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Factorization contributions and the breaking of the AI = —rule
in weak ANp and ZNp couplings
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We compute the modified factorization contributions to the A —+ Np and Z ~ Np couplings and

demonstrate that these contributions naturally include AI = — terms which are comparable (= 0.4
to —0.8 times) in magnitude to the corresponding AI = — terms. As a consequence, we conclude
models which treat vector meson exchange contributions to the weak conversion process AN + NN
assuming such weak couplings to satisfy the AI = — rule are unlikely to be reliable.
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The AI =
2 rule is a prominent feature of observed

AS = 1 nonleptonic weak interactions (K decay and hy-
peron decay). Not only is the ratio of AI =

2 to AI =
2

amplitudes considerably enhanced over that of the corre-
sponding un-QCD-modified operator strengths, but also
the nonleptonic decays completely dominate semileptonic
decay modes, indicating a significant enhancement of the
AI =

2 amplitudes. As a consequence of this observa-
tion, it has become conventional, in the absence of other
evidence, to assume the validity of the AI = — rule for
all AS = 1 nonleptonic weak interactions. In particular,
in the meson-exchange treatment of AN + NN it has
been assumed that the relevant weak baryon-meson cou-
plings satisfy the rule. In the case of the a couplings, this
is known empirically, from hyperon decay, to be a valid
assumption, but no similar experimental support exists
for the assumption that vector meson couplings satisfy
the rule. In this Brief Report we argue that, for the
latter couplings, one may indeed. expect significant vio-
lations of the LI =

2 rule. We base this statement on
an evaluation of factorization contributions to the cou-
plings and show below how, for such contributions, the
structure of QCD modifications to the weak interactions
are such as to distinguish naturally the pseudoscalar and
vector cases.

As is well known, the effects of QCD on the AS = 1
nonleptonic interactions can be taken into account per-
turbatively, down to a scale 1 GeV where the strong
interactions begin to become truly strong [1—4] . One ob-
tains, for the effective LS = 1 nonleptonic Hamiltonian

6

'R,@ = —~2G sine~ cos 0~ ) e,O;, (1)
i=1

where the operators, 0, , have the form

01 ——dLp~sL uLp uL —uLp~sL dLp uL )

Og = dL f&sL uL ff uL + uLQ&sL dLQ uL

+ 2 dLpl sL dLp" dL + 2 dLpI sL sLp" sL,
03 —dL+psL uLQ uL + uLQ~SL dL+ uL
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+ 2 dLp„sL dLp" dL —3 dLp„sL 8Lp"sL )

04 ——dL&„sL uL&"uL + uL&„sL dL&"uL
—dLP&sL dL f

Os ——dl, p„A sL, (vRp+A uR + dRp A dR

+SR f A SR)

Os ——dLQI, sL(vR+ vR + dRQ dR + sR+ sR), (2)

and the coefFicients, c;, are scale dependent and calcu-
lable perturbatively. The operators 01, . . . , 06 in Eq.
(2) have the specific (flavor, isospin) quantum numbers
(8, 2), (8, 2), (27, 2), (27, 2), (8, 2), and (8, 2), respec-
tively. The operators Os s, with left-right (LR) chiral
structure are due to penguin graphs. The leading (Oi)
term typically has a coefIicient, c1 4 c4 at a scale 1
GeV, 04 being the only LI =

2 operator, indicating
that a portion of the observed experimental enhancement
results from QCD modifications of the relative operator
strengths. The additional factor of 4—5 in the observed
amplitude ratios not accounted for by this modification,
however, must be associated with specific dynamics in
the matrix elements of the operators. In the case of K
decay, it seems likely that a significant portion of this
dynamical enhancement is associated with final state in-
teractions (FSI), the AI =

2 operators leading to the
attractive I = 0 7ra s-wave final state, the AI =

2 oper-
ator to the replusive I = 2 state [5—7]. A similar expla-
nation is not, however, tenable for hyperon decays, since,
at least for A and Z, the final state phases are known to
be small. An old idea [8], which provides an attractive (if
qualitative) alternative for these decays, is based on the
observation that there are large enhancements of the pen-
guin operator matrix elements in what is usually called
the factorization approximation, these enhancements re-
sulting from the difFerent, LR, chiral structure of these
operators. We briefIy describe this approximation below.

