
PHYSICAL REVIEW C VOLUME 51, NUMBER 3 MARCH 1995

Positivity restrictions in polarized coincidence electronuclear scattering
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We make a systematic examination of the role played by the restriction that the cross section in
polarized coincidence electronuclear processes must be positive. The necessary formalism for unpo-
larized scattering structure functions is developed within two frameworks: (i) the response tensor
method, and (ii) the Jacob-Wick method. Equivalence of the two methods is demonstrated for unpo-
larized scattering, and then the simpler 3acob-Wick method is applied to the polarized pseudoscalar
electroproduction oR'a nucleon. We derive three known and eight new inequalities among the polar-
ized target structure functions, as well as 11 new polarized ejectile structure function inequalities.
We also provide rules for this method to be used in the deuteron two-body electrodisintegration in
conjunction with the results published in Phys. Rev. C 40, 2479 (1989).

PACS number(s): 25.30.—c, 24.70.+s, 13.60.—r

I. INTRODUCTION AND SUMMARY

The new and upgraded electron scattering facilities
have revived interest in coincidence electronuclear scat-
tering [1], and in polarization measurements in particu-
lar. In recent years we have seen a number of theoret-
ical papers [2—4] on the general properties of such cross
sections as expressed in three different formalisms. A
fully relativistic method based on the Jacob-Wick helic-
ity formalism [5] has been developed for several two-body
final-state reactions [2,6—10]. This method allows a com-
paratively straightforward separation of scattering ampli-
tudes [2,8] from the polarization observables. Although
at this time complete experimental separation seems an
excessively ambitious project for all but a few reactions
with small spins, such theoretical analysis teaches us
about the sensitivity of observables to certain amplitudes,
and, as we will show in this paper, it allows the construc-
tion of model-independent inequalities among the observ-
ables. A technically different, but physically related, ap-
proach to polarized, coincidence, inelastic electron scat-
tering was worked out by Donnelly and Raskin [3]. They
use conservation of angular momentum in order to ex-
pand the transition amplitudes in terms of multipoles,
and then write the cross section as a function of the latter.
While this approach is closer to the traditional methods
of nonrelativistic electronuclear physics [11], it is much
more complicated than the helicity amplitude method
and it does not allow a simple separation analysis. Fur-
thermore, it is not unique insofar as such multipole anal-
ysis can also be completed starting from the Jacob-Wick
helicity amplitudes [1,7]. Finally, a relativistic formalism
for the description of target polarization in coincidence
inelastic electron scattering based on the most general
expansion of the response tensor was developed by De
Rujula, Doncel, and de Rafael [12]. This method, which
follows the lines of de Forest's [13] unpolarized coinci-
dence analysis, has recently been extended to describe
polarized recoil reactions by Picklesimer and van Orden
[4], as well. The final-state channels are not sufficiently
well specified for the separation of amplitudes to be fea-

sible within this method. These three formalisms may
look distinct, but they are essentially equivalent: they
all rely on the one-photon-exchange approximation and
the use of electromagnetic (EM) current conservation.

Despite all this formal effort, precious few actual calcu-
lations [4,14,15] have been done, so that relatively little
is known about the actual size, shape, and form of these
polarized response functions in general. Furthermore, at
least one aspect of the problem remains unexplored: con-
straints on the polarized structure functions due to the
condition that the cross section be positive, or vanish-
ing ("positive semidefinite"). The inclusive unpolarized
structure functions are well known to be positive definite
[11].The polarized structure functioris, although not pos-
itive definite, are also bounded by certain functions of the
unpolarized ones [16], but these bounds are not widely
known. As an example of potential usefulness, such "pos-
itivity ' constraints were used in estimates of counting
rates for measuring the polarized deep inelastic scatter-
ing structure function g~, before the experiments. Some
of the above-mentioned coincidence scattering methods
were developed along the lines of inclusive electron scat-
tering, so we expect to find similar positivity constraints
for coincidence structure functions.

In this paper, we present one model-independent set
of constraints in the form of inequalities among various
structure functions based exclusively on the positive def-
initeness of scattering cross sections, i.e. , probabilities.
Such inequalities have already been derived for unpolar-
ized and several of the polarized target coincidence struc-
ture functions [17]. One particularly interesting example
(see Sec. II B below) is the upper bound on the absolute
value of the so-called "fifth structure function" given in
terms of the remaining four unpolarized structure func-
tions. These results are largely unknown in the nuclear
physics community, so that they have not seen many ap-
plications so far. One of the purposes of this paper is to
bring some awareness of these results to a wider audience.
After all, these results are by no means obvious, as are
their unpolarized inclusive counterparts, and are a natu-
ral consequence of the probabilistic nature of scattering
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cross section.
The method that was originally used [12,17] was based

on the response tensor formalism and turned out to be
increasingly complicated with the increase of the number
of spin degrees of freedom. For that reason, no double-
polarization experiment structure function inequalities
are discussed here. We develop an alternative scheme
based on the Jacob-Wick helicity formalism that is sub-
stantially simpler, especially in view of the fact that all
of the polarization observables that are necessary for this
purpose have already been worked out for two reactions
[2,8]. In order to test the method, we first explicitly
show its equivalence with the conventional (response ten-
sor) method results for unpolarized coincidence scatter-
ing where all inequalities are already known. Then we
extend our calculation to the polarized spin 1/2 ejectile
case where we confirm five known inequalities and. derive
six. new ones. These are by no means all of the inequal-
ities one can derive in this way. We have only looked at
the inequalities that involve up to trilinear products of
structure functions whereas one can have products of up
to six structure functions. Rather then spelling out all of
them (they become increasingly complicated) we indicate
how they can be extracted by the interested reader from
the tables provided here, when the need arises. Then we
repeat this exercise for polarized spin 1/2 target coin-
cidence reactions. Finally, with regard to target spin 1
and ejectile spin 1/2 reaction the purpose of this paper
is one of a do-it-yourself manual. We leave the majority
of results to be constructed by the interested reader, as
the need and occasion arise. For that purpose, Ref. [10]
is meant to be used as the source of tables of polarization

