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p, u, and P meson-nucleon scattering lengths from +CD sum rules
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The +CD sum rule method is applied to derive a formula for the p, (v, and (() meson-nucleon
spin-isospin —averaged scattering lengths ap y. We found that the crucial matrix elements are
(qp„D„q)iv (q = u, d) (twist-2 nucleon matrix element) for a~, and m, (ss))v for ay, and obtained
ap = 0.14+0.07 fm, a = 0.11+0.06 fm, and a4, ——0.035 + 0.020 fm. These small numbers originate
from a common factor 1/(m)v + m~, , 4,). Our result suggests a slight increase (( 60 MeV for p aud
(d, and ( 15 MeV for P) of the effective mass of these vector mesons in nuclear matter (in the dilute
nucleon-gas approximation). The origin of the discrepancy with Hatsuda-Lee was clarified.

PACS number(s): 13.75.—n, 12.38.Lg, 11.55.Hx, 24.85.+p

The operator-product expansion (OPE) provides us
with a convenient tool to decompose a variety of cor-
relation functions into the perturbatively calculable t"-

number coeKcients and the nonperturbative matrix el-
ements. In its application to the QCD sum rules
(QSR's) [1, 2), the OPE supplies an expression for the
resonance parameters in terms of the vacuum conden-
sates representing the nonperturbative dynamics in the
correlators. In the application to deep inelastic scatter-
ing (DIS) [3], the OPE isolates the quark-gluon distri-
bution functions of the target &om the short-distance
cross sections. In this paper, we investigate the vector
meson (o, (o, q')-nucleon scattering lengths utilizing these
two aspects of the OPE. These scattering lengths can be
measured through the photoproduction of these vector
mesons. Furthermore, they determine the mass shift of
the vector mesons in the dilute nuclear medium. This
will be discussed in the last part of this paper. A sim-
ilar idea was recently presented for the nucleon-nucleon
scattering length in Ref. [4].

We start our discussion with the forward scattering
amplitude of the vector current J (V = (o, tu, q')) off the
nucleon target with four momentum p = (p, p) and po-
larization s:

where q=((o, q) is the four-momentum carried by J„and
the nucleon state is normalized covariantly as (p~p')
(2m) 2p b(p —p'). We set p = (miv, O) throughout
this work and suppress the explicit dependence on p
and s. The vector current J„ is defined as 1„' (x) =
—[up„u(x) ~ dp„d(x)], 14'(x) = sp~s(x). Near the pole
position of the vector meson, T„can be associated with
the T matrix for the forward V-N helicity amplitude,
7hH h~Hi(w, q) [h(h') and H(H') are the helicities of the
initial (final) vector meson and the initial (final) nucleon,

respectively, and they take the values of 6, 6' = +1,0 and
H, H' = +1/2] as

X7h.H h'H'(ai, q),

where we introduced the coupling fv and the mass mv.
of the vector meson V by the relation (0~ J„~V("l(q)) =
f~m&e„(q) with the polarization vector e„(q) normal-

ized as P i e„(q)e„(q) = —g„+q„q /q . As is well

known in DIS, T„can be decomposed into the four scalar
components respecting the current conservation and the
invariance under parity and time reversal. (Two of them
correspond to the spin-averaged structure functions Wq
and R'2, and the other two to the spin-dependent ones
Gi and G2.) Correspondingly, there are four independent
helicity amplitudes for the vector-current —nucleon scat-
tering, 7i i i i, 7i -i i -i, 7o i o i, 7i -i o i, all the rest be-

2) 2 2 1 2 2i 2 2 ~ 2

ing obtained by time reversal and parity from these four.
Since information on G~ and G2 is still lacking, we shaH
focus on the combination T = Ti + [1 —(pq) /mtvq ]T2
(ImT, W;, i = 1,2), which projects the V-K spin-
averaged T matrix, 7 (io, q). In the low-energy limit
(q ~ 0), 7 is reduced to the V %spin-average-d scat-
tering length av = (1/3) (aiy2+ 2asy2) (aiy2 and asg2 are
the scattering lengths in the spin-1/2 and -3/2 channels,
respectively) as 7 (mv. , O) = 24m(miv + mv. )av. [5]. A
useful quantity for the dispersion analysis is the retarded
correlation function de6ned as

