Meyer-ter-Vehn [4] who
shows that an approach to pion condensation manifests
itself by having states coming down to zero energy in
RPA calculations. He uses J = 2 states in 0 as an
example. This work is discussed in the book by Ericson
and Weise [5]. We should also mention the works of Oset
et al. [6] and Goeke and Speth [7].

As discussed by Ericson and Weise, an interaction of
the following type is used (in momentum space):

1 2 4

y (strength of tensor force)

FIG. 1. Solid line corresponds to the smallest space
(Opi-Oai ). Dashed line corresponds to the largest space

2 2

(S, P, SD, PF). Dash-dot line corresponds to 1 and 3 hey ex-
citations for 0 and 0 and 2 hem for the ground state. Dotted
line corresponds to 1, 3, and 5 ~ excitations for 0 and 0, 2,
and 4 her for the ground state.

y' f, (~, q)(n, q)iV =
~

g'a, . cr2 —
~

~i r2 . (3)m' g q'+m'

From information on Gamow-Teller resonances the re-
pulsive delta interaction parameter g' is large, about 0.7.
If, however, g' is decreased to 0.3, a 2 state comes crash-
ing down to zero energy in an RPA calculation. Barshay
et al. [8] provide a justification for a large value of g'.
Part of the contribution comes &om short-range correla-
tions in the nucleus due to a repulsive hard core in the
nucleon-nucleon interaction. We reemphasize that the
model we use in this work is different &om the above
"pion condensation" models.

B. Matrix diagonalimation

Thus far in one-particle one-hole calculations with no
ground-state correlations we find that the excitation en-
ergies of J=O, T=O, and T=1 states decrease linearly
in y, the strength of the tensor interaction. We next
perform shell model diagonalizations for He using the
QXBASH code [9] for the J=O+ ground state and J=O
states with isospin T=O and T=1. We present the T=O
results in Fig. 1 where the excitation energy of the
J = 0 state is plotted versus y, the strength of the
tensor interaction. We consider four spaces.

(a) The sxnallest space: for J=O+ the configuration
is (Os) . For J=O we allow one nucleon to be excited
&om Os to Op. This leads to the unique configuration

(OpiOsi )
= . The results are shown as a solid line.

2 2

(b) For the J=O+ state we allow all "Ok@" and "2k'"
excitations. For the J=O state we allow all "1@v"and"3'" excitations. The results are given by a dash-dot
line.

(c) For J=O+ we allow up to "4hcu" and for J=O we
allow up to "5~" excitations. The results are given by
a dotted line.

(d) Largest space: all nucleons can be anywhere in the
first four major shells. The results are given by a dashed
line.

The results in Fig. 1 show that as we increase the size
of the shell model space, the behavior of the excitation
energy versus y changes in a dramatic but systematic
way. In the smallest space we get a linear decrease in
excitation energy vs y as given by Eq. (1). The energy
of the J=O, T=O state goes to zero at y=4.2. This is
the instability point.

When 2' excitations are included for J=O+ and 3~
for J=O (dash-dot line) we find that the descent is not
so rapid and there is a deviation &om linearity.

When 4' excitations for J=O+ and 5' for J=O are
included (dotted line) we find that there is a turnaround
and the excitation energy never goes to zero. Although
the excitation energy d.ecreases slightly from y=O to y=l,
for higher values of y the excitation energy goes up. The
J=O states never comes below or even near the J=O+
ground state.

The effect is even more pronounced in our largest space
calculation (dashed line) in which all four nucleons can
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TABLE I. The excitation energies of the lowest-lying negative parity states in He as a function
of the strength of the tensor interaction y from matrix diagonalization in di8'erent configuration
spaces.

