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Limited symmetry found by comparing calculated magnetic dipole spin and orbital
strengths in He
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Allowing for 2~ admixtures in He we 6nd that the summed magnetic dipole isovector orbital
and spin strengths are equal. This indicates a symmetry which is associated with interchanging the
labels of the spin with those of the orbit. Where higher admixtures are included, the orbital sum

becomes larger than the spin sum, but the sums over the low energy region are still nearly the same.

PACS number(s): 23.20.Js, 24.80.Dc, 27.10.+h

In an LS closed shell nucleus, e.g. , He, 0, and Ca,
the magnetic dipole transition &om the J=O+ ground
state to the J=l+ excited states will vanish unless there
are ground state correlations such as two-particle —two-
hole (2p-2h) admixtures. Previous theoretical studies of
magnetic spin dipole excitations [1] show that the cor-
relations induced by the tensor interaction give a large
contribution to the energy-weighted sum rule in a closed
shell nucleus. To see the full eKect of the tensor inter-
action, one has to allow excitations up to large values of
nRu. A simplifying feature in the above calculations is
the observation, at least for the isoscalar transitions, that
the double commutator of the isoscalar magnetic dipole
spin operator with the tensor interaction is proportional
to the same tensor interaction. Another point made in
the above work was that a central interaction had to have
a spin dependence in order to generate magnetic dipole
strength in a closed LS shell nucleus.

Other works on M1's with sum rule techniques in-
clude those of Desplanques, and Noguerra [2], Orlandini
et al. [3], and Lipparini and Stringari [4].

Some experimental and experiment-theory collabora-
tive works for magnetic dipole transitions in 0 and

Ca have been performed with the motivation of dis-
cerning the nature of ground state correlations. These
include the inelastic scattering work of Gross et al. [5],
Richter and Kniipfer [6], StefFen et al. [7], and Brown et
al. [8] and the proton capture work of Snover et al. [9] in
16O

Whereas in our earlier work [1] we considered only spin
transitions, in the present work we wish to consider also
orbital magnetic dipole transitions and to see if there is
any interrelation with the spin transitions in a closed
shell nucleus. For example, does the tensor interaction
also induce orbital excitations comparable to the spin ex-
citations ?

We shall calculate the magnetic dipole strengths from
the J=O+, T=O of He to J=1+, T=1 excited states.
We will calculate separately the total B(M1) rate,
B(M1),~;„and B(M1),b;t where the operators in ques-

's

tion, in units of p~, are 9.412s t + l t„s t, and l t
where t =+2 for a proton and —

2 for a neutron. Note
that we define our isovector spin B(Ml) so that it has
the same coupling strength as the orbital one; i.e., we

drop the factor 9.412. This makes it easier to compare

spin and orbital strengths.
As mentioned previously, it is necessary to have ground

state correlations in He in order to get magnetic dipole
transitions. We get these by performing shell model ma-
trix diagonalizations using oxBAsH [10]. We have used
progressively larger shell model spaces for the J=O+,
T=O ground state and J=1+, T=1 states: up to 2',
up to 4~, and up to 6~ admixtures.

We use the interaction of Zheng and Zamick [11]which
has central, spin-orbit, and tensor parts:

Vsche +c + &Vs.o. + 9+t-

TABLE I ~ Summed spin and orbital magnetic dipole mo-
ment strengths in He in units of 10 p,~
Interaction
x y
0 0
1 0
0 1
1 1

up to
Spin

0.8546
0.8569
3.8245
3.3944

2~
Orbit
0.8546
0.8571
3.8239
3.3955

up to
Spin

1.3357
1.3417
5.2346
4.8288

4~
Orbit
5.1635
5 ~ 1851
10.937
10.554

up to 6hcu

Spin Orbit
1.5897 7.1474
1.6211 7.2296
6.0653 14.607
5.6052 14.272

For x=1 and y=1 this interaction gives a fairly good
fit to the matrix elements of the Bonn A interaction. We
can turn the spin-orbit (tensor) interaction ofF by setting
x (y) equal to zero. We can thus isolate and study the
efFects of the spin-orbit and/or tensor interaction on the
magnetic dipole excitations.

In Table I we give the total summed strength
B(Ml),~;„and B(M1),b;t to all (nonspurious) J=l+,
T=1 states corresponding to the operators s t and l t,
respectively [as mentioned before we drop the isovector
factor 5.586 —(—3.826)=9.412]. We do this for progres-
sively increasing model spaces: up to 2~, up to 4',
and up to 6'.

