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Comparison of different Skyrme forces: Fusion barriers and fusion cross sections
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Fusion barriers and fusion cross sections are calculated using the Skyrme energy-density formal-
ism. To study the role of different parametrizations of the Skyrme interaction, we use two typical
forces, i.e., the original Skyrme force S and the widely used Skyrme force SIII. Our calculations
show that, in the reactions considered here, the Skyrme force S gives higher fusion cross sections
compared to that of the Skyrme force SIII. The main part of this difference can be associated with
the presence of the spin-density contribution in the Skyrme force SIII.

PACS number(s): 21.30.+y, 25.70.Jj

Heavy-ion collisions from a few MeV /nucleon to a few
GeV /nucleon provide a variety of phenomena which oc-
cur at different bombarding energies. Due to the lack
of free phase space at low energies, almost all nucleon-
nucleon collisions are absent and thus the collision of two
heavy nuclei at low energies leads to phenomena like com-
plete fusion or deep inelastic collisions, depending on the
impact parameter. As one goes to higher energies, fre-
quent nucleon-nucleon collisions govern the fate of heavy-
ion dynamics and, therefore, processes like incomplete
fusion, multifragmentation, particle-production, etc. can
be observed. In the low and intermediate energy regions,
the role of mean field (which individual nucleons feel) is
very important. A large amount of work has been done
using the phenomenological forces which account for the
mean field potential of nucleons. In a phenomenologi-
cal force, one fits the parameters to known ground state
properties of nuclei and thus can generate several sets of
parameters which can reproduce the ground state proper-
ties of nuclei with similar accuracy. Among various phe-
nomenological forces, the Skyrme interaction is widely
used to study the heavy-ion collisions from low to inter-
mediate energies.

The Skyrme force has been fitted to generate the stan-
dard hard and soft parametrizations depending upon the
incompressibility [1]. These different parametrizations of
the Skyrme interaction (the hard and soft) are used to
extract the so-called equation of state (EOS) [1]. In past
many years, extensive attempts have been made using
these soft and hard parametrizations of the Skyrme force
to understand the heavy-ion dynamics at intermediate
energies [1-13]. In contrast, very few attempts have been
made using different Skyrme forces to study the low en-
ergy phenomena like fusion of two nuclei, their excitation
functions, etc. [14-20]. Therefore, it is very interesting
and also important to compare the predictions of differ-
ent Skyrme forces for heavy-ion phenomena at low ener-
gies. In this paper, we attempt to do so for the fusion
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barriers and fusion cross sections. In the following, we
first summarize the important points of the model used
and then present the results of our calculations. The
details of the model can be found in [14].

In the Skyrme energy density formalism (SEDF) [21],
the interaction potential Vx(R) is defined as the differ-
ence between the energy expectation value E of the col-
liding system at a finite separation distance R and at
infinity,

Viv(R) = E(R) - E(c) . (1)

The two nuclei overlap at a distance R and are completely
separated at infinity. The energy expectation value E
for the energy-density functional H(r) of Vautherin and
Brink [21] is given by
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where the Hamiltonian H(r) for an even-even spherical
nucleus (N = Z) is given by
H(p,7,J) = hz‘r+§t 2+it 3+i
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Using Egs. (1)—(3), the interaction potential Vi (R) reads
as

VN(R) = /{H(varJ) - Hl(Pl,Tth)
—Hy(pa, 72, 32) }dr . @

In Eq. (3), pi, 7, and J; are the nucleon density, ki-
netic energy density, and spin density of individual nu-
clei, respectively. Under sudden approximation (which is
used in the present study), the nucleon density p, kinetic
energy density 7, and spin density J for the composite
system read, respectively, as p = p; + p2, T = T + T2,
and J = J; + J,. The five parameters [to, t1,t2,%3, and
Wo] appearing in Eq. (3) have been fitted by various
authors in a self-consistent manner to reproduce the cor-
rect single particle properties of nuclei. First, the set of

