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Alpha-chain states in C are studied by employing the isomorphic shell model. Where possible
n particles and their spatial distribution are derived, instead of being assumed as usual in Q.-cluster
models. It has been found that the average forms of both the ground state and the first 0+ excited
state can be associated with an 0; chain composed of three o. particles in a row. The ground state
and the first 0+ excited state energies and their rotational bands, together with their charge radii
and intrinsic quadrupole moments, have been computed and compared with the predictions of a-
particle models. With reference to experimental data, all quantities examined lend support to the
present approach.

PACS number(s): 21.60.Gx, 25.70.Ef, 27.20.+n

I. INTRODUCTION

The o,-cluster model and its variations have a long
history in nuclear physics and many geometries of n-
cluster configurations have been examined in the lit-
erature [1—11] ranging from three-dimensional high-
symmetry shapes of a tetrahedron [8] (e.g. , in isO) or an
octahedron [7] (e.g. , in 2 Mg) to two-dimensional config-
urations [6,12] (e.g. , in 2C) and even to completely linear
arrangements [6,13] (e.g. , in n-chain states of 4N nuclei)
counting &om two (in the case of sBe) up to seven [12]
(in the case of 2sSi) cr particles in a row.

The geometries in the Q.-cluster models arise through
the long-range eKects of antisymmetrization and the
mean 6eld combined with a preference for simple un-
derlying structures [6,14]. Calculations in the cranked
u-cluster model [11] and in the Nilsson-Strutinsky
model [15] indicate that shell nonuniformities in single-
particle spectrum play a vital role in determining the
stability and shapes of a-cluster configurations [16].

The o,-cluster model, despite some initial successes, ap-
peared in general unable to predict the properties of nu-
clei heavier [7,10] than 2 Ne. However, this specific de-
Bciency has been overcome and the results obtained are
comparable to those from Hartree-Fock calculations by
avoiding arti6cial constraints to be imposed on the sym-
metry of the mean positions of the cr clusters [10].

The common characteristic of many Q.-cluster models
is that the n particles involved in the nuclear structure
are considered preformed and thus the nucleus appears
in the &amework of these models as an aggregate of 0;-
particle subunits. Despite the apparent successes of these
models, however, the wealth of nuclear reactions does
not support this Q.-particle composition of nuclei even

for the 4N nuclei. One thus could compromise the situ-
ation by assuming that each such o. particle is composed
of four close-by nucleons (two neutrons and two protons)
with the same n and / quantum numbers instead of being
composed of four nucleons in s state as usually assumed.
That is, even in the Bloch-Brink model, the alpha par-
ticles may also dissolve into nucleons since, for cluster
separations reaching zero, antisymmetrization forces the
cluster wave function into some shell-model limit. This
would also be consistent with the relaxation of the 0,-
cluster positions [10] mentioned earlier. Thus, effectively
nucleons and not o. particles could be the fundamental
constituents of a nucleus.

In the present study an alternative approach is con-
sidered where indeed nucleons and not o. particles corn-
pose the nuclei and thus possible a particles and their
spatial distributions in nuclei are derived. Specifically,
the semiclassical [17] part of the isomorphic shell model
is employed. The semiclassical instead of the quantum-
mechanical part [18] of the model is utilized since this
part is closer to the o,-cluster models and thus a compar-
ison between them is easier and more comprehensive. An
outline of the model is given in the next section. Here,
only a very brief comparison is attempted for the geome-
try involved in this model and that in the main Q.-cluster
model [6,7] of Bloch and Brink. In the second case, sev-
eral geometries are chosen for a particle nucleus based
on symmetry arguments for the o. particles involved and
then the binding energy is used for the Anal selection of
geometry. In the Grst case a common geometry for all nu-
clei is derived by packing the nuclear shells whose average
forms result &om the independent particle assumption.
The part of this geometry utilized by the nucleons of a
speci6c nucleus results from the search for the maximum
binding energy.
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II. THE ISOMORPHIC SHELL MODEL