I

observables and their transformation properties.
This paper is organized as follows. In Sec. II we review

the basics of the Jacob-Wick and response tensor based
formalisms and then present two different derivations of
the positivity conditions for the unpolarized coincidence
structure functions in order to prove their equivalence.
In Sec. III we explicitly construct the positivity condi-
tions for spin 1/2 target and ejectile polarized coincidence
structure functions using the second (simpler) of the two
methods. We discuss our results and compare them with
those of Ref. [12]. Then, we define rules for the derivation
of spin 1 polarized target coincidence structure functions.

II. REVIEW OF THE FORMALISM

In order to set the notational conventions, we review
in subsection II A the basic results of the polarization ob-
servables analysis in (e, e'N) worked out within the Jacob
and Wick helicity formalism in Refs. [9,2,10]. Then, in
subsection IIB we work out the general positivity con-
straints in unpolarized coincidence electron scattering.

A. Polarization observables in coincidence electron
scattering

The general form of the inelastic coincidence electron
scattering cross section for arbitrary polarization of the
target and/or ejectile, with two particles in the final
state, in the "mixed" frame, i.e. , with electron variables
in the laboratory (lab) and the hadronic variables in the
centre-of-mass (c.m. ) frame, is [2]

5 2
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where pz is the absolute value of the ejectile three-momentum in the c.m. frame and E~ is the corresponding ejectile
energy, 6 = +1/2 is the helicity of the incoming electron, Mz is the target-nucleus mass, o M is the Mott cross section
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The kinematic variables entering this cross section are the
total c.m. energy of the system W = i)(P + q) 2 (here P„
is the target nucleus four-momentum), the negative four-
momentum transfer squared Q2 = —q = ql —v, the

absolute value of the momentum transfer three-vector in
the lab frame ql, = [ql, ~, the energy loss v = E —E', the
initial E and the final state electron energy E' in the lab
frame, the electron scattering angle 0 in the lab frame,
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where K = MiM2/4ir W, Mi 2, si 2 are the masses and
spins of the particles No. 1 ("ejectile") and No. 2 ("resid-
ual nucleus" ) in the final state, respectively, and all the
density matrices are normalized to tr(pf, ) = 1. Here the
a, b indices stand for the helicities of the virtual photon.
The density matrices can be expanded in terms of irre-
ducible tensor operators (ITOs) [see Eqs. (37, 38, 45) of
Ref. [2]] as follows:

(4)

FlG. 1. Geometry of the coincidence electroproduction or
electrodisintegration process showing the electron scattering
plane, the ejectile plane, and the two coordinate systems in
the ejectile plane: (x', y', z') defined by the virtual photon's
three-momentum ql, which is parallel to the z, z' axes, and
(x",y", z") where z" is along the ejectile three-momentum
pz. The axes y', y" are perpendicular to the ejectile plane.
The axis y is perpendicular to the electron scattering plane.

the ejectile opening angle Oq in the c.m. frame, and the
azimuthal angle P (see Fig. 1). We use the Bjorken and
Drell [18] metric and a 1j137 is the fine-structure con-
stant. The only assumptions entering this result are (i)
one-photon-exchange approximation and (ii) conserved
hadron electromagnetic (EM) current. Parity conserva-
tion has not been assumed as yet.

The response functions B's are functions of W, Q, and
Oi, but not of P, as long as the target polarization is
specified with respect to the coordinate system (x', y', z')
(Fig. 1) and recoil polarization is measured with respect
to the (x",y", z") (Fig. 1) coordinate system. We em-
phasize this because the specification of the recoil polar-
ization measurement coordinate frame has recently been
a source of some confusion. Thus, the "interference"
B's, which do have a P-dependent factor, can be sepa-
rated by making measurements at different values of P
and otherwise identical kinematics. The remaining "di-
agonal" B's that do not have a P-dependent factor can
be separated by the Rosenbluth separation. The struc-
ture functions B are linear combinations of functions R b,
which in turn are traces of products of helicity transition
matrices J, J& [see Eq. (32) of Ref. [2]] and the density
matrices of the initial and final states:

A~i, = (2si + 1)(2s2 + 2) K tr(pf J~p, J& j,

It has been erroneously claimed in Ref. [19] that, in the he-
licity formalisln, the recoil polarization is to be measured with
respect to the (x', y', z') coordinate system shown in Fig. l.
An independent calculation of the recoil polarization observ-
ables by Hanstein [20], using Chew-Goldberger-Low-Nambu
(CGLN) amplitudes, i.e. , outside of the Jacob-Wick formal-
ism, has shown a discrepancy with Lourie's [19] results in
exactly the form of a rotation through angle 0&. This simply
and explicitly con6rms our claim.

where 8& is the spin value of the jth particle in the ini-
tial, or the final state, &JM(j) is the Mth component of
the spherical ITO of rank J, and TJM(j ) are the corre-
sponding components of the polarization spherical ITO.
Lorentz boost transformation properties of the polarized
observables have been worked out in Ref. [10]. Analo-
gous transformation properties of unpolarized structure
functions in coincidence electronuclear scattering were
worked out by Walecka and Zucker [7] some time ago.
Note that particles No. 2 in their respective two-body he-
licity states (the target particle in the initial state, and
the "residual nucleus" in the final state) carry a tilde
above the polarization ITO in order to indicate this fact.