We perform the calculation with the spin-orbit and
tensor interactions oK and on.

Examining Table I we find one a priori unexpected
result. When we restrict the ground state correlations to
2', we find that the summed spin strengths are virtually
equal to the summed orbital strengths. This is true for
all four cases of (x,y), i.e. , whether or not there is a spin-
orbit interaction present and whether or not there is a
tensor interaction present.
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TABLE II. For the case x=0, y=0 (central interaction, LS
limit), we give the energies and B(M1)'s of "spin excited"
and "orbit excited" states, vrith up to 2hcu adlnixtures.

Nonspurious

Spurious

Energy
(MeV)

36.7
44.0
45.3
48.8
49.2
53.9
56.5

436.7
436.7
436.7
439.3

(in
Spin

0
0

0.855
0
0
0
0
0
0
0
0

B(M1)
units of 10 p~ )

Orbit
0
0
0
0
0
0

0.855
0
0
0

13.07

This striking result does not extend to larger config-
urations. When we allow up to 4' excitations, the
summed orbital B(M1) strengths become substantially
larger than the summed. spin strengths. For example,
for +=1 and y=l, these are, respectively, 10.6 (10 piv )
and 4.8 (10 piv ). Note that when we go to 6hcu exci-
tations, the summed strengths are even larger, and the
convergence in terms of nLu, if it exists, is very slow.

Let us now consider the systematics of the interaction.
We note that, relative to the central (but spin-dependent)
force case (x=O, y=0), turning on the spin-orbit interac-
tion scarcely changes the summed strength at all. How-
ever, when the tensor interaction is turned on (by chang-
ing y from 0 to 1), there is a big jump in the summed
spin strength and in the summed orbital strength. In the
2hcu case, the change in both cases (since they are equal)
is from 0.86 (10 piv ) to 3.82 (10 piv ).

We gain further insight by examining Table II where
the strengths to individual states are given. Consider
first the 2~ calculation and the case of a central in-
teraction (x=O, y=O). There are only seven nonspu-
rious J=1+, T=1 states in this model space with the
following excitation energies in MeV: 36.7, 44.0, 45.3,
48.8, 49.2, 53.9, and 56.4. The spin transition strength
goes to only one state, the third one at 45.3 MeV with
a strength B(M 1),~;„=0.8546 (10 pN ) . The orbital
transition strength also goes to one state, but to a dif-
ferent one than in the case of the spin. The orbital
strength all goes to the highest state (No. 7) at 56.5
MeV with a value B(MI),b;q ——0.8546 (10 piv ). Thus
B(M1),b;i ——B(M1),~;„. For other interactions xgO or
ygO, we do not get these sharp results although one can
make an approximate association between nearly equal
spin and orbital transitions. Nevertheless, the Summ, ed
values of B(M1),p;„and B(M1),b;t are virtually the
same even in the presence of spin-orbit and tensor in-
teractions.

The above behavior more or less tells us what the sym-
metry we are dealing with is. For a central interaction,
given one eigenstate with certain spin and orbital labels,
we can get another eigenstate by interchanging the spin
labels with the orbital labels. This symmetry is limited

to the 2~ space because in that space the configurations
are simple —all are of the form O~'0~ .

We consider the case x=y=O. We are in the LS limit.
Since the 08 closed shell has L=O, S=O, only 2' exci-
tations with the same quantum numbers will admix into
the ground state. Let us consider two particles excited
from the Os shell to the Op shell. We can label the 2p-2h
states by [L L ] [S S„] . There are several cases
to be considered:

(1) Two protons are excited. The configurations are
(p )~ "(s„) " ". Since L„=O and S =0 and L and S
are zero, we must have I =0 and S =0. So all in all we
get the state ~a) = (p2) =o s = (s )

(2) Two neutrons are excited. By analogy, the config-
uration is ~b) —(s )

-= ' -=
(p )

(3) A neutron and a proton are excited from
the 8 shell to the p shell. The configuration is

L=O, S=O
[(sp) (sp) " "] ' . There are two possibilities:

ic) =(L =1 L =1] [S =0 S„=O]
and

[d) = [L. =1,L„=1]'='[S.=1,S„=1]'='.
We can form an isovector orbital excitation by applying

the operator I —L to the J=O+ ground state; likewise
we can form an isovector spin excitation by applying the
operator S —S to the J=O+ ground state. When acting
on the configurations ~a) or ~b), the orbital operator L
I gives zero; likewise the spin operator S —S . That
1S~

(L —L„)iL = 0, L„=0) = 0.
Let us skip to the state ~d). Note that the orbital

and spin quantum numbers are the same: L = S = 1
and I. = S = 1. This is enough to prove that, if this
were the only state present, we would have the result
B(M 1),p,„——B(M1),b;t.