The isomorphic shell model is a microscopic nuclear-
structure model that incorporates into a hybrid model
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the prominent features of single-particle and collec-
tive approaches in conjunction with the nucleon finite
size [17,18]. The single-particle component of the model
is along the lines of the conventional shell model with the
only difFerence that in the model the nucleons creating
the central potential are the nucleons of each particular
nuclear shell alone, instead of all nucleons in the nucleus
as assumed in the conventional shell model [18]. That is,
our Hamiltonian is analyzed into partial state-dependent
Hamiltonians for neutrons (N) and for protons (Z) as fol-
lows, where crossing terms between partial Hamiltonians
of different shells have been omitted: E = -(VA) —— ) ~;(n+ -) (6)

and (3) above. Those of our wave functions, however,
which have equal l value, because of the different Lu, are
not orthogonal, since in these cases the orthogonality of
I.aguerre polynomials does not suFice. Orthogonality, of
course, can be obtained by applying established proce-
dures, e.g. , the Gram-Schmidt process.

According to Hamiltonian (1), the binding energy of a
nucleus with A nucleons in the case of orthogonal wave
functions takes the simple form given by (6)

H = NH+zH
—NII1s +N H1p +N H1d2s +

+zH~. +z Hip+z Hi~2. + . .

While a finite square-well or Woods-Saxon potential
would be a more realistic choice of the potential, for rea-
sons of simplicity, we take the harmonic-oscillator (HO)
potential without spin-orbit coupling, where the expres-
sions of the mean-square radius and of the energy eigen-
values, necessary in demonstrating the model, are excep-
tionally simple and have closed mathematical forms. In
addition, the appearance of the finite negative constants
—N V; and —z Vi in the neutron and the proton harmonic-
oscillator potentials below reduces the startling impres-
sion given when an infinite potential is used for deter-
mining total binding energies.

Thus, for each partial neutron or proton Hamiltonian
we take

mH; =~ V, +sr T, = —N V;+ 2m(~u);)r +~ T;, (2)

zK =z V +z &' = —zV + —,'m(z~,')&'+z &' .

That is, each harmonic-oscillator potential has its own
state-dependent frequency ~. These u are not taken as
adjustable parameters, but all are determined &om the
harmonic-oscillator relation [19]

a' )& 31Le=j,in+-
(m(rz) ) ( 2)

(4)

where n is the harmonic-oscillator quantum number and
(r ) ~ is the average radius of the relevant high Ruximal
shell determined by the semiclassical part of the model
specified below.

The solution of the Schrodinger equation with Hamil-
tonian (1), in spherical coordinates, is

(& ~ 4') = & &(")&i (0 4')

where YP(8, P) are the familiar spherical harmonics and
the expressions for the R„~(r) are given in several books
of quantum mechanics and nuclear physics, for example,
see Table 4-1 of Ref. [19].

The only difFerence between our wave functions and
those in these books is the different ~'s as stated in (2)

where V is the average potential depth [18]. The coeffi-
cients z and 4 take care of the double counting of nucleon
pairs in determining the potential energy.

Applications and details of the quantum-mechanical
part of the model are given in Ref. [18]. Here an appli-
cation of the semiclassical part (see Refs. [17,20—25]) in
the place of the quantum-mechanical part of the model is
considered in the spirit of Ehrenfest's theorem [26], which
for the observables of position (R) and momentum (P)
takes the form

d 1
(+) = 9)dt m (7)

d
P') = —(VV(Z

d
(8)

The quantity (B) represents a set of three time-
dependent numbers ((X), (Y'), (Z) ) and the point (B)(t)
is the center of the wave function at the instant t. The
set of those points which correspond to the various values
of t constitutes the trajectory followed by the center of
the wave function.

From (7) and (8) we get

m, R = -(V'V(R)) . (9)

Furthermore, it is known that, for the special case of the
harmonic-oscillator potential assumed by the isomorphic
shell model in (3), the following relationship is valid:

(7V(B)) = [7V(r)], ~R (1O)

where

[
—V'V(r)] —(R& = E .