All structure functions can be divided into two
classes: class I structure functions (BI„BT be-
sides all other structure functions explicitly de-
noted as such by the superscript I) are nonzero in
unpolarized, parity conserving reactions, while class II
structure functions (RT besides all other structure func-
tions explicitly marked II) vanish identically because of
constraints imposed by parity. Once the polarization
measurement is allowed, this rule is modified, but it re-
mains true that one half of all possible structure functions
vanish because of parity constraints.

B. Unpolarized coincidence positivity inequalities

The differential cross section do is a positive or vanish-
ing (positive semidefinite) quantity. Its general form in
the one-photon-exchange approximation is proportional
to l„*W" l, where l„ is the lepton current and W" is the
Hermitian positive semidefinite response tensor. From
these two facts alone one can derive nontrivial inequali-
ties among the structure functions. For inclusive electron
scattering the first comprehensive study of positivity con-
straints was published in Ref. [16]. In the following we
will repeat the derivation of the unpolarized structure
function inequalities using two diferent methods in or-
der to establish their equivalence. The second method
will prove to be much more practical for deriving new,
polarized structure function inequalities. Some of the
polarized target inequalities have already been given in
Ref. [12], but all of the polarized ejectile and some of the
polarized target inequalities presented here are new.

Positivity inequalities via response tensor method

Here we extend the original method of Doncel and de
Rafael [16] to unpolarized coincidence scattering struc-
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ture functions. Tee derivation of the positivity inequal-
ities is accomplished by starting from the most general
unpolarized coincidence cross section for arbitrary targets
and final states that is expressed in terms of the so-called
response tensor W~":

where W; (i = 1—5) are the five real linearly independent
response functions and

gP gP pP pP qPV q q - p q
q2
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+W5
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(5)

The inelastic coincidence electron scattering cross sec-
tion for arbitrary unpolarized target and arbitrary unpo-
larized ejectile, and any number of hadrons in the final
state, in the lab frame that follows from the above re-
sponse tensor is [13]

d'0-

dO'dE'dOL,
o MPL, r vt. RI, + vTRT + vTT cos 2$R» + sin 2$R»(I) ~ (II)
4~MT

t vcs cos PBcc + sic&iicv + 2isvvliv + 2isvcv cos ctsBcc, + sic&Roc),(I) . (II) I (II) ~ (I) (6)

where dOL, and p~ are the differential solid angle sub-
tended by and the absolute value of the ejectile lab three-
momentum, respectively, and the recoil factor r [see Eq.
(94) of Ref. [2]]

—1W f' upi —Eiq cos Oi )
MT MTp, )~

only appears if the final-state contains two hadrons. The
structure functions B's are evaluated in the lab frame,
and are shown in Table II. This divers from the cross
section in the "mixed, " i.e. , c.m. and lab frames through
the absence of W/Mz factors in front of the longitudi-
nal structure functions [see Eq. (94) of Ref. [2]] and a
different tl factor in Table I (see below).

We could directly proceed from /„*W~ l & 0 to find
the positivity conditions. Note, however, that W~ has
only nine independent elements despite being a 4 x 4
matrix. This, of course, is a consequence of gauge in-
variance, which relates the longitudinal and the scalar
(zeroth) components of this tensor. Nevertheless, in gen-

eral, all 16 matrix elements are nonzero. The key to sim-
plification, as suggested by Doncel and de Rafael [16],
is to explicitly reduce this four-dimensional matri~ to
a three-dimensional one by a clever choice of reference
frame. One solution is to work in the Breit frame where
the four-vector q~ loses its temporal component and be-
comes

qz ——(O, q~) = (O, O, O, Q) .

Then, the current conservation condition

q„W" =q W" =0

turns into

W~'" ——W~' ——0,

i.e. , only the first three rows and columns survive. It
turns out that this solution can be made frame indepen-
dent by introducing the covariant photon helicity zero
amplitudes. That fact will be proven and used later on.

TABLE I. Structure functions R,~ expressed in terms of the response tensor components (second
column) or helicity amplitudes (third column), where K = 2 ( 2'w 2

) for both electroproduction
and deuteron electrodisintegration [2]. The helicity amplitudes are defined in the c.m. frame as
follows: Jy = J.~g = —J ey and J is the zeroth component of the four-vector J" in the c.m.
frame. The subscript 0 in R,~ s in the second column corresponds to covariant helicity zero states
and I/tt = ( )(~) in the c.m. frame [2].
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TABLE II. Unpolarized inelastic coincidence structure
functions R's in the lab frame expressed in terms of the
general response tensor functions W, , i = 1 —5. Here
c=1 —

( ""~ )cos8

(I)
RTT

(I)
RL,T

—R' + ~~ R' +cR' +c W
2

2lVq + R'4 ~~ sin Oi

2—TV4 ~M sin 0~

v2('~) (~ ' 8) W+2 ( ) M',

W2(~) (iL
'