(3)
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which is analytic in the upper half u plane with a fixed q.
Noting the crossing symmetry, the V-K scattering con-
tribution to the spin-averaged spectral function at q = 0
can be written as
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—Im T ((u, 0) = 0(cu) —Im [T((u, 0)] —0(—(u) —Im [T((u, 0)]
1 Q " 1 1
7r 7r 7r

2—4m fv2mv (m~ + mv)av [~(~)h'(~ —mv) 9( ~)h'(~ —mv) + (SP), (4)

where 6'(x) is the first derivative of the b function (dou-
ble pole term) and SP denotes the simple pole terin rep-
resenting the ofF-shell energy dependence of the T ma-
trix. Equation (4) can also be derived starting &om the
spectral representation. Using this form of the spectral
function in Eq. (3), and noting that the retarded cor-
relation function T„becomes identical to the causal
correlation function T~„ in the deep Euclidean region
A&2 = —Q2 M —oo, one gets

T(~ = —Q ) = 24vr—fvmv(m~+ mv)av
m2v +

(5)

where we have used. the fact that T becomes a function
of u2 in this limit. In Eq. (5), we assumed that the spec-
tral function is saturated by the V Nscatte-ring (with

I

its off-shell effect) and the "continuum" contribution [6]:
Ros(Q2) denotes the simple pole term corresponding to
the off-shell part of the V-K T matrix [ 1/(mv + Q )]
and 7Z, (Q2) stands for the "continuum" contribution
with its threshold So [ I/(So + Q2)] [7]. The sum of
the residues of Ros(Q ) and 'R, (Q ) is constrained by
the 1/Q term in the OPE side of the correlator. [See
Eq. (6) below. ]

We now proceed to the OPE side of T(~ = —Q ) [left-
hand side (lhs) of Eq. (5)]. Unlike in DIS, our OPE is
the short-distance expansion and hence all the operators
with the same dimension contribute in the same order
with respect to 1/Q (= —1/u at q = 0). The complete
OPE expression for T(Q ) including the operators up
to dimension=6 is given in Ref. [8] in the context of the
finite-temperature @SR's. For the p and ur mesons, it
reads from Eq. (2.13) of [8] as (—for p and + for w)

T' (q') =4
m2 m2N Au+ + ™NAu+
2q2 6Q4 2q + 4 8 (6)

where ( )iv denotes the spin-averaged nucleon matrix el-
ement, and Qs+ and Q+ are the scalar fourquark op-
erators familiar in the @SR's for the p and w mesons:
Q,+ = (up„»A u p dp„»A d)' and Q+ = (up„A u+
de~A d) Q"' '

qp~A q. In Eq. (6), A~+d—:A" + A"
(n = 2, 4) are related to the twist-2 operators and are
given as the nth moment of the parton distribution
function (q = u, d, s): (87 (qp„,D„, .D„„(qp,)))~
(—i) A i (p) (p„, . p„„—traces) and A'i (p)
2 f dx x i[q(x, p) + (—1) q(x, p)] with the renormal-
ization scale p. B; (i = lp, 2, 3) are associated with
the twist-4 matrix elements as (0„'„(p)) N = (p„p

m~g„„/4)B;(p—) with Oi+ = (g2/4)87 [(up„ps% up
d~~»~ d)(p ~ ~)1 &.'. = (g'/4)»[(u~p~ u+d~p~ d)
x g"' "

qp A q], and D„„=ig87 [u(D„,* G„p)p"»u+

I

(u ~ d)], where the color matrix A is normalized as

Tr(A A ) = 2b and the symbol 87 makes the opera-
tors symmetric and traceless with respect to the Lorentz
indices.