1568 ©1995 The American Physical Society



51 BRIEF REPORTS 1569

parametrization was given by Skyrme himself [22] (la-
beled as Skyrme force S). Later, two forces SI and SII
were fitted by Vautherin and Brink [21]. Beiner et al.
[23] succeeded in reproducing the radii and binding ener-
gies of the whole Periodic Table using four new Skyrme
forces, namely, SIII, SIV, SV, and SVI. Note that of all
these Skyrme forces, force SIII is found to give remark-
able agreement with the experimental nuclear radii, bind-
ing energy, etc. [23], and has been used quite extensively
to calculate the heavy-ion potentials and cross sections
[14-20]. In the following, we compare the fusion barriers
and fusion cross sections obtained by using the original
Skyrme force S and the widely used force SIII, where
parameters are listed in Table I. The choice of forces S
and SIII is based on the idea that the Skyrme force S has
no spin density dependence (Wy = 0 MeV fm®), whereas
SIII does have it (W, = 120.0 MeV fm®). Thus, the com-
parison of fusion barriers and fusion cross sections using
forces S and SIII, should give us the possibility of exam-
ining the role of the spin-density term in Skyrme forces.
It may be noted here that these forces represent the low
density region and fusion is a low density phenomenon.

In Eq. (4), the nucleon density p; is calculated by using
the two-parameter Fermi density distribution; the kinetic
energy density 7; and spin density J; are given, respec-
tively, by [14]

3/3 ,\%°
and
Ji(r) = =

yp— ;(2311 + Dlja(la +1)

a(la +1) — 3)RA(r) . (6)

The value of constant A in Eq. (5) varies between 1/36
and 9/36 and is a point of controversy [24]. Therefore,
in present calculations, we take A = 0. Note that the
summation « in Eq. (6) runs over all occupied levels and
R(r) are the harmonic oscillator radial wave functions.
From Eq. (6), one recognizes that this equation is valid
only for closed shell nuclei and must be generalized for
fusion of nuclei with valence particles (or holes) outside
the closed core. Following Gupta and collaborators [14],
the contribution of spin density J; for even-even nuclei
with valence particles (or holes) outside a closed core is
calculated by dividing the contribution of J;(r) in two
parts: One due to the core consisting of closed shells and
another due to the valence n, particles (or holes):

3i(x) = I5(x) £ I (x) - (7)

The + sign is for the particles whereas — stands for
holes. The first term in Eq. (7) is apparently the same

as Eq. (6), whereas the second term, representing the
contribution from valence particles (or holes), is given as

T,T
4mrrd

I (r) = LG +1)—i0+1) - §IRi(r) . (8)

For more details, we refer the reader to [14].

Furthermore, Eq. (4) is solved by separating the terms
containing the spin-density dependent part and the spin-
density independent part, as

VN(R) = Vp(R) + Vi(R) , (9)

with

Vp(R) = / [H(p,7) — {Hy(p1,71) + Ha(pa, 72)}dr
(10)

and
Vs (R) = / [H(p,3) = {Hy(p1,31) + Ha(p2, 32)}]dr .

(11)

Here, Vp(R) is evaluated in sudden approximation, us-
ing the proximity theorem treatment of Chattopadhyay
and Gupta [15]. By adding the Coulomb interaction to
the nuclear interaction Vy, we get the total interaction
potential

Vr(R) = Vi (R) + Z1Z2€¢* /R . (12)

The fusion barrier is defined as the height of the interac-
tion potential Vr(R) where the slope

= [T,

In other words, the fusion barrier is defined by its position
at the distance R = Rp, and the height V(R = Rp) =
Vp. From the knowledge of the height and the position
of the barrier, the fusion cross section can be calculated
by using the so-called sharp-cutoff model,

<0. (13)

Ofus = WRZB{]- - VB/Ecm} . (14)

Table IT shows our calculated barrier heights and po-
sitions for a number of colliding nuclei using the forces
S and SIII and also for a special version of SIII with
the spin-density contribution neglected (i.e., V;(R) = 0
MeV). We note that the collisions between two spin sat-
urated nuclei, like 180 and “°Ca, result in fusion barrier
heights and positions that are nearly the same for both
S and SIII forces. However, both the barrier heights and

TABLE I. The Skyrme force parameters used in present calculations.

Skyrme to t; to t3 Wo
interaction (MeV fm?) (MeV fm®) (MeV fm®) (MeV fm®) (MeV fm®)
S —1072.00 461.00 —40.00 8027.00
SIII —1128.75 395.00 —95.00 14 000.00 120.00
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TABLE II. Calculated fusion barrier heights and positions for spin saturated and spin unsat-
urated colliding nuclei using Skyrme forces S, SIII, and SIII without spin density contribution
(Vs = 0 Mev). The systems are listed with respect to their increasing Z;1Z2 and A = 0.