6 )w

By finding the relation between the B's in the lab frame
and the response tensor TV„ in the Breit frame, we ex-
press all of the elements of lV~ in terms of the observed
lab frame B's. So, the first step is to work out the boost
to the Breit frame. We see that the lab~Breit boost
is along the z axis so that only the zeroth component
is influenced, just like the lab+c. m. boost worked out
in Ref. [2] [see Eq. (20) therein]. Once again the whole
efFect of the boost is reduced to multiplicative factors
in &ont of the longitudinal and longitudinal-transverse
structure functions and a di8'erent phase space factor
which is unimportant for this purpose. To find the mul-
tiplicative factor g appropriate to the Breit ft. arne we go
through the same procedure as in Sec. IIB of Ref. [2].
The Breit frame is defined by

~oo) ~ax) ~yy & 0p

~oo ~o~
~xo (7b)

~oo
~yy

) 0, (7c)

ditions because it is an orthogonal coordinate transfor-
mation. The response tensor defined with respect to the

I I I

azimuthally rotated coordinate system (x, y, z ) of Fig.
1 will be denoted by m~ . The relationship between the
observables and the response tensor matrix elements in
the Breit frame is given in Table III. This result allows
us to invert these relations and express the response ten-
sor matrix elements, i.e., response functions in terms of
observables.

Now that we have reduced the response tensor to
a three-dimensional matrix with elements expressed in
terms of observables, we can apply the mathematical ma-
chinery of positivity constraints on quadratic forms. The
mathematical statement that a quadratic form (matrix)
is positive semidefinite is equivalent to the statement that
all of its principal minors are positive semidefinite, i.e.,
positive or zero. This is easily proven by diagonalizing
the quadratic form and remembering that determinants
(minors) do not change under similarity transformations,
i.e., under rotations of the basis of the linear space.

A direct evaluation of the principal minors of the re-
sponse tensor yields the following inequalities (all tU's are
in the Breit frame and their relation to the observables
is given in Table III):

q~ = (o, o, o, q~), ) 0, (7d)

whereas in the lab frame, pi&
——(MT, 0). The boost

transformation is shown in matrix form as

( ~~~ 0 0
0 1 0
0 0 1

0 0

so that, if q~ ——(v, 0, 0, qL, ), then

gL, V
qB —+BqL — qL + Q

and we find g = 1 in the Breit frame, whereas g = ~~

is appropriate to the lab frame (see Eq. (94) in [2]), and

~~ in the c.m. frame see Eq. 29 in 2 . The
transverse helicity amplitudes are unchanged by these
boosts, and ez in the Breit frame is the timelike unit
four-vector ez ——(1,0). This means that the zeroth
component of the response tensor in the Breit frame is
equivalent to the Lorentz-invariant scalar product (con-
traction) of the covariant zero-helicity polarization four-
vector and the covariant response tensor. This fact will
be used later on to define Lorentz-invariant inequalities.

The second simplification used is the rotation of the
response tensor about the z axis through P which is de-
scribed in detail in Ref. [2], so it will not be dwelt on
here. The rotation does not change the positivity con-

~oo ~o~
~~o

0 0
) 0. (7e)

Note that only inequalities (7a,b) are independent; the
remaining two inequalities (7c,d) being derivable from
the first four. This, together with the Hermiticity of the
response tensor (iU„„= tU*„), leads to inequalities Eq.

Rl.
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(II)BTT
(I)IT
(II)