That is, for this potential the average of the force over the
whole wave function is rigorously equal to the classical
force E at the point where the center of the wave func-
tion is situated. Thus, for the special case (harmonic os-
cillator) considered, the motion of the center of the wave
function precisely obeys the laws of classical mechanics.
Any difFerence between the quantum and the classical
description of the nucleon motion exclusively depends on
the degree the wave function may be approximated by its
center. Such difFerences will contribute to the magnitude
of deviations between the experimental data and the pre-
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dictions of the semiclassical part of the model employed
here.

Thus, in the semiclassical treatment the nuclear prob-
lem is reduced to that of studying the centers of the wave
functions presenting the constituent nucleons or in other
words, of studying the average positions of these nucle-
ons. For this study the following two assumptions are
employed in the isomorphic shell model: (i) The neutrons
(protons) of a closed neutron (proton) shell, considered
at their average positions, are in dynamic equilibrium on
the sphere representing the average size of that shell. (ii)
The average sizes of the shells are determined by the
close packing of the shells themselves, provided that a
neutron and a proton are represented by hard spheres of
definite sizes (i.e. , r = 0.974 fm and r„= 0.860 fm). It
is apparent that assumption (i) is along the lines of the
conventional shell model, while assumption (ii) is along
the lines of the liquid-drop model.

The model employs a speci6c equilibrium of nucleons,
considered at their average positions on concentric spher-
ical cells, which is valid whatever the law of nuclear force
may be: assumption (i). This equilibrium leads uniquely
to Leech [27] (equilibriuin) polyhedra as average forms
of nuclear shells. All such nested polyhedra are closed
packed, thus taking their minimum size: assumption (ii).

The cumulative number of vertices of these polyhedra,
counted successively &om the innermost to the outer-
most, reproduce the magic numbers each time a poly-
hedral shell is completed [17] (see the numbers in the
brackets in Fig. 1 there and in this paper).

To conceptualize the isomorphic shell model, it should
6rst be related to the conventional shell model. Specifi-
cally, the main assumption of the simple shell model, i.e.,
that each nucleon in a nucleus moves (in an average po-
tential due to all nucleons) independently of the motion
of the other nucleons, may be understood here in terms
of a dynamic equilibrium in the following sense [17]. Each
nucleon in a nucleus is on averuge in a dynamic equilib-
rium with the other nucleons and, as a consequence, its
motion may be described independently of the motions
of the other nucleons. Prom this, one realizes that dy-
namic equilibrium and independent particle motion are
consistent concepts in the &amework of the isomorphic
shell model.

In other words, the model implies that at some in-
stant in time (reached periodically) all nucleons could
be thought of as residing at their individual average po-
sitions, which coincide with the vertices of an equilib-
rium polyhedron for each shell. This system of particles
evolves in time according to each independent particle

1s (a) 1p 0
,8)

(c) (e)

e'

1s

R = 0.9N

(b) &p

f 8] R =2,511
1

p= 2.511 f20) R 3.568 p=3,505'

(d) 1d-2s (f)

f2j R ~1.554

,e',

f 8) R ~ 2.54 1 p = 2.075 (20j R=3.946 p ~3.720

FIG. 1. The isomorphic shell model for the nuclei up to N = 20 and Z = 20. The high-symmetry polyhedra in row 1 (i.e., the
zerohedron, the octahedron, and the icosahedron) stand for the average forms for neutrons of (a) the ls, (c) the lp, and (e) the
ld2s shells, while the high-symmetry polyhedra in row 2 [i.e., the zerohedron, the hexahedron (cube), and the dodecahedron]
stand for the average forms of (b) the ls, (d) the lp, and (f) the ls2s shells for protons. The vertices of polyhedra stand for the
average positions of nucleons in definite quantum states (r, n, l, m, s). The letters 6 stand for the empty vertices (holes). The z
axis is common for all polyhedra when these are superimposed with a common center and with relative orientations as shown.
At the bottom of each block the radius R of the sphere exscribed to the relevant polyhedron and the radius p of the relevant
classical orbit, equal to the maximum distance of the vertex state (r, n, l, m, s) from the axis HP precisely representing the
orbital angular-momentum axis with de6nite n, I,, and m values, are given. Curved arrows shown help the reader to visualize
for each nucleon round what axis is rotated, where solid (open) arrows show rotations directed up (down) the plane of the
paper. All polyhedra vertices are numbered as shown. The backside (hidden) vertices of the polyhedra and the related numbers
are not shown in the 6gure.
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—{3&.8538)~;,
V,~ = (1.7 x 10 ~)