To get an expression for the V-N scattering length,
we first make a Borel transform of Eqs. (5) and (6) with
respect to Q2, and then eliminate the unknown param-
eter which determines the ratio between the coeFicient
of Ros (Q ) and 'R, (q ), using the sum rule obtained by
taking the derivative with respect to the Borel mass M .
We also eliminate the unknown coupling constant fv by
taking the ratio between the obtained sum rule and the
@SR expression for the vector current correlators in the
vacuum. We thus get an expression for the spin-averaged
scattering length av as

AM ,P/(~M') ~ tq/(nM')
(m~+ m „)(1+~)(1—e —so~~') + 6/M —c/M ' (7)

with
2mN +dr = mpgZ ~ ——mo+

27 ' 2

t = — '
((uu) (Gu) iv + (dd) (dd) nr ) ——

mdiv A4
81 6

m2~ ( 1 5
+ "

I B, + -B.+-B.
I4 8

b = 4' m (rim + dd) + ——'G ),3 7r

4487r su,
81

where ( ) denotes the vacuum condensate and So is the
continuum threshold in the vacuum sum rule. The fac-
tors n, P, and p appeared through the process of elim-
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inating the parameter which determines the ratio be-
tween the residues of RcIs(Q ) and 'R, (Q ), and they

aredefinedasn=l —e lo l~ (1+ 'M, ), p=
S'm, + So ~ —SojM o —(So — )jM

)
I

M, —(1+ M', )e l o l~ with m = mp ~. If we ignore
R, (Q2) from the beginning, the corresponding formula is

Mobtained by the replacement n ~ 1, P -+ 1 —e

p —+ 1. In Eq. (7), we have used the following relations
for the matrix elements as has been used in the study of
@CD sum rules in nuclear matter [9, 10]: (i) vrN o'-term
Z N is introduced through the relation mz(uu+ dd) N ——

2mNZ N. (ii) The nucleon mass in the chiral limit, mo,
is introduced in favor of (—'G )N through the @CD trace
anomaly: (—'G )N = —(16/9)mo. (iii) Factorization is
assumed for the vacuum four-quark condensates (Qs+)
and (Q+), as is usually adopted in the literature [1, 2].
(iv) Factorization is also employed to estimate the nu-
cleon matrix elements of the scalar four-quark operators
(Qs+) N and (Q+) N after making the Fierz transform [10],
I.e. ((~1'&~)') ~ ((eV)') = 2(V~)(eV) .

By repeating the same steps as above for J~, one gets
the spin-averaged P Nsca-ttering length as

VrM2 r,P/{crM2) + t,p/(nM )
3m2 (mN + mp) (]- + )(1 e—so/M ) 6m2/M2 + 5 /M4 c /Ms ' (8)

with

2 2 8r. = m, (ss) N ——mo + m
27

224m~, 5 4' (is) (is) N ——mN A481 3
, C.

+mN
I
B;+ —B;+

4 8 ) '