R~T
BTi
R(II)
Rtig'
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2ReR+
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2iIRe(Rp+ —Rp )
2illm(Rp+ + Rp )
B++ —R
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2 B'9 ~oo
~~~ + fL'yy

0
2~2@Re~~.
0
0
0
2~2'glmzpp~

TABLE III. Structure functions R's (first column) as func-
tions of the response tensor components in the helicity basis
(second column), or as functions of the general response ten-
sor Cartesian components (third column) defined in the Breit
frame and in the ejectile plane of I'ig. 1; all other elements
of the general response tensor, e.g. , to „, moy are zero. In the
Breit frame g = 1.
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(8a-c, 10). Specifically, from Eq. (7a) and Table III we
conclude that

BL&0,
BT&0,

(8-)
(8b)

(8c)

4+L +T +TT — +LT + +LT'

which completes our derivation. All of these results
hold at each and every kinematic point, i.e. , for every
W, Hi, Q .

We will rederive these very same inequalities using a
seemingly diferent method and thus establish the equiv-
alence of the methods. This second method turns out
to be much more economical for deriving new, polarized
structure function inequalities. Some of the "polarized
target" inequalities have already been written down in
Ref. [17],but all of the polarized ejectile and some of the
polarized target inequalities presented here are new.

On the other hand, from Eq. (7b) and Table III we obtain

n~ooui~~ & ~ufo~~
2

BL,
RT

(i)
RTT

(II)B~T
(i)Rq~
(ii)B~~

R~~
(ri)

R~T,
(&)R~~,

g Boo
R+++R
2ReR+
—2ImR+

2rIRe (Rp+ —Rp —)
2glm(Rp+ + Rp )
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2illm(Rp+ —Rp )
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4g Redo+B

0
0

0

4'gImQ) 0+
B

and these inequalities follow from its positive semidefi-
niteness:

tUpp ) tU++ ) tU 0)~ 0

tU++ tU+p ) 0 )
tUo+ tUpp

(11b)

TABLE IV. Structure functions R's (first column) as func-
tions of the response tensor components in the helicity basis
(second column) or as functions of the general response tensor
components in the helicity basis in the Breit frame and de-
fined in the ejectile plane (third column). In the Breit frame
7/=1.

tUpp tUp

tU p tU
(11c)

2. Positivity inequalities via helicity density matrix
method

tU+
tU + tU

(11d)

In the previous section we have intentionally used the
helicity states and helicity formalism wherever possible
so as to simplify the calculation. Specifically, we have
discovered that the linearly independent components of
the response tensor can be rearranged into covariant he-
licity eigenstates without spoiling the positivity proper-
ties. We build our second method on that simple ob-
servation. It is important to realize that the transition
from the Cartesian response tensor to the photon helic-
ity states is just an orthogonal coordinate transformation
that does not change the positivity relations. Further-
more, by using covariant helicity states of the photon,
the whole method becomes frame independent. Rewrit-
ing Eqs. (7a-d) into the helicity ("spherical tensor") basis
we realize that this is just the positivity constraint for
the virtual photon density matrix. Density matrices are
observables, so they must be Hermitian. Moreover, they
must be positive semide6nite: the elements of the diag-
onalized density matrix are probabilities of the system
being in the given pure state, and probabilities have to
be positive or zero.

Working in the virtual photon helicity basis, we find
the relationship between the structure functions B's in
the lab frame and the rotated response tensor matrix
elements in the Breit frame that is shown in Table IV.
In the helicity basis, the response tensor in the ejectile
plane is

( ui++ ui+o ui+ —)
p„~ = s„*(A )zv" e„(A) =

i iop+ supp uip

(lU + 10 p

tU+p tU+

tUp+ tUpp tUp + 0 (lie)

Using Hermiticity and parity conservation (Eqs. (13,15)
of Ref. [2]), we reduce the number of independent real
parameters in the virtual photon density matrix to five:

, RetUp+, ImtUp+. Then the inequalities
(lib-e) become

tU++ tUo+
tUo+ tUoo

(12a)

tU++
tU+

tUo+
tUoo

tUo+

tU+

tU++

—tUp+ & 0,

(12b)

(12c)

which leads immediately to the inequalities Eqs. (8a,b,c).
This proves the equivalence of the Cartesian general re-
sponse tensor method, and the helicity density matrix
method for unpolarized structure functions.

This second method is based on the observation that
all that is necessary is an explicit representation of the
density matrix in terms of the observables, i.e. , coinci-
dence structure functions. The method by which we ar-
rive at this relationship between the density matrix ele-
ments and structure functions is irrelevant. One way is
to use a general response tensor for the reaction and work
out all structure functions and density matrix elements in
terms of the general response functions. This provides a
relation between the density matrix. elements and the ob-
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servables, as desired, but that method becomes increas-
ingly complicated as one introduces spin [17]. Hence, in
the future we shall only use the simpler helicity ampli-
tude method, but shall compare with the results of other
methods whenever possible.

8. Discussion

The first two inequalities (8a,b) are trivial: they are
equivalent to the statement that the sums of squares of
amplitudes have to be positive or zero. The next inequal-
ity stating that the transverse structure function is larger
or equal to the absolute value of the transverse-transverse
interference structure function is not very surprising, but
it was not well known either. The fourth result is a non-
trivial inequality involving all five structure functions ap-
pearing in the unpolarized cross section, that has not
been investigated or applied to models, so far. It can be
used to set bounds on one of the structure functions if
the other four are known. For example, in the so-called

