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Induced parity nonconserving interaction and enhancement of two-nucleon parity
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The two-nucleon parity nonconserving (PNC) interaction induced by the single-particle PNC
weak potential and the two-nucleon residual strong interaction is considered. An approximate an-
alytical formula for this induced PNC interaction (IPNCI) between proton and neutron is derived
[Q(ro.„x cr )h(r„—r )], and the interaction constant is estimated. As a result of coherent contri-
butions from the nucleons to the PNC potential, IPNCI is an order of magnitude stronger ( A )
than the residual weak two-nucleon interaction and has a difFerent coordinate and isotopic structure
(e.g. , the strongest part of IPNCI does not contribute to the PNC mean Beld). IPNCI plays an
important role in the formation of PNC effects, e.g. , in neutron-nucleus reactions. In that case,
it is a technical way to take into account the contribution of the distant (small) components of a
compound state which dominates the result. The absence of such enhancement ( A ~ ) in the case
of T- and P-odd interaction completes the picture.

PACS number(s): 24.60.Dr, 25.40.Dn, 24.80.Dc

I. INTRODUCTION

The parity nonconserving (PNC) nucleon interaction
in nuclei and PNC effects in neutron-nucleus reactions
are the subject of current interest for both experimental-
ists and theorists [1—11]. .The values of the PNC effects
depend on the weak interaction matrix elements between
compound states. Usually two sources of the PNC effects
are discussed: a single-particle weak potential m which
describes the interaction of a nucleon with a weak mean
field of the nucleus and a residual two-particle weak in-
teraction W. In principle, the matrix elements of m and
W should be calculated with respect to the eigenstates
of the strong interaction Hamiltonian. However, in prac-
tice some truncated basis set of states is used to describe
physical states at excitation energies less than the gap
between single-particle shells. For example, in the de-
scription of nuclear compound states and the P-odd ad-
mixtures in them [2,10], it is natural to include into the
basis set only "principal" components, which have en-
ergies close to the energy of the compound state and
dominate the normalization sum.

The number of such components is already about 10
in a compound state. However, it is still not enough
since these components consist of the valence (incom-
plete) shell orbitals only (see, e.g. , Ref. [12]) and do
not contain opposite parity orbitals with the same angu-
lar momentum (these orbitals belong to different shells).
Thus, the matrix element of the single-particle weak po-
tential m between compound states is zero in the "prin-
cipal component" approximation, since it can mix these
opposite parity orbitals only [13,14]. To avoid this prob-
lem one should consider an admixture of the distant small
components, which contain the necessary opposite parity
orbitals &om other shells. Any transfer of a particle Rom
the valence shell to another one gives rise to an excitation
energy E,„5,. . . , 8 MeV, which is much more than a

typical matrix element of the residual strong interaction
Vs. Therefore, one can easily admix a small component
to compound states using perturbation theory in Vs.
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The single-particle weak potential m can be written down
in the form

2pFpo=
~ 2)

where G = 10 m is the Fermi constant, m is the
nucleon mass, p and 0 are the nucleon momentum and
doubled spin, p is the nuclear density, and p pp ——const
inside the nucleus. We can use the relations

p= m[H, ], Hin) = E in) (4)

to calculate sum over n in Eq. (2). Here H is a Hamilto-
nian of the system (here we neglect the spin-dependent
part of H) Using the cl.osure relation g In)(nl = 1, we
obtain

where Ico) is the "principal part" of the compound state.
Now we can calculate the matrix element of m between
the opposite parity compound states Is) and Ip):
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(sl~lp) =i(s.
l ) g, ~,r„V, lp, ) (5)

and the sum is taken over nucleons [actually only the
nucleons near the Fermi surface contribute to this sum
(see Ref. [10] and below)].

If we introduce the effective interaction [the induced
parity nonconserving interaction (IPNCI)]

vIPNci ~ )
k

(6)
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Using the approximation p = po in Eqs. (3),(4), Eq. (7)
can be reduced to Eq. (6) for the operator of the IPNCI.