In the approximation that FSI may be neglected, one
may separate the graphs contributing to baryon-meson,
B' ~ BM, weak transitions into two classes: "exter-
nal, " describing those graphs in which both a quark and
antiquark line from the efFective quark-level weak ver-
tex end up in the final state meson, M, and "internal, "
describing all other graphs. The advantage of this classi-
fication is that the external contributions are eftectively
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"factorized" into a product of the matrix elements of two
currents, one connecting B' to B, and one connecting
M to the vacuum. These current matrix elements are
completely known in terms of baryon semileptonic de-
cay form factors and meson decay constants, so that the
external or factorization contributions may be reliably
calculated. This is not the case for the internal contribu-
tions. (Note that it is essential to use the modified form
of factorization, in which Fierz rearrangements of the 0,.
are also taken into account, or one will fail to satisfy the
correct isospin relations between factorization matrix el-
ements of the operators. ) As mentioned above, when M
is a pion, the Fierz-rearranged contributions of Os s (the
nonrearranged expectation is zero because the AS = 1
current portion of the nonrearranged form is a Havor sin-
glet) contain a large enhancement relative to the matrix
elements of the LL operators. Since these operators are
pure LI =

z this provides an attractive qualitative ex-
planation of the AI =

z rule, especially when combined
with the observation that the AI =

z pieces of the
internal contributions would vanish in the naive quark
model limit (in which the baryons contain only the lead-
ing three-quark color-singlet Fock space component) ow-

ing to the color symmetry of the LI =
&

operator, 04.
The prescription of simply ignoring the internal contri-
butions is called the "factorization approximation. " The
predictions of this approximation are actually rather ill
defined, since the values of the Wilson coeKcients of the
penguin operators, which arise from the evolution be-
low a scale m, are quite sensitive to the precise scale
chosen, making amplitudes where these terms occur mul-
tiplied by a large enhancement factor also quite sensitive
to the scale choice. What can more safely be determined
are factorization contributions to quantities which do not
involve the (enhanced) penguin operators, for example,
the AI =

z contributions to hyperon decay. Here, if
one takes the coefBcient c4 to be evaluated at a scale of 1
GeV and uses the true LI = — amplitudes obtained after
making corrections for E-A and m3-mrs mixing in the phys-
ical amplitudes [9] (the p-wave A and:- amplitudes are
increased by 400% and 100% by these corrections),
one finds (1) good fits to the s- and p-wave AI =—
amplitudes and s-wave E triangle discrepancy (2) that
the p-wave Z triangle discrepancy is underestimated by
a factor of 4, and (3) that the s- and p-wave A ampli-
tudes are overestimated by a factor of 3 —4 (the p-wave
factorization contribution also being opposite in sign to
the experimental value). Although one should bear in
mind that the experimental errors on the AI =

z am-
plitudes are rather large (apart &om the A s wave, the
factorization predictions fall within 2o. of the central
experimental value), it seems safe to conclude that, while
the factorization contributions are of roughly the correct
magnitude, there are additional non-negligible contribu-
tions &om the internal graphs (even for AI = z). In
what follows we will be treating weak vector meson cou-
plings for which, as we will see below, the factorization
contributions of the penguin operators vanish. We will
then see that the remaining factorization contributions
involve large violations of the AI =

z rule and. , in light
of the above discussion, argue that one should, therefore,

expect some portion of this violation to survive in the
total couplings.