impulse approximation the fifth structure function BLT,(&)

vanishes identically. We know that this result is unre-
alistic because all final-state interactions are neglected
there. But from the knowledge of BL, BT, BT» RLT

(I) (&)

we can obtain an upper bound on the size of BLT, in a
more realistic approximation:

BLT' — BL BT BTT BLT

These inequalities were first derived in Ref. [17],but they
remained largely unknown in the nuclear physics commu-
nity. They might prove to be of practical importance as
consistency checks of the experimental extraction proce-
dure for coincidence observables.

The other possibility is to use a specific reaction whose
density matrix can be unambiguously expressed in terms
of its structure functions. This can be done as long as
all possible structure functions are represented, i.e., none
of them vanish "by accident. " The structure function in-
equalities obtained in this way are the same as the in-
equalities obtained from the general response tensor.

From now on we will use only the second, or density
matrix, method for the derivation of the polarized struc-
ture function inequalities. Some of the polarized-target
inequalities to be derived have been known for some time
(Ref. [17]),but many more are new.

III. POLARIZED COINCIDENCE STRUCTURE
FUNCTION INEQUALITIES

If another spin degree of freedom, besides that of the
photon, is available, the density matrix becomes the
direct product of the two density matrices and conse-
quently increases in size to 3(2s+ 1) x 3(2s+ 1), where 8 is
the (additionally) observed spin. Just as in Sec. II, the el-
ements of this density matrix are bilinear products of the
electromagnetic current induced transition amplitudes,

so that they also can be expressed in terms of the inelas-
tic electron scattering polarization observables. The con-
dition for this density matrix to be positive semidefinite
leads to a multitude of inequalities among the polarized
structure functions. Once again, the resulting inequali-
ties are independent of the specific basis vectors chosen
in the Hilbert space. Certain bases, however, are more
suitable for an easy evaluation of the inequalities than
others. The substantial simplification that comes about
due to the use of transversity amplitudes [21] was ob-
served in Refs. [17,12,22].

The method used to find the relationship between the
density matrix elements and the observables (structure
functions) is unimportant. The "canonical" method [12]
is to expand the response tensor in all possible I orentz
covariants consistent with the general principles, such as
the current conservation, Hermiticity, and parity conser-
vation. Then one expresses the structure functions B's
in terms of the response tensor functions. After writ-
ing the density matrix elements in terms of the response
tensor matrix elements, one can express the density ma-
trix elements in terms of the observables. Application
of the positivity constraints to the density matrix then
automatically leads to inequalities among the structure
functions.

Instead of using this rather cumbersome approach, we
choose a specific process belonging to the given category
(i.e. , having the required spin degrees of freedom) and
then evaluate its response functions in terms of a finite
number of transition amplitudes. By expressing the den-
sity matrix elements in terms of these very same tran-
sition amplitudes one gets a one-to-one relationship be-
tween the density matrix elements and the observables.
The only danger in this procedure is in choosing a re-
action that does not allow a unique assignment of ob-
servables to the density matrix elements. An example
of such a case would be to take a reaction that has
too few independent amplitudes, such as the completely
spinless reaction, in order to determine the unpolarized
structure function inequalities. We know that, in this
case, all amplitudes can be completely separated from
the five unpolarized structure functions [2]. But, due to
this simplicity, one structure function is linearly depen-
dent, BT ——+BTT, where the sign depends on the "parity
factor" gg ——+ of the reaction, so that one has an ambi-
guity as to which one of the two observables to use in the
density matrix. The solution to this problem is to use
a reaction which does not allow a complete separation
of amplitudes from the given set of observables In this.
way one ensures absence of ambiguities and the results
one obtains are the same as those obtained by using the
general response tensor method, but with a bigger effort.

In the case of the spin 1/2 target or recoil polarization
measurements, an example of such a "sample" reaction
is scalar or pseudoscalar electroproduction off a spin 1/2
target. It was proven in Ref. [8] that the amplitudes of
this reaction cannot be completely separated from only
one of these two sets of measurements; thus there is no
danger of ambiguity. Secondly, all of the observables for
these two cases have already been worked out in terms of
the transition amplitudes in Ref. [8]. There only remains
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the task of expressing the density matrices in terms of
amplitudes, which is accomplished in the next subsection.

+~ = (——,'IJ 6+I —2)
&3 = (+-', l~. 6+I —3)
+~ = (+-,'IJ."I+ 3)

+3 = (—3lJ. 6+I+ —,')
F4 = (+-,'I J 6+I+ —,') (»)
+6 = (+-,'IJ "I—

—,')
A. Polarization observables for spin 1/2 particle

target and ejectile electroproduction

We will present the results for H(e, e'p)vr reaction in
order to illustrate the method. In order to write the
density matrix elements for H(e, e'p)vr in terms of ob-
servables, we will use the results of Ref. [8], as expressed
in the notation of Ref. [2]. That allows a simple exten-
sion of this method to the H(e, e'p)n reaction, as well.
Experience has shown that certain linear combinations
of helicity amplitudes, called hybrid amplitudes, greatly