e—(l.3538)),~—187 , (12)

motion. This is possible, since axes standing for the
angular-momenta quantization of directions are identi-
cally described by the rotational symmetries of the poly-
hedra employed [28—31]. For example, see Ref. [30],
where one can find a complete interpretation of the in-
dependent particle model in relation to the symmetries
of these polyhedra. Such vectors are shown in Fig. 1 for
the orbital angular-momentum quantization of directions
involved in all nuclei up to N = 20 and Z = 20.

Since the radial and angular parts of the polyhedral
shells in Fig. 1 are well defined, the coordinates of the
polyhedral vertices (nucleon average positions) can be
easily computed. These coordinates up to N = Z = 20,
needed here for the application of the model on 2C (see
next section), are already published in footnote 14 of
Ref. [20], and in footnote 15 of Ref. [21]. These coordi-
nates correspond to the relevant R values of the exscribed.
polyhedral spheres given in Fig. 1 (see bottom line at each
block).

According to the isomorphic shell model, the average
positions of nucleons in a nucleus are distributed at the
vertices of the polyhedral shells as shown, for example,
in Fig. 1. The specific vertices occupied, for a given
(closed- or open-shell) nucleus at the ground state, form a
vertex configuration (corresponding to a state configura-
tion) that possesses a maximum binding energy (BE) in
relation to any other possible vertex configuration. This
maximum BE vertex configuration defines the average
form and structure of the ground state of this nucleus.
All bulk (static) ground-state properties of this nucleus
(e.g. , BE, rms radii, etc.) are derived as properties of
this structure, as has been fully explained in Ref. [17]
and will become apparent below.

The quantities estimated by the model in the &ame-
work of its semiclassical part [17,20,22] (see the next sec-
tion) are potential energy V~, Couloxnb energy (Ec),~;
average kinetic energy (T) x,' odd-even energy Eg, bind-
ing energy EBE, collective rotational energy E, t,' rms
charge, xnass, and effective radii (r2)x~2; and electric
quadrupole moment by using (12)—(22);

EBE =
all nucleon pairs all proton pairs

2

) (T)„i —Eg + E. . .
all nucleons

(15)

80=A' (16)

lx'I(I + 1)
rot

2J ) (17)

where J is the Inoment of inertia of the rotating part of
the nucleus given by (18)

J = ) mp; = mN, ~t(r ),~q ) (i8)

where N, t is the number of nucleons participating in the
collective rotation and (r2), q is the rms radius of these
nuclei.

The term E, t in (15) is meaningful for the ground
state only for the cases where the angular speed u due to
independent particle motion is comparable (about equal)
to that due to collective motion in such a way that these
two motions are coupled even at the ground state, i.e.,
for these cases the adiabatic approximation is not valid;

( 2)xj2

x R, + Q,. x R,. + Z(0.8) + N(0.91)2

Z+N

(i9)

where distances r;z are estimated as above and Eg is a
correction "odd-even" term familiar &om the liquid-drop
model. Here the Eg value is equal to zero for even-Z even-
N nuclei for which the potential in (12) is exclusively
derived [20] and thus no correction is needed, while for
odd-A nuclei its value is taken equal [19] to 80/A MeV,
l.e.)

where the internucleon distances r,.~ are estimated follow-

ing Fig. 1 or (the same) the corresponding coordinates of
polyhedral vertices [20,21];

B N'
(r ).hl = '=' ' + (0.8) —(0.116)— (20)

1
(T)nlm =

M R22 max

l(l + 1)+ 2
~~im

(i4)

where R „ is the outermost polyhedral radius (R) plus
the relevant nucleon radius (i.e., r~ = 0.974 fm or rz ——