Let us turn to the evaluation of the factorization con-
tributions to the weak ANp and ZWp couplings (the
corresponding contributions to both ANu and ZNw cou-
plings are small and, even for ZNw, satisfy the LI =—
rule, so we will not discuss them further). We employ the
effective weak Hamiltonian of Eqs. (1) and (2), with coef-
ficients c; evaluated at a scale 1 GeV [4,10]: ci ———1.90,
cq ——0.14, c3 ——0.10, c4 ——0.49. The coefficients c5 6 are
not needed since the factorization contributions to the
weak p couplings of the operators 05 6 vanish. This fact
follows &om the observation that these operators con-
tain color-singlet flavor-octet nonstrange currents only in
Fierz-rearranged form, in which form, owing to the orig-
inal LR chiral structure, only scalar and pseudoscalar
currents are involved, the vacuum-to-p matrix elements
of which automatically vanish. The remaining contribu-
tions are straightforward to work out.

We define the effective weak couplings via

{~(p')l I~.~l&(p)) =,"*u~(p') fi ~" —
2

f2"

.0 g~
+gi ~"» —' gz» ui. (p)

2mN

(3)
where q = p —p' and e~ is the p polarization vector, and
the baryon transition form factors via

{ '(p')I &~ —&~ l&(p)) =u~ (p') f.~, —i " f.

+giV, » + i gs ~a(p)
~ Qp, Y5

2mN

where we have dropped the 2nd class current form fac-
tors, fs and gz in Eq. (4). In using Eq. (4) below, we
will assume that fi and fz are given by their conserved
vector current (CVC) values, and take gi/fi from hy-
peron semileptonic decay data [11]. gs does not enter
the expressions for the factorization contributions to the
couplings due to the transversality of the p polarization
vector. Defining the p decay constant, f~, by

{OIV„'lp'(g)) = f,m,"l l(g (5)
we then obtain for the factorization contributions to the
A + pp couplings

f; = v2K[ —sci+ scz+ scs+ sc4]f, (i = 1, 2)

» =fi [»"/fi'"] (6)
with

K = sin(28~) fpmp, (7)
4 2

where G~, 0~ are the Fermi constant and Cabibbo an-

gle, respectively, and f, , g; " the form factors rel-
evant to {p~u(p& —p„ps)a~A). We have, &om CVC,

fi "(0) = — —, fz "(0)/fi "(0) = 1.63 and, &om A

semileptonic decay data, gi (0)/fi +(0) = —0.72. As
1~mentioned above, g~ is 2nd class, and assumed to be

zero. Since Oy, . . . , 03 are AI =
z and 04 AI =
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the corresponding A ~ np contributions follow &om
isospin Clebsch-Gordan coeKcients, leading to

TABLE I. Factorization contributions to the weak ANp,
ZNp couplings. All entries in units of 10

f; = —K [
—

scan + sc2 + sc3 —3c4] f, " (i = 1, 2)

gF = f7 [gi "/6"] . (8)

jOne finds similarly, for the factorization contributions to
the Z m np couplings,

f; = ~2K [—scg + 3c2+ scs+ sc4] f, (i = 1, 2)

gi = fP [gi "/6' "] (9)

Process
Ampp
A~np'
~+ ~ pp'
Z+ ~ np+
~'~ pp
Z' ~ np'
Z mnp

f
-4.1
0.36

-0.29

-2.3
-0.21
-3.3

-6.6
0.58
0.54

0
4.3

0.38
6.1

9x
2.9

-0.26
-0.10

0
-0.79
-0.07
-1.1

where, &om CVC, f, "(0) = —1, f2 "(0)/fP "(0) =
—1.86 (compatible with experiment [11] ) and, from ex-

periment, gP "(0)/fP "(0) = 0.34 [11] . From the form
of the operators Oi, . . . , 04, one sees that there are no
terms containing simultaneously both a u and d Geld,
and hence both the LI =

2 and LI =
2 factorization

contributions to the Z+ ~ np+ couplings vanish. This
reduces the number of independent reduced matrix ele-
ments for both the LI =

2 and LI =
2 operators &om

two to one, and one may then show that the LI =
2 fac-

torization contributions to the ZNp couplings are in the
ratios 1:—:—:—and the AI = — contributions in2

the ratios 1:—~2: ~ .. —1, for E -+ np, + ~ pp,
Z ~ pp, and Z —+ np, respectively. Expressions for
the weak E+ —+ pp, E —+ pp, and Z ~ np couplings
are then readily obtained from those of Eq. (9).