Space
1p-1h

S, P

S, P, SD

S, P, SD,
PF

J=O T=0
26.07
22.26
18.44
14.62
10.80
6.98
26.42
23.47
22.31
22.72
24.27
26.58

28.03
25.34
23.18
21.77
21.19
21.34
23.87
22.88
23.37
25.09
27.72
30.97

J=0 T=1
26.94
25.67
24.40
23.13
21.85
20.58
27.24
26.91
28.28
31.11
35.01
39.60

29.53
28.61
28.12
28.60
30.08
32.40
24.96
26.25
28.82
32.72
37.68
43.43

J=1 T=0
24.95
26.86
28.77
30.68
32.59
34.50
25.29
28.15
32.88
39.21
46.72
55.01

27.04
28.75
31.13
34.34
38.30
42.82
23.48
25.46
29.65
35.72
42.96
50.79

J=1 T=1
25.26
25.73
26.11
26.41
26.62
27.76
25.54
26.83
29.75
34.00
39.21
45.00

28.03
28.61
29.58
31.02
33.00
35.52

24.39
25.00
27.35
31.05
35.75
41.18

J=2 T=O
22.70
22.32
21.94
21.55
21.17
20.79
23.04
23.59
25.99
29.98
35.14
41.07

25.00
25.28
26.73
29.23
32.56
36.52

22.56
23.39
26.27
30.81
36.46
42.79

J=2 T=1
23.57
23.44
23.32
23.19
23.06
22.93
23.87
24.65
27.24
31.37
36.61
42.57

26.35
26.64
27.78
29.80
32.60
36.06
23.63
24.51
27.09
31.18
36.39
42.39

y=0,
y = 2)

y=4,

0.00; y = 1, 2.22;
8.?2; y = 3, 18.84;
31.66; y = 5, 46.42 .

We see that this change of energy starts out quadratic in
y as we would expect &om a second-order tensor e8'ect.

Although the full matrix diagonalization does not lead
to the negative parity excitations sinking below the J=O+
state, the ground-state wave function does change as the
tensor strength y is increased. The occupancy of shells

be anywhere in the first four major shells.
We now wish to show that the results in Fig. 1 for the

J=O, T=O modes also hold for other J, T values. In
Table I we present results for J=O, 1, and 2, T=O,
and T=1. The results are given first in the smallest space
(1p-1h). Then we allow all four nucleons to be anywhere
in the first two major shells S, P.

Next, they can be anywhere in the first three major
shells S, P, SD, and finally anywhere in the first four
major shells S, P, SD, PF.

Whereas in the smallest space the J=O, T=O, and
T=1, and J=2, T=O, and T=1 mode excitation ener-
gies decrease linearly in y, in all the larger spaces the
energies ultimately increase with increasing y.

We note that the ground-state binding energy changes
as we increase y. In lowest order, i.e, (Os), there is no
contribution to the binding energy due to the tensor in-
teraction (this holds for any major shell). However, the
nucleon-nucleon interaction induces configuration mixing
into the ground-state wave function. For this more com-
plicated ground state, the tensor interaction does con-
tribute to the binding energy.

The change in binding energy in MeV of the ground
state relative to the case y=O, for the largest space cal-
culation, is as follows:

higher than Os increases with increasing y. From y = 0
to y = 5, Os occupancies are 3.78, 3.71, 3.53, 3.31, 3.10,
and 2.91. The corresponding Opi occupancies are 0.03,

2
0.07, 0.17, 0.29, 0.40, and 0.50. Hence the nature of the
ground state does change but it does so in a continuous
manner.

It should be noted that in this matrix diagonalization
calculation in the eH'ects of spurious states have been re-
moved. More precisely, in oxBAsH the spurious states
are pushed up to a very high energy.

C. Second-order perturbation theory

TABLE II. Second-order perturbation theory results
(MeV): J=O, T=O.

Diagram
A: Bare

B: 1p-1h scattering

C: RPA

D: Bubble

Strength of tensor interaction y
0 1 2 3 4 5

23.83 20.01 16.19 12.37 8.55 4.73

-0.07 -0.04 -0.02 -0.01 -0.003 0.000

-0.10 -1.49 -4.48 -9.07 -15.28 -23.09

-0.08 2.32 6.23 11.64 18.55 26.97

E: 2p-2h scattering 0.08 -0.70 -2.35 -4.85 -8.22 -12.45

F: Single-particle renorm. 1.68 2.10 3.16 4.87 7.23 10.23

TOTAL 25.33 22.19 18.73 14.94 10.83 6.40

Can we understand the shell model results of Table I
by going to higher order perturbation theory'? To answer
this we have carried out a complete second-order calcu-
lation of the shift in energy of the J=O, T=O, and T=1
states. The results in which we allow excitations up to4' are shown in Table II, and the corresponding dia-
grams are shown in Fig. 2. We have not done anything
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n