In more detail,

(L~ L~)ld) = K[L—~ = 1, L~ = 1] [S = 1, S = 1]

and

(S —S )id) =N[L =1 L =1] [S =1 S =1]

There is no reason why these states should be at the
same energy and indeed they are not, but the equality of
the spin and orbital strengths, provided the state ~c) were
not present, is obvious. However, the presence of the
state ]c) apparently presents a problem. The isovector

spin operator S —S will annihilate this state, whereas
the isovector orbital operator (I —I„)creates the state

[L = 1,L„=1] [S = 0, S„=0] . There should
therefore be more orbital strength than spin strength.
What saves the day is that this transition is spurious. In
the oxBAsH program [10] the spurious states are put very
high in energy by adding a large constant to the single-
particle energies for center of mass motion. We added 100
MeV for each nucleon, thus putting the spurious states in
the vicinity of 400 MeV excitation energy. In Table III we
show the 2' x=0, y=O calculation in which all the 1+,
T=1 states are shown, both nonspurious and spurious,
with the values of B(M1),p;„and B(M1),b;t.

We see from Table II that our results are consistent
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TABLE III. Summed loco energy spin and orbital magnetic
dipole moment strength in He with up to 6hz admixtures,
in units of 10 p~

0
1
0
1

Interaction B(M1)
Spin

0.5592
0.5888
1.9546
1.8199

Orbit
0.6018
0.6291
1.8046
1.6155

Deviation
('Yo)

7.3
6.6
-8.0
-10.8

with the above discussion. The nonspurious orbital and
spin strengths are the same, 0.855 (10 p~ ), but the re-
spective states are at diferent energies 45.3 MeV for the
spin state and 56.5 MeV for the orbital state. These cor-
respond to excitations from the configuration ~d). There
are no more spin excitations but there is an orbital excita-
tion which is quite strong 13.07 (10 piv ) to a spurious
state artificially placed at 439.3 MeV. This is consistent
with our previous remarks that the configuration ~c) al-
lows for an orbital but not a spin excitation.

We can further extend our results to include the tensor
interaction. This interaction allows [L = 2, 5 = 2]
2p-2h admixtures into the ground state. For 2' exci-
tations the only way to achieve such a state is to excite
a proton and neutron from the Os state to the Op state.
Thus we have a state

The state ~e) is also invariant under the interchange of the
spin and orbit labels, and hence preserves the equality of
the summed spin and summed orbit strength at the 2~
level.

Concerning the two-body spin-orbit interaction it
should be noted that all matrix elements of the form
(Os OsV, Op Op) vanish. The reason is that the spin-
orbit interaction does not act in relative 8 = 0 states and
furthermore does not change the relative orbital angular
momentum. However, the (Os Os) state can only have
relative orbital angular momentum equal to zero. Thus
the spin-orbit interaction does not induce ground state
correlations in first-order perturbation theory.

We thus have explained the equality of the summed
spin and summed orbital strength in He for the entire
interaction, central, spin orbit, and tensor. It should be
noted that these results are specific to He. For larger
closed shell nuclei, e.g. , 0, the orbital B(M1) is sub-
stantially larger than the spin B(M1) even at the 2~
level [12].

It is trivial to show that for an isoscalar magnetic
dipole transition from the J=O+, T=O ground state to
a given J=1+, T=O excited state, the matrix element of
the spin operator S= S + S is equal and opposite to
that of the orbital operator L=L + L . This is because
the total angular momentum operator J= L+ S, when
acting on the J=O+ ground state, yields zero. More gen-

erally, since any nuclear state is an eigenfunction of J,
this operator cannot induce transitions out of the multi-
plet.

Energy
(MeV)

34.369
43.509
61.414
65.253
66.616
67.762
71.837
71.868
73.723
83.071
96.715
101.20
107.35

Spin
0.5524

0
0

0.2048
0.2276
0.2265
0.2334

0
0
0
0
0
0

B(M1)
(in units of 10 p~ )

Orbit
0

0.6015
2.7900

0
0
0
0

0.7696
0.9369
0.7107
0.7761
0.2435
0.1216

However, the above argument certainly does not hold
for the isovector case for which the relevant operators are
I=L —L and S=S —S . Furthermore the equality
that we obtain between spin and orbit in the isovector
case (at the 2Ru level) is for different states, whereas in
the isoscalar case it is for the same 1+ state. It should
be further noted that one does not get any isoscalar 1+
transitions in an LS closed shell like He in the case of
a central spin-dependent interaction [1]. However, if a
tensor interaction is present, we do get finite isoscalar
transitions.