simplify the resulting tables of observables. These ampli-
tudes are constructed from transversity states [21], whose
spin quantization axis is perpendicular to the reaction
plane, for all particles in the reaction except the virtual
photon. In our case this axis is the y' = y" direction
(Fig. 1). Moreover, the transition from the helicity to the
transversity states is accomplished by a unitary transfor-
mation that leaves the positivity properties of the density
matrix intact. The six independent helicity amplitudes
are

(&) 2 (&)
R~T = 2K, ) p;P~R~T(p, , P, ),

where

Bl,g(U, U) = BI,T,
RI.T (U, P„) = RI,T(n,),
RI,T (p, U) = RI.T (x),

(14a)
(14b)
(14c)

where J eg ——J„~& and the initial and final states are
helicity states with helicities specified above, where the
nucleon is particle No. 1 in the final state, as defined by
Jacob and Wick [5]. J" is the hadronic response current
defined in the ejectile plane, with the Bjorken and Drell
metric [18] and s~+ ——(0, i~), 6'o ——(1,0) = (1,0, 0, 0) in
the c.m. frame.

The results are shown in Tables V and VI. Each struc-
ture function appears in the cross section Eq. (1) multi-
plied by its spin polarization vector (cf. Eq. (79) of [2]),
e.g. )

n~ =
2 (I 96 I' +

I 96 I') oz =
2 (I » I' —

I 96 I')

19' I'+193 I'+193 I'+194
Iz = —19~ I' —1931'+193 I'+1941'
bs =19~ I' —

I » I'+193 I' —194 I'

I4 = —19' '+193 '+193 I' —194 I'

C1 = g4g1 + g3g2 ) C2: g4g1 —g3g2

d1 ——g4g5 + g3g6 ) d2 g4g5 g3g6

e1 —g1g5 + g2g6, e2 ——g1g5 —g2g6

fi = 9393 + 9496 f2 9396 9496
kl glg3 + g2g4 & k2 —glg3 g2g4

(15b)
(15c)
(15d)
(15e)
(15f)
(15g)
(15h)
(15i)
(15j)

TABLE V. Recoil polarization observables as functions of
hybrid amplitudes g, , where U stands for unpolarized and
(P, P„P&) are the (y, x, z) components, respectively, of the
recoil polarization vector as measured in c.m. frame with
respect to the (x",y", z") coordinate frame (Fig. 1).

TABLE VI. Same as Table V, but for polarized target ob-
servables as functions of hybrid amplitudes g, , where U stands
for unpolarized and (p, p„,p, ) are the (x, y, z) components,
respectively, of the target polarization vector as measured in
c.m. frame with respect to the (x', y', z') coordinate frame
(Fig. 1).

RL,
RT

(1)R~~
(I)R~T
(I)

R~T,
(ri)R~~
(II)

R~~
Rz~

bg

b2

Re(eg)
Im(e, )

P
aq
b3

b4

Re(e2)
Im(e2)

P,

Im(d&)

Re(dg)
—Im(cg)

Re(c&)

Pi

Re(dz)
—Im(d2)

Re(c2)
Im(cs)

Rl,
Rz.

(1)RT~
(I)R~~
(1)R~~,
(II)R~~
(11)Rz~,
(ir)R~~

RT

bg

b2

Re(e, )
Im(eg)

pg
—kg

b4

b3
—Re(e2)
—Im(e, )

Im(f, )
Re(fg)
Im(kg)
Re(kg)

Py

Re(f, )
—Im( f2)
—Re(k2)

Im(k2)



1536 V. DMITRASINOVIC

We are not interested in complete separation of ampli-
tudes as in Refs. [8,2], but rather in separation of certain
bilinear products that appear in density matrices to be
defined below [see Eqs. (17a,b)]. One can see from Ta-
bles V and VI that the moduli squared of the amplitudes
are readily separable from a;, bz (i =. 1, 2; j = 1, ... , 4),
and the same holds for the aforementioned bilinear prod-
ucts. An analogous analysis of the H(e, e'N)N' reaction
was presented in Ref. [2]. That provides the necessary in-
formation for the construction of 8 = 1 polarized target
inequalities.

Jp Jt Jp Jpt Jp Jt
( Ja Jt Ja Jot Js Jt)

(17a)

( JtJ. JtJ.
pg, tt' Jp J Jp Jp Jp J

Jt Ja Jt Jo JtJ, )
(17b)

The block matrices are

and the initial-state (target polarization) density matrix:

B. Derivation of polarized positivity inequalities

f J+J+t
Jp J+t

+Jp
Jp Jp

J+Jt )
Jp Jt
J J')

is positive semidefinite [23], just like the initial state den-
sity matrix (target polarization)

( J+t J+
Jp~ J+

J+Jp

Jp Jp
Jt Jp J'J )

In the case of reactions with spin, the electromagnetic
current matrix elements J can be assembled into (not
necessarily square) matrices. The density matrix with
final state spin indices (ejectile polarization)

0 o p

0

I

lg41'

0

J Jt
I

gsgl
0

J,Jt =
I(g2g4

p

o

o

Ig. l' )
o

lg41')

o

gsg2 )

0 )

0

(1Sa)

(1sb)

(18c)

(1sd)

(18e)

(1sf)

(»g)

We are free to apply similarity transformations to this
density matrix because it will not change its positivity
properties. This allows us to change the transverse pho-
ton helicity matrix elements to a new set described below.
We are also free to choose any spin quantization axis; a
particularly convenient one will turn out to be the normal
to the ejectile plane. This leads to transversity states [21].
We will refer to amplitudes g, as the hybrid amplitudes,
because the photon state is described by its helicity, while
all other states are transversity states. The longitudinal
hybrid amplitudes for pseudoscalar electroproduction oB
an s = 1/2 target are defined as follows (for details of
this construction see Refs. [2,8]):

and similarly for other 2 x 2 block matrices that appear
in the density matrices py; Eq. (17a,b). We will express
these matrix elements in terms of observables by using
Tables V and VI in Sec. III A, or Ref. [8]. As an exam-
ple of derivation, we look at the principal minors of the
diagonal submatrix Jo Jot Eq. (17a); we use Table VI and
Eqs. (15a,b) to find the two inequalities

Rl, (U) ) —Rl, (n),

RL, (U) ) Rl. (n),

which immediately lead to

R, (U) ) IR, (n)1.
Jo =

I
(16a)

The transverse hybrid amplitudes can be represented by
the following two matrices:

J = —(J+ —J-) =
I

1 (0
2 (gs

J- = -(J+ + J-) =
Igo

g0)'

g2)

(16b)

(16c)

The specific linear combinations which define the g's are
given in Sec. IIIA, as are the definitions of helicity am-
plitudes and the tables of observables. It is now straight-
forward to construct the transformed final-state (recoil
polarization) density matrix:

Similarly straightforward applications of the positivity
conditions to other 2 x 2 and 4 x 4 diagonal submatrices
of the initial and final state density matrices lead immedi-
ately to Eqs. (19,20). Clearly, the larger the submatrix,
the more powers of structure functions in the inequalities,
the highest power in this case being six.

