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Freeze-out conditions and pion spectrum in heavy-ion collisions
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Pion multiplicity and energy spectrum in medium energy heavy-ion collisions are analyzed in a
model with spherical expansion, resonance decay contribution, and chemical nonequilibrium efFects.
Fitting the data for central La+La collision at E& s = 1.35 GeV/nucleon, we find that the physically
reasonable freeze-out conditions require a strong collective motion to describe the pion spectrum
and a positive value of pion chemical potential to 6t the total pion multiplicity. The data do not
lend to conclusive evidence on the presence of A resonance at the freeze-out.

PACS number (s): 13.75.—n, 25.75.+r

I. INTRODUCTION

One of the central problems in the study of high energy
heavy-ion collisions is deducing the state of the system,
i.e. , the energy density, entropy, and temperature formed
in the process, from the observed final particle properties.
This can only be done by inference because the hot and
dense matter produced initially cools and expands con-
siderably before &eeze-out, namely, when the particles
Hy toward the detectors without further interaction. The
freeze-out stage of the system is most directly connected
to the experimental data. If the freeze-out characteris-
tics of the system can be determined from the observed
properties, the evolution history of the system may then
be reconstructed with the help of an appropriate model.

Pion production is a dominant feature in heavy-ion
collisions [1]. In the present study, we will limit our-
self to collisions with incident energy in the region of
Ei b = (1 —2) GeV/nucleon, where measurements were
done on both the pion multiplicity and spectrum. In this
energy region a rather complete set of experimental infor-
mation exists which contains the number of participating
nucleons in the collision, energy per nucleon, and number
of produced pions per participating nucleon. These data
permit us to use energy and baryonic number conserva-
tion laws. They in turn place strong restrictions on the
possible set of freeze-out parameters which would give
rise to a good Gt of the pion multiplicity and momentum
spectrum.

Glendenning [2] showed that the thermodynamical
model without collective motion overestimates the pion
multiplicity per nucleon in the initial energy range E~ b ——

(530 —1800) MeV/nucleon and that the expansion stage
of hadron matter should be taken into account. He
demonstrated, on the other hand, that a hydrodynami-
cal expansion up to physically reasonable values of the
freeze-out baryonic density p&

—— (0.5 + 0.2)po (po
f

0.16 fm is the normal nuclear matter density) leads
to too small values for the pion multiplicity. As will be

shown in this paper, this fact indicates the necessity of
introducing nonzero values for the pion chemical poten-
tial, as was suggested in Ref. [3].

The enhancement of pion spectra at low transverse mo-
menta, which was observed in CERN experiments at the
bombarding energy Ei b/A = 200 GeV [4] and in AGS
at Ei b/A = 14.6 GeV [5], also appears at medium initial
energies Ei b/A = (0.5 —1.8) GeV [6,7]. Several different
&eeze-out characteristics have been proposed to account
for this two-slope feature in the pion spectrum. Collective
How effects [8—10] and resonance decays [11—15] have been
considered with some convicting conclusions. Another
possible physical origin of the low-p~ pion enhancement,
that pions are strongly out of chemical equilibrium, was
suggested in Refs. [16,17] (see also Ref. [3]). It is sup-
ported by the hydrochemical model calculation [18] and
the relativistic quantum molecular dynamics calculation
[19]. Unfortunately, no attempt has been made to study
these three possible eKects, namely, the collective fI.ow,
resonance decays, and pion chemical nonequilibrium, at
the same time, nor has a complete set of experimental
observables been used.

It is hence of interest to pose the following question:
What can be concluded &om the experimental data on
both the pion multiplicity and pion spectrum about the
role and relative importance of the e8'ects of collective
flow, resonance decays, and pion chemical nonequilibrium
at the freeze-out stage7 As we will see, the simultaneous
consideration of both the pion multiplicity and spectrum
indeed helps us to establish unambiguously the presence
of collective How and nonvanishing pion chemical poten-
tial at the freeze-out.

In Sec. II, the formulas are given for the particle spec-
trum when the &eeze-out stage of the system is charac-
terized by the presence of collective motion, resonance
particles and chemical nonequilibrium. Section III con-
tains the results and discussions and we summarize in
Sec. IV.

II. FORMULATION OF THE MODEL

'Permanent address: Institute for Theoretical Physics,
252143, Kiev-143, Ukraine.

In the present study, we will not try to formulate
the model for the evolution of the fireball formed in
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the heavy-ion collision and find out the initial condi-
tions for this evolution. Instead, our aim is just to con-
struct physically reasonable freeze-out conditions, which
include thermal and collective motion, resonance decays,
and possible chemical nonequilibrium. In other words,
we want to answer the following question: What can we
learn from the experimental data on pion multiplicities
and pion momentum spectrum about the role and rel-
ative importance of the above three physical eKects at
the freeze-out stage of the fireball formed in relativistic
heavy ion collisions'

Assuming local thermal equilibrium, the momentum
spectrum for hadron species i in the rest frame of the sys-
tem element with volume LV* at constant proper time
is given as

dn'
d3p4

LV* d,

.' &'(@*)

where d;, p, , and m, are the degeneracy, chemical po-
tential, and mass of hadron i, respectively. E = (m~ +
p* ) ~, T is the temperature, q; = 1 for fermions and
—1 for bosons.