(a) (c)

(d)

(f)
FIG. 2. (a) Bare; (b) 1p-1h scattering; (c) RPA; (d) bub-

ble; (e) 2p-2h scattering; (f) single-particle and single-hole
renormalization.

occur.
So when all is said and done, the complete second-order

calculations yield results such that the energies of J=O
vibrations d.ecrease with increasing y, just like the bare
ones. Matrix diagonalization, which implicitly contains
even higher order diagrams, causes a qualitative change
so that the energies of these states ultimately increase
with increasing y. This is our main result.

Lipkin model calculations of phase transition have
been studied in the past, for example, the work of Shuck
and Ethofer [12] as discussed in the book of Ring and
Shuck [13].Without discussing the details of their Hamil-
tonian we note that their coupling strength y is chosen to
give an RPA stability at y = 1. A "self-consistent RPA"
model gets rid of the instability, the energy reaches a
plateau versus y, whereas the exact solution is such that
there is still an instability but at a higher value of the
coupling constant y 1.5 .

In our model the behavior is somewhat different. Our
large space calculations not only remove the instability
but cause the excitation energies to increase with increas-
ing coupling strength.

III. ADDITIONAL REMARKS

TABLE III. Second-order perturba. tion theory results
(MeV): J=O, T=l.

Diagram
A: Bare

Strength of tensor interaction tI
0 1 2 3 4 5

24.70 23.42 22.15 20.88 19.60 18.33

B: 1p-1h scattering

C: RPA

D: Bubble

-0.14 -0.000 -0.13 -0.52 -1.19 -2.12

-0 34 -0 10 -1 47 -4 45 -9 03 -15 23

-0.10 -0.74 -1.25 -1.64 -1.89 -2.01

to remove the spurious center-of-mass motion in this per-
turbation theory calculation. For J=O, T=O we see that
we are still getting a monotonic decrease in energy of the
states as y increases. The total results are completely
different quantitatively and qualitatively &om the shell
model results in Table I. A similar behavior is seen for
J=O, T=l (see Table III). Note that the individual di-
agrams in second order can be very large but there is a
large cancellation. For example, for J=O, T=O, y=5,
diagram C, the phonon exchange between the particle
and hole is 26.97 MeV but the RPA diagram is —23.09
MeV. The single particle —single hole energy correction is
16.23 MeV, but diagram E is —12.45 MeV. Indeed the to-
tal of all results up to second-order look embarrassingly
similar to the bare results. That there would be large
cancellations between RPA and other diagrams was espe-
cially noted some time ago by Kuo and Osnes [10]. There
is also related work by Zamick on monopole vibrations
[11]. The emphasis in these works was that the added
diagrams make it more difficult for RPA instabilities to

Whereas simple 1p-lh calculations with sufficiently
strong tensor interactions can cause unnatural parity ex-
citations to come below the J=O+ state, we 6nd that
in superior full shell model calculations this is not the
case—ultimately the energies get higher with increasing
tensor interaction strength. Strangely, the second-order
perturbation theory calculations do not help to resolve
the discrepancy between the bare results and matrix di-
agonalization results. The second-order results are much
hke the bare ones because of large cancellations between
different diagrams. We therefore must conclude that the
higher order diagrams implicitly contained in the matrix
calculation are responsible for preventing the excitation
energies of the unnatural parity states from monotoni-
cally decreasing when the strength of the tensor interac-
tion is increased. This is a new result deserving of further
study.

There are other subtleties. When all L¹=2con6gura-
tions are included, there is still a crossover of the J=O
state with the J=O+ state but it occurs at a much larger
value of y than in the 1p-1h case. Only when up toA¹ 4 excitations are included is there a turnaround so
that the excitation energy ultimately increases with y.

We have obviously chosen the nucleus He for practical
reasons —it is easier to perform large space shell model
calculations in lighter nuclei. However, with the advent of
faster shell model programs it may be possible to perform
such calculations in heavier nuclei. The impetus for doing
this is certainly present in this work.
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