The approximate analytical expression (6) is conve-

we need not refer to the small components, and we cal-
culate the matrix elements of the IPNCI between the
"principal" components of the compound states only [see
Eq. (5)].

To derive formula (5) for IPNCI we used some approx-
imations (constant nuclear density and spin-independent
Hamiltonian H). When doing numerical calculations
these approximations are not necessary. In our work [10]
we have used a more accurate perturbation theory ex-
pression for the matrix elements of the IPNCI between
the nuclear orbitals a, b, c, d:

nient to study coordinate, spin, and isospin structure and
also the strength of the IPNCI. It will be shown that the
IPNCI is an order of magnitude stronger than the resid-
ual two-particle weak interaction W. This amplification
(- Ai~s) can be explained by a coherent contribution of
all the nucleons to the PNC potential which induces the
IPNCI. As a result, the IPNCI gives the dominating con-
tribution to the matrix elements of the weak interaction
between the compound states and determines the value
of the PNC effects in nucleus-neutron reactions.

The natural question arises: we obtained the enhance-
ment in the treatment of the residual strong interaction
to first order of perturbation theory. Will this enhance-
ment "survive" in "all-order" treatment'? To answer this
question we will present in the next section the deriva-
tion of the IPNCI which is not based on the perturbation
theory treatment of the residual strong interaction.

II. DERIVATION OF IPNCI: UNITARY
TRANS FORMATION

We start with the nuclear Hamiltonian II in the form

0 =0, +V, +W+r,
where the first term Ho ——p /2m+ Ug(r) is the single-
particle Hamiltonian of the nucleons with inclusion of
the single-particle part of the strong interaction U~(r)
(strong potential), Vg is the residual two-body strong
interaction, E describes other possible interactions, e.g. ,
coupling to electromagnetic field, anapole moment opera-
tor [7—9], etc. The operator W = W(1, 2) is the two-body
weak PNC interaction, [15—19]:

G 1 w w iWW(1, 2) = (( gq iver—i g2icr2) ((pi —p2)8(ri —r2) + 8(ri —r2)(pi —p2)) + gi2 [o'i x cr2]7ib(ri —r2)) (9)22m

where G = 10 m is the Fermi constant, m is the
nucleon mass, and p and o are the nucleon momentum
and its doubled spin, respectivelyi (hereafter, the nota-
tion a x b means exterior vector product). The nucleon
dimensionless constants g„(see, e.g. , Refs. [15—22]) are
of the order of unity and may be chosen in such a way
that only direct terms in (9) should be accounted for.

It is well known (see, e.g. , [19,23]) that the main P
odd efFects caused by the weak interaction W in (1) are
usually due to the effective one-body P-odd interaction,
or the "weak potential" tv(l), acting on the nucleon 1,
which arises from averaging W(1, 2) over the states of
the nucleon 2 [see Eq. (3) for tv = tv(1) = (W(1, 2))).
The weak potential constants gp, g are given by gp

I

gpp + Q gp g Q g p + Q g for the proton and neu-
tron, respectively. (Now, the notation e 1.0 x 10 g
is widely used. ) The coherent contribution from all the
paired nucleons yields the nuclear density p in the ex-
pression (3).

As has been mentioned above, the coherent single-
particle P-odd contribution (3) does not work effectively
in mixing of the nearest excited nuclear states. There-
fore, the P-odd eEects in this energy region can be deter-
mined by the purely two-particle "residue, ":W(1, 2): of
the weak interaction W(1, 2), given by the difFerence

: W(1, 2):= W(1, 2) —(W(1, 2)) = W(1, 2) —tv(l),

(10)

This weak Hamiltonian goes back to works by Feynman
and Gell-Mann [18]; the constants g in it were the subject of
numerous studies (see, e.g. , [20,17], and references therein).
We used the values of these constants from Refs. [16,19].

which does not contain coherent summation, in contrast
to (3).