From expressions (6), (8), (9), and the discussion below
Eq. (9), we see that the relative strength of the AI =

to LI =
2 contributions to the weak couplings is

determined, in all cases, by the factor [
—3c] + 3c2+ 3c3+

—c4] for the p couplings, and [
—

3 c] + 3 c3 + 3 c3 3 c4]
for the p couplings. For the p couplings, using the c;
values quoted above (corresponding to a scale 1 GeV), the
contributions of the 27~ c3 and c4 terms are 0.54 times
those of the 8~ cq and c2 terms. The leading LI =
term is 0.52 times the leading AI =

2 term and 0.41
times the net LI =

2 contribution. Similarly, for the p
couplings, the 27~ contributions are —0.81 times the 8~
contributions, while the leading AI = — contribution is
—1.03 times the leading LI =

2 contribution and —0.82
times the net AI =

&
contribution. The factorization

contributions to the weak AN p and EN p couplings
thus badly violate the AI =

2 rule. The basic reason for
this is the complete absence of the penguin contributions,
which had large enhancements in the a coupling case.

We present the numerical results for the factorization
contributions to the ANp and Z&p weak couplings fP,
f2, and g~ in Table I. The ratios reflect the strong viola-
tion of the AI =

2 rule discussed above. This violation
will, however, be reOected in the full couplings only if
the factorization contributions represent a moderate to
sizable fraction of the full couplings. To see whether or
not this is likely to be the case, we consider two exist-
ing models which have made predictions for the ANp
(though not the Z&p) couplings [12,13]. In Table II we
compare the factorization contributions to the A ~ pp
couplings obtained above with the values obtained in the

TABLE II. Comparison of q = 0 factorization and model
values for App couplings. All entries in units of 10 . The
models are as discussed in the text.
Coupling

1

Fact orization
-4.1
-6.6

Ref. [12]
-15.0
-22.6
3.4

Ref. [13]
-10,6
-24.3
12.0

models of Refs. [12,13] (adjusted to Particle Data Group
conventions for ps). We will return to a brief discussion
of the models below, but for the moment, two features of
the table are of note. First, the model predictions differ
considerably, most significantly for the parity-violating
gi coupling. Second, the factorization contributions are

3 of the full predictions for fP, f2 and between
and 1 times the full prediction for gz . Also, as we will
discuss below, there are significant uncertainties in the
model predictions. From Table II it thus appears to us
extremely unlikely that one can ignore the AI =

2 com-
ponents of the AN p and ZN p couplings.

A few words are in order concerning the models of Refs.
[12,13] which we have used to gauge the potential impor-
tance of the factorization contributions. The model of
Ref. [12] provides the framework for the weak couplings
of the meson-exchange treatment of AN + NN em-
ployed by Dubach et al. [14]. Here the parity-violating
(PV) gP coupling is obtained from the known PV Ap7r
and K+p7r cauplings via the SU(6) treatment of Des-
planques, Donoghue, and Holstein [15], where factoriza-
tion estimates have been used to provide values for the
two SU(6) reduced matrix elements, av and nT, present
in the AN p couplings but not in the A¹rand ZNm cou-
plings [15]. The parity-conserving (PC) fP, f2 couplings
are obtained via a pole model analysis which includes
ground state baryon pole terms and K* pole terms, the
strong vector meson couplings being obtained from an
SU(3)~ vector dominance model (VDM) treatment to-
gether with the weak baryon-baryon transition matrix el-
ements from an analogous treatment of the PC A ~ Na
and E -+ N7r amplitudes. In Ref. [13], the PV gz cou-
pling is obtained from a pole model treatment which
keeps only baryon pales belonging to the (70, 1 ) multi-
plet of (ordinary) SU(6). The required weak baryon tran-
sition matrix elements between ground state and nega-
tive parity excited state baryons are taken from a treat-
ment [16] of hyperon s-wave a decays which includes the
leading commutator terms as well as the negative parity
baryon poles, and which fixes the PV baryon-baryon ma-
trix elements by assuming (1) that the D/I' ratio for the
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weak baryon transitions is —1 and (2) that experimen-
tally observed deviations from a modified Lee-Sugawara
sum rule are due entirely to the negative parity baryon
poles. The required strong couplings are obtained using
VDM arguments, together with information on the scalar
multipoles in Sqj, SIz electroproduction. The PC fP,
f2 couplings are obtained using a pole model treatment
which includes 2 baryon resonance pole contributions,
in addition to the ground state baryon pole and K* pole
terms of Ref. [12]. The strong couplings required are ob-
tained again using VDM arguments, together with data
on P~q radiative decays and assumptions about the scalar
multipoles in Pqq electroproduction. The weak baryon-