0.860 fxn), i.e. , the radius of the nuclear volume in which
the nucleons are confined, M is the nucleon mass, p ~

is the distance of the vertex (n, l, m) from the axis 8&

(see Fig. 1 and Ref. [22));

2

(E~)v =
rig

where the distances r;~ are computed as explained above;

(r').'e' = [(~')- + (r')-t]" (21)

where the subscripts ch and m refer to charge and mass,
B, is the radius of the ith proton or neutron average
position &om Fig. 1, Z and N are the proton and the
neutron numbers of the nucleus, 0.8 and 0.91 fm are the
rms radii of a proton and of a neutron. and —0.116 fm
is the mean square charge radius of a neutron [32]. The
0.91 fm value for a neutron is taken &om the 0.8 fm value
for a proton by considering proportionality according to
the sizes of their bags 0.974 and 0.860 fm, respectively,
i.e. , 0.91=0.8(0.974/0. 860);
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Z

eQ',.„t, = ) eQ,' = e) R,. (3 cos 8; —1), (22)

where Q' stands for the intrinsic quadrupole moment, R;
is the radius of the ith proton average position, and Oi

is the corresponding azimuthal angle with respect to the
symmetry axis.

III. CALCULATIONS AND DISCUSSION

In the o.-cluster model of the nucleus referring to n-
chain states, i2C (W = 3) is the key nucleus since an n-
chain structure for sBe (K = 2) is apparent and since the
appearance of such structure for heavier nuclei (N & 4)
could be associated to C structure particularly if the n-
chain states of these heavier nuclei could be thought of as
forming molecular structures of the type C+(JV —3)n,
either C+ Be or C+ C. Thus in the following we
will concentrate on 2C.

The average structure of C, in the &amework of the
isomorphic shell model, comes &om Fig. 1 by considering
the states (ls and 1psg2) involved in this nucleus. Specifi-
cally, &om Fig. 1 the average nucleon positions numbered
1 and 2 (for ls neutrons), 3 and 4 (for 1s protons), 5—8
(for lps~2 neutrons), and ll —14 (for lpsyz protons) are
depicted as shown in Fig. 2(a) by employing the same
numbers. Thus, Fig. 2(a) contains part of Fig. 1 and so,
as mentioned, all coordinates of the average nucleon po-
sitions involved are known [20,21]. Further, Fig. 2(b) is
almost identical to Fig. 2(a) and only slightly difFers with
respect to the average positions of the two ls protons (3
and 4). Specifically, due to the absence of lpxy2 neu-
trons in C (9 and 10) whose average positions together
with those of 1Jisy2 neutrons (5—8) determine the sym-
metry of the average positions for the 18 protons, these
two latter positions can relax getting closer to the aver-
age positions for the 1ps~2 neutrons (5—8) in such a way
that their corresponding nucleon bags come in contact.

Thus, the difFerence between Fig. 2(b) and Fig. 2(a) is vi-
sualized from the contact (or not) of the bags numbered
3 and 4 with the bags numbered 5 and 8, and 6 and 7,
respectively. This relaxation of the two proton average
positions leads to larger binding energy for C.

Rmthermore, in the model each set of the follow-
ing four nucleon average positions nuxnbered (1—4),
(5,7,11,13), and (6,8,12,14) consists of two protons and
two neutrons with the same n and / quantum num-
bers which are close together for the instant depicted
by Figs. 2(a) and (b). Thus, in the model each of these
three sets can be considered as an o. particle. Consider-
ing now the center of gravity for each of these o. particles
Fig. 2(c) results, where indeed these three n-like particles
are in a row forming a linear chain. For later moments,
of course, each of the four nucleons composing any one of
the above three o.-particle-like structures will evolve by
following its independent particle motion. That is, each
nucleon will rotate in an orbital round its own axis of or-
bital angular momentum vector as schematically shown
by arrows in Fig. l.