2
vr

b, = 8' m, (is) + ——G
3 7r

4487r n8
( )2

81

where the strange twist-4 matrix elements B; (i = 1—3).
are de6ned similarly to the case of the p and w mesons.
For the vacuum condensates and the quark masses in
Eqs. (7) and (8), we use the standard values at the renor-
malization scale p = 1 GeV [2]: n, = 0.36, m~ = 7
MeV, m, = 110 MeV, (uu) = {dd) = (—0.28 GeV)
and (ss) = 0.8(uu). With these vacuum condensates and
the continuum threshold So ——1.75 GeV for p, u and
So ——2.0 GeV for P, the experimental values for m~
are well reproduced. We thus fixed So at these values and
use m~ = 770 MeV and m4, = 1020 MeV in Eqs. (7) and
(8). As a measure of the strangeness content of the nu-
cleon, we introduce the parameter y = 2(is)N/((uu)N +
(dd)N) and write (is)N ——ymNZ N/m~ For the nucl.eon
matrix elements we use Z ~ ——45 + 7 MeV, y = 0.2,
and mo ——830 MeV obtained by chiral perturbation
theory [11]. Since we ignored the twist-2 gluon opera-
tors in Eqs. (7) and (8), we consistently use the lead-
ing order (I 0) parton distribution functions of Gliick,
Reya, and Vogt [12] to determine A,". + and A; (i = 2, 4).
It gives A2+" ——0.90, A4+" ——0.12, A2 ——0.05, and
A4 ——0.002 at p = 1 GeV . For the twist-4 matrix
elements B; and B;, we use our recent result [13] ex-
tracted &om the newest DIS data at CERN and SLAC.
It is based on the SU(2) flavor symmetry [i.e. , B;=0.
(i = 1—3)] and a mild assumption on the matrix ele-
ments invoked by the flavor structure of the twist-4 op-
erators. Both for the proton and the neutron, it gives
BI+ +B2/4 + 5Bs/8 = —0.24 +0.15 (—0.41 +0.23) GeV
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FIG. 1. The Borel curves for the p, w, +nucleon scattering
lengths. The dashed line denotes the one for p and u without
the twist-4 matrix elements in Eq. (7).

for the p (w) meson at p = 5 GeV [14]. [Note that our
p —N (N can be either proton or neutron) scattering
length corresponds to the isospin-spin averaged one. ]

Using these numbers for the matrix elements, the Borel
curves for the p, m, P-nucleon scattering lengths a~
[Eqs. {7)and (8)] are shown in Fig. 1. We determined the
values of So in order to minimize the slope of the curves
at 0.8 & M & 1.3 GeV . They are 3.32 GeV for p, 3.29
GeV for w, and 4.40 GeV for P. With the above pa-
rameters, r in Eq. (7) reads r = 0.04 —0.05+ 0.40 = 0.39
GeV from the first to the third terms. Thus r is to-
tally dominated by the twist-2 nucleon matrix element
A2+" and the canceling contribution from the first and
the second terms makes the ambiguity in Z ~ and mo
less important. The t term in Eq. (7) reads t = 0.42—
0.08 —0.11+0.07 (—0.18+0.10) = 0.23+0.07 (0.16+0.10)
GeV for p (u), which shows the contribution from the
twist-4 matrix elements is sizable. To get an insight into
the sensitivity of the results to the variation of t, we
also showed a~ without the twist-4 matrix elements in
t with So ——3.35 GeV . One sees that the inclusion of
B, reduces the ap by about 20% (30%) for p (w). With
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IIe (e, q) = if d,
' e*' ( (J„eT( )Je~(eO)))

Pf d3p+). (2 ) 2 o+i (~ q)
pol

(9)

By ignoring the Fermi motion of the nucleon, II M(~, q =
0) can be approximated near the pole position as

the uncertainty of B; in mind, we assign error bars as
a~ = 0.14 + 0.07 fm and a = 0.11 + 0.06 fm, taking
the values for a~ y around M = 1 GeV . For the case
of ay, the value of m, (ss)N governs the whole result be-
cause of large m„ i.e. , r, = 0.13 —0.05 + 0.04 = 0.12
GeV and t, = 0.066 —0.003+ (twist —4—:0) = 0.063
GeV from the first to the third terms in r, and t, .
Due to the uncertainty in m, (ss) N, we read, from Fig. 1,
ay ——0.035 + 0.020 fm. Some phenomenological analyses
on the nucleon form factor [15] and the nuclear force [16]
suggest quite a large Okubo-Zweig-Iizuka (OZI-) violat-
ing rf)NN coupling constant gyNN/g~NN 0.4. Equa-
tion (8) supplies a neat expression for the PN -+ PN in-
teraction strength in terms of the strangeness content of
the nucleon, showing the importance of m, (ss)N rather
than (sp„D s) N.

If we calculate the scattering lengths without 7Z, (q )
in Eq. (5), we get even smaller numbers for the scattering
lengths: a~ 0.1 fm, a 0.08 fm, and ay 0.01 fm
around M = 1 GeV. This way, the actual numbers for
a~ @ depend on the assumption made in the spectral
function, although their typical order of magnitude does
not change.