C. Polarized spin 1/2 target and ejecti}e positivity
inequalities

We start with target polarization inequalities, some of
which have been derived before in Ref. [12], which results
give us another check of the method.
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Polarized target inequalitie8

Proceeding as in Sec. III 8, we find

RT(U) —RTT(U) & IRT(y) —RTT(y)I

RT(U) + RTT(U) & IRT(y) + RTT(y) I
.

(19d)

(19e)

RL(U) & IR~(y)I
RT(U) & IRT(y)I

RT(U) & IRTT(y)I

(»a)
(19b)

(19c)

These are the lowest order inequalities that were derived
from the "smallest" minors of three diagonal block sub-
matrices. From the next "larger" minors we find the
following second order inequalities:

RT (U) + RT (y)
- 2

RT (U) —RT (y) RTT (U) —RTT (y)

RT (x)RTfg~(z) + RTfTl(x) + RT (z)

RT (~) + RTT(z) + RT'Tl(~) —RT (.)
(19f)

(19g)

4 Rz(U) —Bzz(U) —Br(y) + Bzyz(y) (Rr(U) —Rr (y)) & Rrz(U) —Azz(y) + B,z {Ul —Bryz (y)
- 2

(19h)

4 Rz(U) Rrz(U) + Bz(y) Rzz (y) (Rr(U) + Br(y)) & Azz(U) + Bzziy) + Brz (U) + Rzz (y)

(19i)

4 RT (U) + Rz~~(U) + Bz (y) + Bz z(y) (Ar (U) —Rr(y)) & Rrz (z) —Rzz (z) + Brz, (z) + Rr'~, (z).- 2

4 Rz (U) + Rzyz(U) —Rz(y) —Rzz (y) (Rr(U) + Br(y)) & Rzz (z) + Br' (z) + Rzzy(z) —Rrz(z)
(191 )

w here x, y, z stand for target polarization vector components along the x', y', z' directions (Fig. 1), respectively.
Comparison with the results of Ref. [12] is not straightforward for the following reasons: (i) some of their inequalities

were derived with additional special assumptions such as that the longitudinal structure function vanish W,
2

1 ——, Wq —Wi ——0 (Sec. IV of [12]), (ii) the coordinate frame with respect to which the target polarization

is defined is difFerent (x ++ +y) f'rom ours. We only look at those inequalities that can be readily compared. We
find that Eqs. (A 20 a,b,c) of [12] correspond exactly to our Eqs. (19 e,h, i), respectively. The two "trivial Schwarz"
inequalities (3.7) of Ref. [12] can be derived from our Eqs. (19 f,g) and Eqs. (19 h-k), but not vice versa, for which
reason we do not consider them as independent results. Furthermore, De Rujula, Doncel, and de Rafael quote three
third-order inequalities [their Eqs. (3.6, A 18, A 19)] which are beyond the scope of this paper. That leaves us with
eight new first- and second-order polarized target inequalities.

2. Polarized ejeetile inequalitie8

Ri(U) & IRi(n)I,
RT (U) & IRT (n) I,

R (U) &IR.".( )I,

RT (U) —RTT (U) &
I
RT (n) —RTl/~ (n) I, (20d)

RT(U) + R~~~~(U) & IRT(n) + RTl~~(n)
I

RT (U) —RT (n) — RT,T(U) —RT'T(n) & RT (s) + RTT (l) + RTT (s) —RT (l) (20f)

RT(U) + RT(n) RTT(U) + RTT(n) & RT'(s) —RTT(l) + RTT(s) + RT (l) (20g)

4 Br(U) —
Rzyz (U) —Rz (n) + Rrz(n) (Ar (U) —Rr (n)) & Brz(U) —Brz(n) + Rryz. , (U) —Rryz, (n)

(20h)

(20a)

(20b)

(20c)

(20e)

Relating the density matrix elements and the observables and proceeding as in Sec. III 8, we obtain the following
inequalities for recoil polarization structure functions:
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4 R (nU) —RnUn(U) + R (n )n—RnUn(n) (Rr(U) + Br (n)) & Rrn(U) + Rrn(n) + Rrn, (U) + Rrn, (n)

(20i)

4 Rn(U) + Rnn(U) + Br (n) 4 R n( n)n(Rr(U) + R(r )n)
& Rrn(s) 4 Rrn (l) + Rrn(s) —Rrn(l)

(20j)

4 Rn(U) + Rnn (U) —Rn(n) —Rnn(n) (Br, (U) —Br(n)) &, Rrn, (s) —Rrs (l) + Rrn (s) + Rrn, (I)

(20k)

where s, n, l stand for recoil polarization vector compo-
nents along the x", y", z" directions (Fig. I), respec-
tively. All of the polarized ejectile results are new, to
the best of our knowledge, and they hold in all s = I/2
ejectile reactions, such as H(e, e'p)n, and not just in
iH(e, e'p)m, from which they were derived

8. Di aeusai on

known and 19 new inequalities among the polarized coin-
cidence inelastic electron scattering structure functions,
assuming that the polarized target, or the polarized ejec-
tile, has spin Ij2. A large number of such inequalities
have been left for the reader to derive with the help of
rules developed here. This paper completes the develop-
ment of helicity formalism as applied to polarized coin-
cidence electron scattering.

Note that these are the inequalities that were obtained
from minors of the two lowest-order diagonal block sub-
matrices. The density matrix is 6 x 6 dimensional now,
so there are inequalities with products of up to six re-
sponse functions (6th order). Some of these inequalities,
however, may turn out to be just products of lower order
inequalities and hence trivial.

The higher order inequalities will be useless for some
time to come, because they involve large numbers of spin
observables that are not likely to be measured soon. The
high degree of nonlinearity makes them quite unlikely to
be useful for setting up bounds on other observables. For
these reasons they are omitted from this work.

Finally, we see that this method can be readily applied
to 8 = 1 polarized target structure functions as well. The
procedure is the same as outlined in Sec. IIIB above:
construct the initial-state density matrix p; Eq. (17b) out
of hybrid amplitude matrices Jo, J, J„shown in Eqs.
(67,69,70) of Ref. [2], and then set its principal minors
larger or equal to zero. Write the matrix elements of
p; in terms of polarized target structure functions given
in Tables X, XI, and XII in Ref. [2], to find the desired
results. Since polarized deuteron target measurements
are not bound to be made soon, we do not derive such
inequalities here.

To summarize, in this paper we have derived three
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AP PENDIX A: RELATION BETWEEN
HELICITY AND TRANSVERSITY AMPLITUDES

The connection between the hybrid amplitudes g, and
the helicity amplitudes F; can be summarized by the ma-
trix relation

1
A, ~

=—
2

( I
1

Z

0

Z
s—z z

1 1
1 1
0 0
0 0

1 0
1 0
i 0

—i 0
0 2
0 2

0
0
0

—22

2i )

g, = A;~F~,

where, for transverse amplitudes (ij = I—g), while for
longitudinal amplitudes (i,j=5 6) and—
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