System Skyrme force S Skyrme force SIII Skyrme force SIII
(Vs = 0 MeV)

VB RB VB RB VB RB

(MeV) (fm) (MeV) (fm) (MeV) (fm)
160-180 10.95 7.90 10.97 7.90 10.97 7.90
160-2*Mg 15.02 8.53 15.07 8.43 15.05 8.53
160-10C,, 23.94 8.94 23.98 8.94 23.98 8.94
26Mg-329 27.12 9.30 27.29 9.20 27.13 9.30
28g3-285j 27.88 9.20 28.12 9.10 27.89 9.20
20Ne-°Ca 28.58 9.31 28.64 9.21 28.59 9.21
40Ca-%°Ca 54.21 9.78 54.26 9.68 54.26 9.68
325.58Nj 59.23 10.04 59.70 9.84 59.29 9.94
58Ni-®8Ni 98.00 10.56 99.03 10.26 98.15 10.46

positions begin to differ as we go from spin saturated nu-
clei to spin unsaturated nuclei. This happens because the
force SIII has a strong spin-density dependence (see Table
I), which is found to increase the barrier heights and de-
crease the barrier positions [16]. If one neglects this con-
tribution of the spin-density dependent part in SIII, then
once again the Skyrme forces S and SIII give nearly the
same barrier heights and positions. This clearly means
that the spin-density contribution would play an impor-
tant role for fusion cross section calculations.
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FIG. 1. Calculated excitation functions for reactions of

spin-saturated nuclei °0-'°0, *°Ca-%°Ca, using Skyrme
forces S and SIII.

To study the role of different Skyrme forces for fusion
cross sections, we display in Fig. 1 the excitation func-
tions ogys(Fe.m.) for collisions of only the spin-saturated
nuclei, 160-1%0 and “°Ca-%°Ca. It is impressive to note
that for the spin saturated nuclei, both Skyrme forces S
and SIII give nearly the same excitation functions. This
comparison is striking particularly because Skyrme force
S gives very small radii for heavy nuclei [22], but is able
to reproduce the excitation functions as good as in the
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FIG. 2. Calculated excitation functions for reactions of
spin-unsaturated nuclei 32S-°®Ni, ®®Ni-*®*Ni, using Skyrme
forces S, SIII and a special version of SIII where the
spin-density contribution V; is neglected.
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case of Skyrme force SIII.

In Fig. 2, we study the variation of the excitation
functions for reactions which are the cases of either the
weakly or the highly spin-unsaturated nuclei. Compar-
ing this figure with Fig. 1, one sees clearly that as we
go from spin-saturated nuclei to spin-unsaturated nuclei,
the differences in excitation functions for force S and SIII
start appearing and become stronger and stronger. The
original Skyrme force S (without spin density term) gives
higher fusion cross sections. As we neglect the contribu-
tion of spin density potential in SIII also, we see that the
forces S and SIII give nearly the same excitation func-
tions. This clearly demonstrates that for the fusion bar-
riers and hence the fusion cross sections, the spin density
plays an important role. This result can be understood
when one looks at the behavior of energy per nucleon as
a function of nucleon density (equation of state). One
finds that for the spin-saturated nuclear matter, differ-
ent parametrizations (the hard and soft) of the equation
of state result in nearly the same value for energy per

nucleon in the low density region [1]. In the present case,
the low density behavior of the potential is dominated
by the second term (i.e., 3/8t9p?) of the Hamiltonian [3].
The value of parameter to is nearly the same for the two
Skyrme forces S and SIII and hence it results in similar
fusion barriers for spin-saturated nuclei.

Concluding, we have calculated the fusion barriers and
the excitation functions, using the original Skyrme force
S and the widely used force SIII. For spin saturated
nuclei, both Skyrme forces S and SIII give nearly the
same fusion barriers and fusion cross sections. How-
ever, the deviations start appearing as one goes to spin-
unsaturated nuclei. Neglecting the spin-density contribu-
tion to the interaction potential based on force SIII, we
obtain nearly the same fusion barrier heights, positions,
and the excitation functions as are given by the original
Skyrme force S. In other words, the above results show
that the low density phenomena for spin-saturated sys-
tems are not affected much by different parametrizations
of the Skyrme force.
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