As mentioned above, the purpose of this work is to
show that the residual strong interaction Vg in the Hamil-
tonian (8) gives rise to appearance of an effective P odd-
ttvo particle interaction (-IPNCI) which turns out to be
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stronger than the initial one, : W(l, 2): . We show that
IPNCI contains the enhancement of order A ~ times,
compared to the initial two-particle P-odd term, and,
moreover, the additional enhancement can arise [24], if
the residual parity conserving strong interaction contains
momentum-dependent structures [25—27]. The latter is
taken into account by the solving the equation for the
effective field, which is equivalent to summation of the
infinite sum of graphs, analogous to that considered in
the theory of finite Fermi system (TFFS) [28,25].

We start with the case when the strong interaction
Vs is "switched off." As is known from Refs. [29] and
[21], in the siinple model of a constant nuclear density
p po ——2g. j37r it is easy to find the result of the
action of the perturbation iU(1)

VipNc =.'[A, V ]:, (V ) = 0.

Thus, if we require the "compensation equation"

u + [A, Ho]+ ([A, vs]) = 0

(13)

(i4)

obtain the effective two-particle P-odd interaction acting
in the valence shells, we should find the operator A in
such a way that the single-particle P-odd contribution in

e He will be compensated. The last term in (12) is a
two-body operator. We employ the same decomposition
as in (10): [A, Vs]—:([A, Vg])+: [A, Vg]:, where the
first single-particle term is the average over the paired
nucleons, and the second one, : [A, Vs]:, which yields
zero under such averaging, is the effective induced two-
particle interaction which we are seeking for

@ = exp( —a)@ = (1 —i(o-r)g, a = i(or to be fulfilled, the transformed Hamiltonian takes the
form

g pp = errl, (=(o+( ~.

where @o is the unperturbed wave function, and w,
—1 (+1) is isospin projection for proton (neutron). To
get this solution, one should also neglect spin-orbit inter-
actions. Accordingly, the matrix elements of any opera-
tor 0, including the Hamiltonian, can be calculated by
using the unperturbed wave functions go and the trans-
formed operator 0:

ol&,) = (@.'lol&„') = (@.'Ie oe lq,')-
(q.'lo+ [a, o]lyb)

where e = e'~~ '~ is the operator of the correspond-
ing unitary transformation with the single-particle anti-
Hermitian a. Correct choice of the transformation yields
compensation of the single-particle P-odd potential in
the Hamiltonian e He: io + [a, Ho] = 0. The effect
of this potential is now included into the renormalized
operators 0 rather than the wave functions @.

Let us switch on the strong interaction Vs and seek
now for an operator e with the renormalization result-
ing from Vp taken into account. (Eventually, as we will

see below, the operator A differs from a mainly due to the
renormalization of the weak interaction constant by the
residual strong interaction Vs. ) The transformed Hamil-
tonian looks like

H = e"H e-" = H, + V, + ~+:W: +[A, H. ] + +
+[A, r]+ [A, v, ], (i2)

where we have used the decomposition (10) and neglected
all terms above the first order in the weak interaction. To

I

HG + VS+ ~ W . +VIPNCI + + + [A, +], (i5)

where C = = 300 Me V fm is the universal
Migdal constant [28,25,26], and the strengths f, f', h, h'
are in fact functions of r via density dependence: f =
f;„—(f,„—f;„)[p(r) —p(0)]/p(0) (the same for f', h, h').
(Quantities subscripted by "in" and "ex" characterize in-
teraction strengths in the depth of the nucleus and on its
surface, respectively). This interaction goes backwards
to Landau Fermi liquid theory [30]. With its param-
eter values listed below, it has been successfully used
by many authors (see Ref. [25]) to quantitatively de-
scribe many properties of heavy nuclei. The conventional
choice widely used for heavy nuclei is (see [28,25,26]):
f = —1.95, f;„= —0.075 f,'„= 0.05 f„= 0.675,
6;„=6, = 0.575, and 6';„= h'„= 0.725. It is easy
to check that, in the same approximation of constant
density as used above, the operator A is proportional to
a: A = i((or). Evaluating the commutator in (13),(14),
we obtain