One might be surprised by the smallness of these scat-
tering lengths compared with a typical hadronic size ( 1
fm). From Eqs. (7) and (8), one sees av 1/(mN+mv ),
since r and r, are dominated by the third and the first
terms, respectively. If one applies the present method to
the axial vector correlator, one can easily get the pion-
nucleon scattering length in the isospin symmetric chan-
nel as a N (x mNZ N/f (mN + m ), which is the same
result as that of the current algebra [17]. (In the chiral
limit, a N = 0, since Z N = 0.) Therefore it is inter-
esting to observe that our method of deriving the vector-
meson —nucleon scattering length is a generalization of the
current algebra technique for the pion-nucleon scattering
length. For the vector meson case, the common factor
1/(mN + mv) makes av small. We believe this small-
ness of the V-N scattering lengths somehow sketches the
real situation, although the actual numbers for av are
not trustable because of the simplified form for the spec-
tral function in our calculation as was noted before. A
model calculation of the p-N scattering amplitude based
on an effective hadronic Lagrangian suggests a similar
small number for az [18].

Let us finally discuss the mass shift of the vector
mesons in the nuclear medium using the result for the
scattering lengths here. In the dilute nucleon-gas approx-
imation, the V-current correlator in the nuclear medium
can be written as

IINM( 0) f 2 4 qgqv + (PN)
pu ~, — VmV

(d —m v
2

(ee —me )')
1+ &(PN)

~2 m2 ~m2 (PN ) &

v v
(10)

where Am& ——12vra~pN(mN + mv)/mN with the nu-
cleon density p~. From this relation, Lm& can be viewed
as a shift of m& in the nuclear medium [19]. Our values
for a~ @ suggest that the effective mass for the vector
mesons increases by about 27—57 MeV for p, 20—48 MeV
for w, and 5—13 MeV for P at the nuclear matter density
pN = 0.17 fm [20]. (Note that the validity of the mass
shift discussed here hinges on the assumption that the
off-shell energy dependence and the momentum depen-
dence of the V-N scattering amplitude is weak within
the range of the nucleon's Fermi momentum. )

The authors of Ref. [10] applied the QSR method to
study mass shifts of the p, (ir, and P mesons in the nu-
clear medium. Although their approximation in the OPE
side of the correlation functions is essentially the same
as ours, Eq. (9), they found a serious decrease of these
vector meson masses in nuclear matter. Here we clarify
the origin of this discrepancy. In the recent literature
of the QSR method in the nuclear medium for baryons
and mesons [9, 10], the common starting point is that the
density dependence of correlation functions is ascribed to
the density-dependent condensates:

II" (q pN) = ) .&'(q p)(&'(p))~

= ('()a)) + (&'(&))N + o(PN). (12)

As is easily seen by inserting Eq. (12) into Eq. (11), the
approximation for the condensate, Eq. (11), is equivalent
to the approximation, Eq. (9), for the correlator. There-
fore the density-dependent part of the correlator has to
be analyzed &om the point of view of the forward current-
nucleon scattering amplitude as was done in this paper.
In this approximation, what is relevant for the mass shift
is the double pole structure at the pole position appear-
ing in the forward amplitude.

To understand the difference between our result and
the one in [10], it is convenient to recall the QSR's for the
vector meson in the vacuum. In the vacuum, the vector
current correlator can be written as II„(q) = (q„q
g„„q )II(q ). As long as one uses a spectral function
with a single narrow resonance and the continuum, both
II(q2) and q2II(q2) can be used for the QSR analysis. The
formulas for the vector meson mass in the Borel sum rule
obtained. by using these two sum rules are, respectively,

where C;(q, p, ) and Q, (p) are the Wilson coeKcient and
a local operator, respectively, and we suppressed all the
spinor and Lorentz indices. In the dilute nuclear medium,
(D;((M))~~ has been approximated as

d p(&'(p)),.= (&'(~)) + ) . ..„.(p I&'(p) Ip )
pol
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mv (1+ —) [1 —(1+ So/M')e — ~
]
—D4/M'+ D, /M'