In the &amework of the isomorphic shell model now
the observables of rms charge radius and of binding en-
ergy can be estimated. Specifically, from Eq. (20) since
all R; involved in Figs. 2(a) and (b) are known [17]
[namely, Ri, p,~t~„, ——1.544 fm, and Rxp p,~i~„, = 2.541
fm; see Figs. 1(b) and (d)], the charge rms radius is com-
puted equal to 2.37 fm for each of Figs. 2(a) and (b)
((x ),&,„ t ——2.37 fm). Also, froxn Eqs. (12)—(15) since
all coordinates of the nucleon average positions [20,21]
and the radial distances involved in Figs. 2(a) and (b)
[namely in fm, R = 2.511+0.974, px~ ~, t „——2.075,
px„„,„t,~„——2.511, also E, t ——0; see Figs. 1(c) and
(d)] are known [20,21], the binding energy for Figs. 2(a)
and(b) are computed equal to 86.0 and 94.2 MeV, respec-
tively.

Figures 2(a) and (b) have been found to be the two
average-nucleon-position con6gurations with the largest
binding energies with respect to any other possible con-

(bj

Rp+
1

1

FIG. 2. Average forms for 0, according to the isomorphic shell model, composed of the average positions of the constituent
nucleons. (a) stands for the first 0+ excited state at 7.65 MeV and (b) for the ground state. Average nuclean positions are
numbered as shown by using for the same position the same number as in Fig. 1. Thus, one can observe that for the positions
shown in Figs. 1(a)—(d) those numbered (9) and (10) for neutrons and (15) and (16) for protons are the only not present in
Fig. 2. (c) comes from either Fig. 1(a) or Fig. 1(b) when each of the three sets of four close-by nucleons (two neutrons and
two protons) of same n and / numbered (1—4), (5,7,11,13), and (6,8,12,14) are assumed forming a sort of an o. particle. Axes
labeled 1,2, and 3 stand for t q symmetry axes and those labeled B + and R + for rotational axes referring to the first (Oi )1 2

and to the second (0~+) 0+ levels.
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figuration for C involving 8 and p or even d states and
coming from Figs. 1(a)—(f). Thus, Fig. 2(b) is associated
with the ground state and Fig. 2(a) with the 7.653+0.3,
J = 02+ excited state [34] of ~2C possessing 92.2 and
84.55 MeV experimental binding energies [33], respec-
tively. The intermediate excited state [34] at 4.4392+0.3,
J = 2z, will be discussed shortly. Center-of-mass cor-
rections are not included.

It is satisfying that the present predictions are close
to the experimental values for the binding energies but
also for the radii [35]. The comparison is even more to
our favor if we consider the corresponding o.-model pre-
dictions [7] given in Table I. However, a more detailed
comparison with o,-cluster models will be made later.

As seen &om Figs. 2(a) and (b), the deformation of the
average shapes for the ground state and the 02 excited
state of C is apparent. In these figures the axes of
symmetry and the corresponding axes of rotation are also
shown. Specifically, the axis of rotation labeled Ro+ is

1
perpendicular to both axes of symmetry labeled 2 and 3,
while the axis of rotation labeled Ro+ is defined from theo2
proton-average positions 3 and 4 and is perpendicular to
the axis of symmetry labeled 1. At this point, of course,
a clarification of the terminology concerning symmetry
and rotation axes in Fig. 2 should be made.

Axes 1 and 2 are axes of symmetry in both Figs. 2(a)
and (b) after considering the fact that the proton-average
positions 3 and 4 cannot be distinguished from their sym-
metric counterpart average positions (i.e. , &om the posi-
tions 3' and 4' not shown in these figures for reasons of
simplicity). Both Figs. 2(a) and (b) have a triaxial struc-
ture, since their axes of symmetry labeled 1—3 refer to a
discrete C2 (i.e. , 180') symmetry. That is, none of these
axes has the C symmetry appearing, e.g. , in an ax-

ially symmetric ellipsoidal. Thus, quantum-mechanical
rotation around the C2 symmetry axis 1 (labeled Ro+)1
is permissible. However, at first glance Fig. 2(c) gives
the impression that axis 1 has C symmetry and thus
no rotation round this axis is quantum mechanically per-
missible. This false impression comes &om the fact that
in Fig. 2(c), in order to facilitate the comparison of this
work with the o,-cluster models, o; particles are presented
by points standing for their center of gravity. The cor-
rect reading of the figure is to consider the distribution of
the nucleons constituting these o. particles as has indeed
been considered in the calculations of all observables in
the present work. This difI'erence in nucleon distribution
makes the difference between Figs. 2(a) and (b), even if
the a-cluster separation [see Fig. 2(c)] is the same for
both figures.