In the case x=O, y=O when we allow up to 4' or
6~ excitations, we no longer have the summed orbital
strengths equal. However, some features of the 2' case
are preserved in the 6' calculation. Most transition
rates vanish. In the low energy sector (defined more pre-
cisely in the next section) only one spin state and only
one orbital state get excited, just as in the 2~ case. The
spin state is at 34.4 MeV with B(M1)=0.55 (10 ~@~ )
and the orbital state is at 43.5 MeV with B(M1)=0.60
(10 piv ). Although the two B(M1)'s are not equal
they differ by less than 11%, as shown in Table III.

But other states in the 4~ and 6~ region also get ex-
cited. Indeed, the single largest calculated orbital B(M1)
is to a state at 61.4 MeV with a rate B(M1),b;i ——2.79
(10 piv2). This is more than 4 times larger than the
B(M1) in the low energy sector. We show in Table IV
for x=0, y=O all states with B(M1) ) 10 p~2 .

In Fig. 1 we present the cumulative sum of the strength
distribution for the spin B(M1) and orbit B(M1) when

up to 6' excitations are allowed. We consider the case
x=1, y=l (realistic). In Fig. 1 we give the spin distri-
bution. We see some strength starting at about 35 MeV
with a plateau from about 41 MeV until about 65 MeV.
This is the low-lying strength which one might obtain in
a 2' restricted space. Then there is a sharp rise cor-
responding to 4~ and higher admixtures. The curve
ultimately Battens out because we run out of states. The
corresponding orbital strength curve also has a plateau
from about 46 to 61 MeV. This also can be identified as
the low energy part. As mentioned in the previous sec-

TABLE IV. For the case x=0, y=0 (central interaction),
we give the energies and B(M1)'s of "spin excited" and "orbit
excited" states, with strength &10 p~
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FIG. 1. Sum of R(Ml), ~;„(solid line) and of B(Ml),b;t
(dashed line) with +=1, y=l and up to 6hcu admixtures in
units of p~.

tion, the value of B(M1),b;t is very close to the value of
B(M1),~;„ for this plateau. This shows that the symme-
try relation for 2' is not broken very much in the low
energy sector when we extend the calculation to 6'.
The low energy strength is obviously easier to And ex-
perimentally than the higher-lying strength.

As we increase the excitation energy in the orbital case,
we see a sharp rise at 63 MeV to another plateau. The
second orbital plateau is much higher than the second
spin plateau. But then, unlike the spin case, there are
more sharp rises until we reach a saturation value of 14.3
(10 sp~ ). It would certainly be of interest to look for

such a strong orbital strength distribution at a very high
energy 3 —4 Lu. If we had extended our calculation
to 8~ there might be even further rises.

In closing we point out that we have uncovered a
rather unusual symmetry when 2~ ground state corre-
lations are included in the wave function of He. It will
be diKcult to test this result experimentally because of
the large isovector spin coupling for the electromagnetic
probe which will drown out the orbital contribution. Pos-
sibly, a multiprobe analysis would help. Nevertheless, we
feel that the results are of considerable theoretica/ inter-
est. Among the unique features of our findings are the
following.

(a) We obtain our symmetry with an "ugly"
Hamiltonian —the realistic nucleon-nucleon interaction.
This is in contrast to the more prevalent practice of con-
structing simplified Hamiltonians to display approximate
symmetries.

(b) We obtain a simpler result (equality of spin and or-
bit) for the energy-independent sum than for the energy-
weighted sum. In most other cases, the energy-weighted
strength gives the simplest results.

(c) We even go beyond 2Ru and show that although the
symmetry no longer holds, there is a wide plateau where
the cumulative spin and orbit sums are nearly equal.

We obtain this symmetry not in spite of but because
of the fact that we remove spurious states. Interest in
spurious states is widespread, not only for nuclear struc-
ture but also in atomic physics and for the structure of
baryons where the degrees of freedom are quarks and
gluons. Thus the symmetry we have found here in the
nuclear context should be of interest in these other G.elds.
And indeed even in the present context, it may suggest
to others that it is worth probing more deeply for unex-
pected symmetries.
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