where no single-particle P-odd potential is present.
Thus, there are three sources of the parity nonconserva-
tion in Eq. (15): (1) the commutator [A, F] which gives a
direct contribution of the PNC potential iv(1) to the ma-
trix elements of an external field F ( (glE+ [A, E]l@') =
(@lElg')); (2) the residual two-body weak interaction
W:; (3) VipNci, which plays the saine role as: W:,

but is enhanced in comparison with: W: (see below).
To solve the Eq. (14) and find the explicit form

of the IPNCI we use the Landau-Migdal [25,28,30,26]
parametrization of the strong interaction:

V(r i, r2) = Cb(r i —r 2)

x[f + f'7i72 + hoio2+ h'Ti72o'io2], (16)

[A, Vs] = —2( Cb(ri —r2)((h' —h)(&2, —wi, )ri o2 x cri + (h' —f')(v x2ri), (o2 —oi, ri) j,

([ ~]) =o ""( ) =[ ~l.

(17)

Since the last term in the compensation equation (14) is zero in this case, the operator A coincides with a and the
values of the constants ( just coincide with their "bare" values ( (ll) (i.e., without the strong interaction). The
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first term in Eq. (17) induces transitions pn ~ pn, while the second one pn(np) + np(pn). For contact interactions,
the second term (which is in fact an exchange term in comparison with the first one) can be reduced to the first term
using Fierz transformation (see, e.g. , [31]). After this transformation,

V (1,2) = ——Qb(ri —r2)(&2~ —ri, )rio2 x oi —L Qr„(o„x o. )b(r„—r ),2

4 2 G
Q = —2(& —&-)(f' —h)& = —— (g —g. )(f' —h).

(18)

We stress that this expression is valid within the nucleus
only (recall that Q ( p). When using this expression
one has to assume the exchange term pn —+ np is ex-
cluded. However, the conventional choice of the Landau-
Migdal interaction constants already corresponds to the
same assumption. This means that the second term in
the expression (17) for the IPNCI should be simply omit-
ted (to avoid double counting) and the final expression
for the IPNCI includes the pn-pn interaction only, i.e.,
the constant of the IPNCI is

Q = —2((„—(„)(h' —h) C = — (g —g„)h„„,

and h,„=h —h,
' is the constant of the residual strong

proton-neutron spin-flip interaction. This problem with
the definition of the IPNCI constant is due to the fact
that the Landau-Migdal interaction is a phenomenologi-
cal e8'ective interaction rather than the ab initio strong
interaction. For example, it can contain "fictitious"
spin dependence coming &om the Fierz transformation of
the exchange term with the spin-independent interaction
Cb(ri —r2). However, this "fictitious" spin dependence
does not contribute to the IPNCI, since in the case of an
initial spin-independent interaction the Fierz transforma-
tion gives h' —h = f' —IL = 0. Therefore, oiily "real"
spin dependence of the strong interaction (e.g. , due to
vr-meson exchange) contributes to the IPNCI.

III. COMPARISON OF THE IPNCI WITH THE
RESIDUAL TWO-BODY WEAK INTERACTION

AND DISCU SSION

It is interesting to compare the IPNCI with the initial
two-nucleon weak interaction: W(1, 2):. The interac-

tion (18,19) and the "bare" one, Eqs. (10),(8), have dif-
ferent isotopic and coordinate structure (momentum p
or derivative V' instead of radius vector r). Taking into
account that r ~ roA i,p~r py roA i ~ A /, we
obtain

y j:PNcI
—p~r - A'/'.