1+*baryon couplings for the 2 pole terms are taken from a
pole term analysis of hyperon p-wave vr decays [16] which

(1) assumes an F/D ratio of —1 for the weak baryon tran-
sitions and (2) Axes the overall strength by optimizing the
full fit to the experimental p-wave amplitudes. This fit,
however, employs a K-7t weak transition strength in its
K-pole graphs an order of magnitude greater than that
extracted from K ~ ver [17], which makes the whole

1+*procedure appear somewhat dubious. The 2 pole con-
tributions to fz in Ref. [13] are negligible, but this is not
true of the corresponding contributions to f2 . Finally,
the K' pole contributions are obtained using VDM plus
SU(3) p arguments for the strong K* couplings and a fac-
torization treatment, which keeps only the Oq, 02 terms
of 'R g and drops the Fierz-rearranged contributions, for
the K —p weak transition. This is, in fact, a rather
suspect way to treat factorization contributions, even if
they were exyected to represent well the full coupling.
Indeed, if one keeps all terms in Q g, one Ands the same
linear combinations of the c, occurring for the charged
and neutral K*-p mixing terms as occur for the charged
and neutral p weak couplings above; i.e., there is very
signi6cant breaking of the LI =

2 rule for the K' pole
terms.

As can be seen &om the discussion above, there are
many assumptions and approximations which enter the
models of Refs. [12,13]. As such, the model values for

the weak couplings quoted in Table II will involve sig-
nificant uncertainties whose sizes are dificult to quan-
tify. YVe feel, however, that the arguments leading to
the ground state baryon pole contributions, especially to
fP, are likely to be the most reliable, so these contribu-
tions provide a useful benchmark. For A ~ pp, these
are —10.5 x 10 and —11.3 x 10 for the models of
Refs. [12,13], respectively. Similarly, for the f2 A

pp coupling, these contributions are —14.8 x 10 and
—9.3 x 10, respectively. Note that only the n pole term
contributes to fP, but that both n and Z+ pole terms
contribute to f2 In t.he latter case, there is considerable
cancellation between the two terms, which makes the ac-
tual result rather sensitive to possible SU(3)~ breaking
in the relative strengths of the strong pn p and E+Ap
couplings, a +30'%%uo variation of the the Z+Ap strength
from its SU(3)~ value, for example, producing a variation
of +7 x 10 T (+10 x 10 ) in the corresponding ground
state baryon pole contribution to f2 for the parametriza-
tions of Refs. [12,13], respectively. One should also note
that the close agreement of the f2 values in the two

models is actually a numerical accident, since the
baryon pole terms of Ref. [13],completely absent in Ref.
[12], contribute —of the quoted f2 value.

To summarize, we have evaluated the factorization
contributions to the weak AN p and ZN p couplings and
find that they involve large violations of the AI =
rule. Since the size of these contributions is not small on
the scale of values to be expected for the full couplings, it
appears very unlikely that it is safe to assume the valid-
ity of the LI =

2 rule as an input when determining the
weak ANp couplings to be used in treating AN + NN
in the meson-exchange framework.
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