Since all coordinates involved in Figs. 2(a) and (b) are
known [20,21], by applying Eq. (18) the relevant moments
of inertia are estimated. Namely, J~ = 43.6M fm and
Jg ——28.03M fm, where M stands for the nucleon mass
and the contribution to the moment of inertia coming
&om the finite nucleon size has been empirically incorpo-
rated equal to 0.165M fm for each nucleon participating
in the collective rotation.

By assuming no variation of the moment of inertia with
angular momentum and by applying Eq. (17) the bands
corresponding to the rotational axes labeled Ro+ and Ro+

1 o2
are those given in Table II.

The second band is what is usually considered by the o.-
cluster models [7] as corresponding to the linear n-chain
states for C. Of course, the existence of such a band is
not clearly supported by the experimental data [34]. Its
existence exclusively depends on whether in the future
the J for the state 10.3+3 MeV will be found to be 2+

TABLE I. Theoretical predictions and experimental values for the ground state (0~+) and first
0+ excited state (02) of C.

Approach

Experiment 0+
0+

2

Energy

(MeV)
92.2

7.65

rms
charge
radius

(fm)
2.37'

Intrinsic
quadrupole

moment
(fm')

+21d

Isomorp hie
Shell model

0~ (chain)
02 (chain)

94.2
8.2

2.37
2.37

21

a. particle
Model
With forces
V1, V2, B1

0~ (triangle)

0~+ (chain)

V1
V2
Bl
V1
V2
B1

72.7
64.3
62.0

15.0
8.7
6.1

2.62
3.27

—43

See Ref. [7].
See Ref. [34].

'See Ref. [35].
See Ref. [37].

'See Ref. [38].
See text (Sec. III) for other calculated values (e.g. —21.6 fm ). The value listed here is in fact

that of the mass quadrupole moment, even if this is not clearly stated in Ref. [7].
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TABLE II. Rotational ground state and 0~ excited bands
of C

Band J

p+
1

p+
2

2+
4+ (4+)
6+
o+
2+ (0+)
4+

o+

Experiment
Energy
(MeV)

4.44
14.08
28.9
7.65

10.3

Isomorphic
Shell n-particle

model models
(MeV) (MeV)

4.28 2.76'
14.28
29.98
7.65 7.65

10.5 8.90
17.2 12.1

See Ref. [34].
See Ref. [39].

'See Ref. [38].

in place of the present tentative [34] assignment (0+).
What is really different between the present approach

and the o.-cluster models is the nature of the erst band,
i.e., of the ground-state band in Table II. In these mod-
els o. particles are arranged at the corners of an equi-
lateral triangle [7] for the ground state of x C. Such a
triangular configuration of o. particles round the nuclear
center is based on the assumption that the o. particle is
a fundamental constituent of C nucleus. In such a case
by considering any reasonable o.-n interaction, the most
compact structure (and thus with maximum binding en-

ergy) is that of an equilateral triangle and should be as-
signed to the ground state of C. In the &amework of the
present model, however, nucleons and not o. particles are
the constituents of any nucleus and it is the Pauli prin-
ciple together with the maximum binding energy which
determine what average nucleon positions are occupied
and eventually what is the average shape of a specific
nucleus. The good agreement between the experimental
data and the predictions of the present model concern-
ing the xnember states of the ground-state band [34] lend
support to the present approach, where a linear instead
of a triangular average shape for the ground state of ~ C
is employed.