: W(1, 2): (20)

For heavy nuclei where neutron-nucleus PNC effects were
measured, the nucleon number A 114, ..., 240, and
ro ——1.15 fm p+ is internucleon distance. Thus,
the IPNCI (18),(19) is an order of magnitude stronger
than the initial weak interaction (10) acting within the
valence shell. The numerical results for the matrix ele-
ments of Vjpwcy as compared to those of the initial in-
teraction: TV: between valence shell states for Th-U re-
gion are presented in Table I (VipNci takes into account
the momentum-dependent component of the Landau-
Migdal interaction; see below). In practical calcula-
tions, it is useful to treat VjpNcy in the second quantiza-
tion form using multipole expansion in the particle-hole
channel: V&pN&& =

2 Q~[(a b)zV &,~
' (c d) J]p, where

( . )g means the coupling of nucleon creators at and de-
structors a to a given angular momentum J [12]. The
values of the parameters g,..A. and g„,g were chosen ac-
cording to [32], [10]. On the average, the enancement
(14) is an order of magnitude.

We stress once more that the selection rules (change
of parity and conservation of the angular momentum)
forbid matrix elements of the single-particle weak poten-
tial between the valence orbitals presented in Table I, i.e. ,
the IPNCI and the residual interaction: R: are the only
source of parity nonconservation in the compound states
within the "principal component" approach. The equa-
tions expressing the root mean square matrix element
between compound states in terms of matrix elements of

TABLE I. Absolute values of the matrix elements of Vip NGI [Eqs. (17),(19)], VIpNGI
[Eqs. (17)—(19) with matrix elements ur renormalized according to (22)], and: W: [Eqs. (10),(9)]
in ev for the Th-U region. a, b (c, d) denote the single-particle neutron (proton) upper states.

2g 9/2
2g 9/2
2g 9/2
2g 9/2
2g 9/2
li1 1/2
lil 1/2
lil 1/2
lill/2

b

lj15/2
lj15/2
lj15/2
lj15/2
lj15/2
lj15/2
ljl5/2
lj15/2
lj15/2

lh 9/2
lh 9/2
lh 9/2
lh, 9/2
lh 9/2
1IL 9/2
lh 9/2
lh 9/2
lh 9/2

d
lh 9/2
lh, 9/2
lh 9/2
lh 9/2
lh 9/2
lb. 9/2
lh 9/2
lh 9/2
lh 9/2

LPNCL'Z~

0.067
0.033
0.035
0.029
0.043
0.144
0.130
0.131
0.172

0.082
0.062
0.048
0.043
0.082
0.184
0.165
0.166
0.218

0.009
0.001
0.012
0.016
0.001
0.007
0.016
0.032
0.027
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the IPNCI and: W: (see Table I) are presented in Ref.
[1o].

Of course, the explicit form of IPNCI [Eqs. (18),(19)]
based on the approximation (5) is semiquantitative. In
particular, due to the smallness of the quantity h, —h', cor-
rections to (18) may be considerable for particular matrix
elements. Especially big corrections appear in the inter-
ference term (proportional to g„g ) in the calculation
of the mean squared value of the weak matrix element be-
tween compound states. These matrix elements contain
a sum of the products of the matrix elements between the
nucleon orbitals [see Eq. (7) and Ref. [10] for the accurate
formula]:

p) ~

2 ) VIPNCIVIPNCI

VS,ibcdVS, aj cd~ai ~j b + '

The coefficients before (g„) and (g~) in this sum are
positive, and the result is stable. On the other hand,
the coeflicients before the interference term ( g„g )
are not positively defined and this coefBcient tends to
decrease after the summations [in comparison with the
ones before (g„) and (g ) ]. Therefore, the result
for the mean squared matrix element is proportional to
~g„~ +~g

~

with a small coefficient before g„g rather
than to (g„—g ) [as it could follow from the approx-
imate formula (18) for the IPNCI].

The numerical calculation of the root mean square ma-
trix elements between compound states has shown that
the contribution of the IPNCI [Eqs. (18)—(19)] is about
7, ..., 12 times bigger than the contribution of the initial
weak interaction W [Eq. (10)], confirming the estimate
(2o).