M2 (1+ —') [1 —e s. /—m'] + D&/M4 —Ds/2Ms

2(l+ —)[1—(1+9 /M + 8 /2M ) 'i
]
—D /M

(1 + —') [1 —(1 + go/Mz)e —s, / ]
—D /M4 + Ds/M

(14)

where D4 and D6 are the sums of the dim=4 and dim=6
condensates, respectively. Both sum rules give the right
amount for mv. However, one should note that the sign
of the power correction due to the condensates is oppo-
site between the two sum rules. Thus the shift of the
condensates due to medium effects [the second term of
Eq. (9) or Eq. (12)] is expected to cause opposite physical
efI'ects depending on which sum rule one uses. The au-
thors of [10] analyzed II (io, O) = II "(u, 0)/( —3wz),
with a simple pole ansatz for the vector meson (together
with a scattering term) in the spectral function, which
picks up the same efI'ect of the shift of the condensate
as Eq. (13). On the other hand, if we recognize that the
second term in Eq. (9) is associated with the V Nfor--
ward amplitude through Eq. (2), we can easily see that it
is io II M(io, 0) which has to be analyzed with a simple
pole ansatz in the order O(piv) as is shown in Eq. (10).
In this case, the vector meson mass receives the efr'ect

of the change of the condensate as is expected from the
formula Eq. (14). In IIN (io, 0), the density-dependent
part appears as a form of (p~/2m~)T(io, 0)/w, which
brings a factor Arnv(m&/Q —) (Q = —A@2 ) 0) instead
of Am2& in the first line of Eq. (10). In this case, due
to the additional factor 1/Q, the double pole term can
not be incorporated into the mass shift. Thus the use of
Eq. (13) in the nuclear medium is simply wrong. There-
fore an inadequate form of the spectral function in [10]
led to a fictitious "negative" mass shift. Since the second
term in Eq. (9) has a unique relation with the V-N T
matrix around the pole position as is shown in Eq. (2),
we believe that the mass shift of the vector mesons in the
nuclear medium in the context of the QSR's should be
understood as presented in this work.

Finally, we wish to make a comment on the speculation
on the in-medium behavior of the hadron masses existing
in the literature. From the finite energy sum rule analy-
sis, one gets the p meson mass as m~ Ix ](Qg)~ in the

[

vacuum. Since ~(gg)] decreases in the nuclear medium
according to the formula Eq. (12), one might naively ex-
pect mp would also decrease [21]. We have illustrated,
however, that a consistent organization of the QCD sum
rule d.oes not predict such a behavior. It would rather
support (within our crude approximation) another naive
expectation that a tendency of p-A~ degeneracy might
occur in the nuclear medium, since the application of
our method to the Aq meson gives decreasing m~, . We
also remind the reader that (1) i(@g)T ~

decreases as the
temperature (T) goes up, while all hadron masses stay
constant in the order O(T ) [22], (2) a consistent orga-
nization of the sum rule at finite temperature certainly
gives the same behavior [19] unlike the above naive ex-
pectation, and (3) this is because the pion-hadron scat-
tering length is zero in the chiral limit.

In conclusion, we have derived the p, io, P -nucleon
spin-isospin averaged scattering lengths a~ 4, from QCD
sum rules. We obtained very small positive numbers
(corresponding to the repulsive interaction) for a~
a~ 4, ~ I/(mdiv + m~ 4,), although the actual numbers
depend on the factorization assumption for the nucleon
matrix element of the scalar four-quark operator as well
as the simplified form for the spectral function. This re-
sult suggests a slight increase of these vector mesons in
the nuclear medium, which is contradictory to the previ-
ous result by Hatsuda and Lee [10]. We have clarified the
origin of this discrepancy and pointed out the problem
of the analysis in Ref. [10]. Details of the calculation will
be published elsewhere.
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