Finally, an estimation of the electric quadrupole mo-
ment of C is made which constitutes a very sensitive
test of the angular distribution of the average structure
for any nucleus. Dealing with average values, the intrin-
sic quadrupole xnoment is given [19] by (22), where for
Fig. 2(b) representing the ground state of x2C each +
has been specified [17] above (see R values in Fig. 1)
and the corresponding 8, is the azimuthal angle for the
proton average position i with respect to the axis 1 (see
Fig. 2), which is the quantization axis for all vectors pre-
senting quantization of direction [28—32] for orbital an-
gular momenta shown in Fig. 1 and the symmetry axis
for the estimation of Q!„&, (naxnely [36), 83 4 —90' and
Hxx —x4

——35' 15'52"). It is satisfying that the resulting
value QI t, = 21.0 fm2 is identical to the measured [37]
absolute value of the intrinsic quadrupole moment. The
corresponding value coxning from the cx-cluster model [7]
used for the construction of Table I is —43 fm2, while
more recent calculations [40,41] give —21.6 fxn2 and [41]
—21.7 fm . Hence, the difFerence between the present
model and the Bloch-Brink model concerning the elec-

tric quadrupole moment essentially lies in the sign of the
~ ~

I
intr '

IV. CONCLUSIONS

In the present study of C the iso morphic shell

xnodel [17,18] has been employed as a cluster approach
to atomic nuclei, where consideration of the nucleon 6-
nite size [17] constitutes one of the main features of the
model. This feature allows the packing and clusterization
in a nucleus [17].What are really packed in the model are
the shells themselves [17] taken as entities. Thus, only
nucleons necessary for the shell packing are in contact.
That is, the model does not support general packing of
nucleons which should lead to much higher density. It is

sat, isfying that this packing of shells reproduces a magic
number [17] each time a saturated shell is added into
the packing. The close reproduction of binding energies
and sizes in many nuclei by both the quantum [18] and
semiclassical [17] parts of the model lends support to the
present approach and makes its results reliable.

A prolate average shape with a sizable positive intrin-

sic quadrupole moment is predicted for C which can be
considered as a linear chain of three o. particles, when
each two close-by pairs of neutrons and protons with
the same n and l quantum numbers (like an n particle)
are presented by their center of gravity. Such a linear o.

chain has already been predicted by n-cluster models [7].
However, here the o. chain stands for both the excited
02+ state [34] at 7.65 MeV (as in these models) and the
ground state (instead of an equilateral triangle in these
models [7]). The good agreement with experimental val-
ues for all observables examined, superior to those &om
o.-cluster models, support the credibility of the present
approach. Of course, the difference in the sign of the de-
formation for the ground state between the predictions of
the present model and those of the o.-cluster models can-
not be ignored. However, despite much efFort the quan-
titative experimental evidence is inconclusive [42]. Most
of it derives from model-dependent analysis of electron
scattering and hadron scattering data. Some of these
analyses are inherently insensitive to the sign of the de-
formation and there are indications that the values ob-
tained are projectile dependent and also that the 6nd-
ings strongly depend on the assumption that the nuclear
charge distribution is spheroidal [42]. Fxxrthermore, in
support of our findings (that 0+x and 02+ states in 2C
have the same sign of deformation) there are rather re-
cent calculations [43,44] on the basis of the Brink-type
3o. model which show that the rather strong 02 ~ 0&

monopole and 02 —+ 2z E2 transitions are hardly ex-
plained unless a mixture of the equilateral triangle and
linear 3o,-chain geometries are assumed both for the 0~
and 02+ states [40].

The above conclusions are further strengthened by the
fact that the isomorphic shell model used here employs
no adjustable parameters. It uses, of course, two nu-
merical parameters for the sizes of neutron and proton
bags [17,22] and four parameters for the two-body poten-
tial [20] employed, but these six parameters are universal
parameters of the model and are constant for all prop-
erties in all nuclei. In the present approach no ad hoc
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assumption has been made and all predictions are based
on the isomorphic shell model, all of whose parameters
necessary for its implementation have been published in-
dependently a long time ago.
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