As was mentioned above, the results (13)—(19) can be
obtained using perturbation theory considerations [see
Eqs. (1)—(7)]. Formally, the result in Eq. (6) is ob-
tained in the first order in residual strong interaction
Vs. However, iterations (mi ~ VipNCI M XDI + 8zUI

VIPNci + ~VIPNCI a ' ') of the contribution of the
velocity-independent part of the interaction Vs do not
change the result, since VIpNcI does not contribute to
the weak potential ((VipNCI), „=([A, Vs]), „=0; see

Eq. (7)). This explains why "all-orders" results (13)—(19)
coincide with the first-order result (6): the self-consistent
random-phase-approximation-like chain is terminated af-
ter the first iteration. The situation changes if one takes
into account the momentum-dependent corrections to the
Landau-Migdal interaction given by [25,26]. In this case,
the summation of the series produces an additional en-
hancement factor 1.5.

IV. CONTRIBUTION OF THE VELOCITY-
DEPENDENT RESIDUAL STRONG

INTERACTION TO THE RENORMALIZATION
OF THE WEAK POTENTIAL AND THE IPNCI

Let us consider now these momentum-dependent cor-
rections Vi to the Landau-Migdal interaction (16), given
by

1
Vi +pp (hl + hi rid) (0 I O2)

x [p1p2~(rl r2) + pl~(ri r2) p2

+p2~(ri r2)pi + ~(rl r2)plp2] ~ (21)

This form originates from the vr-meson exchange contri-
bution to the nucleon-nucleon interaction [25], [26]. Its
constants are known to be hi ———0.5, hi ———0.26 (Ref.
[26]). Note that we keep in (21) only those p-dependent
corrections which yield nonzero contributions to the P-
odd field renormalization (see below). To the lowest
powers of p, these terms should be oipi02p2. Spin-
independent velocity contributions to (21) responsible,
e.g. , for the effective mass renormalization, are therefore
irrelevant and the effects caused by them (e.g. , effective
mass renormalization) are assumed to be taken into ac-
count in definition of the constants C, m, and 6, .

It is easy to see that in this case the operator A should
be of the same form as a, but with its constants renor-
malized. The inclusion of the additional term Vj (21)
(Vs = V + Vi) gives the "compensation equation" (14)
for the effective single-particle field in the form

2

zv(1) + i ) ( 0 r ,

a=1)2
+~((~p) p) =o

1(~ 2%g„= —g„1+ (h + h', )D(" 3A

2Zg„= —g„1+ (h + h', )Dt" 3A

3A "
)

g„(h, —h', )

2Z
3A "„(h —h', )

(22)

with D = [1+P~(hi+hi)][1+~~(hi+h'I)] —4~, (hi —hi)2
(firstly, this result has been obtained in our work [24]).
Thus, with the account for Vj, the IPNCI takes the form

~el
VIPNCI —VIPNCI + VIPNCI

= 2((„—(„)(h' —h)C(cree[a„x r])h(r„—r„)
+VIP NCI ~ (23)

where the first term has the form of (18) but with the
renormalized constants („,(, which yields an additional
enhancement at the negative values of hi, h~z (( 1.5(
for hi ———0.5, hi ———0.26; see Table I). Note that at
present there is an uncertainty in the values of hz, hi.
In Ref. [24], we carried out one more calculation of the
weak potential renormalization basing on the underlying
(a+ p)-exchange strong interaction, which also produces
a tensor contribution to Vj. These calculations give even
more substantial enhancement of the weak potential con-
stants g~,$.

where K = —,[& (hi+hi)(„+ & (high'I)( ] with upper

(lower) signs for proton (neutron), respectively (see Ref.
[24]). In the constant density approximation, all terms
in this equation have the same operator structure and
its solution is equivalent to the renormalization of the
constants ( in (11), obtained by replacement of "bare"
weak constant g„by their renormalized values g„
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The second term contains velocity-dependent corrections:

i7Nci =: [ ~ i]:

N-+ 4)(hi + h'i&i&2) + -(&- —4)(t i+ hi)(&i. + r2. ) I
((&»i) + (o»2) ~(ri —»))

+ ((n (p) (h 1 ~i) (72' rig ) ((&1

pl�)

(&2p2) ~(rl r2) ) ~

+(( (p) (~1 h~j) (r2 ri )(pl (p2 (o 1 [o2r])~(rl r2)))

where, ( = s ~~, and V&i,'Nc& (except the last term)4p~ 3 2~2m '

has no enhancement in comparison with the two-body
weak interaction (10). Thus, it is considerably smaller
than the first term in Eq. (23). The last term in V&PN&&
is in fact the momentum-dependent correction to IPNCI
[Eqs. (18),(23)].

V. CONTRIBUTION OF THE IPNCI
TO THE REGULAR PNC EFFECTS

T.P 2
Tpl/2

1.3 x 10—3&w

Here, E is neutron energy in eV. This value is comparable
to the valence contribution estimates [2,4,23], if g
g 1 (small renormalization of P-odd field) and it is
too small in comparison to the observed regular effect in
neutron capture by Th (P 0.3j~E).

In principle, the IPNCI can also give some regular
PNC effect in the neutron capture, besides the main
"random" one [10]. Consider the neutron capture into
a compound state of negative parity (p-wave compound
resonance for the positive parity target nucleus). The
strong residual interaction can capture the neutron in
the p-wave only. The IPNCI [Eqs. (18),(19),(23)] can
capture the s-wave neutron. The slow neutron wave func-
tion exp(ikr)y [1+i(kr)]y (y is the spinor) contains
both s-wave and p-wave parts which are connected by
the relation /~i~2 ——'s (or)g, . It is clear that the IP-
NCI contribution to the s-wave neutron capture matrix
element proportional to Q(ro'z x o )g, [see Eq. (18)] is
similar to the spin-dependent part of the pzy2-wave strong
contribution (o„o )@„iy2 M s (ro„x o )@, + (i.e.,
VjpNciga Vs'g&) . The similarity of these two fields
means that s-wave and p-wave neutrons can excite the
same state of the nucleus, and there is a coherent contri-
bution to the PNC effects (which is proportional to the
doubled ratio of the s-wave to p&~2-wave capture ampli-
tudes):

odd nuclear potential [instead of P odd p-otential (3)]:
G

Wpz = q~z (oV)p 'A(aV—)U,
2 2m

with A = gPT2W2- lU(0)l 2 x 10-'9 fm. The shapes
of the strong potential U and that of the nuclear density
are assumed to be similar. The wave function perturbed
by this interaction (see Ref. [33]) can be written as g =
exp( —A~z )g (1 Apg)g, —A~z ——A(o V'). Calculations
similar to those we have done for the IPNCI give the
following result:

VIPTI [A V ]- CA[(o-V'), 8(r, —r2)]
—iCA[ai x cr2(Vi, 8(ri —r2))]

with CA 0
IUI 2~2 ~ 2~2 g. We see that the

structure and strength of IPTI is similar to those of
the initial two-body P, T-odd interaction (see, e.g. , [19]).
Thus, in the case of P, T-odd interaction there is no A ~

enhancement.

VII. CON CLU SION

Let us stress, in conclusion, that we considered here
the IPNCI term in the Hamiltonian caused by the change
of the residual strong interaction by the coherent PNC
Beld. An explicit expression for the IPNCI is obtained.
It is shown that the IPNCI is ~ A ~ times stronger
than residual two-nucleon weak interaction. This en-
hancement is due to coherent contributions of all nucle-
ons to the weak nucleon-nucleus potential. (In the initial
weak interaction, only the two external nucleons inter-
act, while in the IPNCI, contributions of all the nucleons
into the weak potential are accumulated. ) Of course, the
P-even strong interaction Vg remains unchanged in the
total Hamiltonian [see Eq. (15)], and its main efFect, i.e. ,

mixing of configurations in true eigenstates, remains to
be a separate problem.

VI. INDUCED PARITY AND TIME
INVARIANCE VIOLATING INTERACTION

It is interesting to compare the IPNCI with a similar
parity and time invariance violating interaction (IPTI)
which is induced by the strong interaction V~ and P, T-
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