We are interested in the heavy-ion collisions at the ini-
tial bombarding energies Ei b = (1 —2) GeV/nucleon. In
particular, we shall fit the data [7] for central La+La col-
lisions at Ei b = 1.35 GeV/nucleon. Small values of the
system temperature at these initial energies simplify the
hadron chemical composition of the system. For exam-
ple, at the temperatures considered here Brown et al. [13]
found that the abundance of higher resonances is small
and their eÃect is thus not expected to be large. We will
hence take into account, apart from nucleons, only pions
and L resonances. All heavier mesons and baryons do
not play an important role in the formation of the pion
spectrum and pion multiplicity and we leave them out.
We have therefore d„= 3, d~ ——4, and d~ ——16 in Eq.
(1). Small initial energy gives us one more simplification:
simple spherical geometry of the final hadron state seems
to be justified by the experimental data on particle spec-
tra [7]. To begin with, we do not consider an electrical
part p of the chemical potentials and, therefore, do not
differentiate the m+, vr, vr isospin states of pion. The
role of electrical chemical potential introduced in Ref. [3]
will be discussed later.

The 4 finite decay width I' = 115 MeV will be taken
into account using the profile function [20]:

W(m) = ( 0(m —m~ —m )
I /2

m —m~2 + I'24'

Eq. (2). For example, the particle number densities are

d'
»'(»v') =

27r2

OO

S'd» f' I m,'+»'
I

(3)

fori = vr, N and

d~
P~(» Pa) =

2
dm W(m)

(4)

for the 4 number density.
The "chemical reactions" in our zrNL system are

(5)

Assuming chemical equilibrium for both of these reac-
tions, one obtains

with linear (n = 1) or quadratic (n = 2) dependence
of the collective velocity v on the radius r (B is the
fireball radius and 0 ( r ( R). Rewriting Eq. (1) in
the relativistic-invariant form [E = (m2 + p2)i~2, v =
v(r) r/r, p = (1 —v') '~']

dn, , dn;

p d p*
AV

(2~) s (& —p v) f, [~(& —p v)]

then for the total thermal particle spectrum from the
spherically expanding fireball with velocity function of
Eq. (7) in the fireball center mass frame we obtain

+P~ =P~ P~+P~ = V~+V~,
and consequently p = 0. These conditions can be, how-
ever, violated because, either the second reaction in Eq.
(5) ceases to be effective at small baryonic densities [2,
18], or the chemical nonequilibrium initial conditions for
the expansion process takes place, as seen in Ref. [19]. In
what follows we allow the possibility of nonzero values of
p, , i.e. , pions deviating from the chemical equilibrium.
It will be shown that p, ) 0 is essential to explain the
experimental pion multiplicity for physically reasonable
freeze-out conditions. For 4 chemical potential we as-
sume chemical equilibrium for the first reaction in Eq.
(5), i.e. , p~ = piv +»t, , and discuss other possibilities
later.

Assuming the thermal particle spectrum of Eq. (1) in
the rest frame of the system elements at constant proper
time, we superimpose the spherical collective (hydrody-
namical) motion in the form

where ( is the normalization constant

dNt" d,.

d3p 4~2

E —pv2;
p(E' —@vs)—p, ,exp

(8)

All quantities involving the 4 particles will be integrated
over the resonance mass m with the profile function in

We call this spectrum, which includes also the collective
motion, thermal, to distinguish it &om an additional con-
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dNthN=f d' i, ,* i, E;
dN'"

tribution (decay) to pion and nucleon spectra from the
4 decays.

The general formula for the particle spectrum in the
hydrodynamical model looks like [21)

dN; d;E ' = *
dry p f, (u"p), ), (9)

p 27l

where u" = p(l, v) is the four-velocity of the iluid el-
ement and do is the four-vector normal to the freeze-
out hypersurface Ey. Equation (1) in the rest frame of
the Quid elements corresponds to the assumption of a
constant "local-time freeze-out" (see Ref. [9(b)]). The
&eeze-out hypersurface is deGned then from our velocity
profile function (7) and Zy is a completely spacelike one.
This is a typical ansatz for a treatment of the hydrody-
namical evolution in heavy-ion collisions, see, e.g. , the
Bjorken one-dimensional scaling model [22]. A more rig-
orous approach requires finding the freeze-out hypersur-
face &om the solution of the hydrodynamical equations
with given initial conditions on the initial hypersurface
Z, . Zy should be then closed to Z, , and in general Zy
consists of both spacelike and timelike parts. To real-
ize this procedure, however, one needs to know the form
of Z; and the initial values of the hydrodynamical vari-
ables on it. They can be only obtained from the micro-
scopic model consideration of the "formation stage" of
the process of heavy-ion collisions before the local ther-
modynamical equilibrium is achieved. These initial hy-
drodynamic conditions are rather model dependent and,
in fact, arbitrary at the moment. Besides, the parti-
cle emission through timelike parts of the freeze-out hy-
persurface influences the hydrodynomical evolution, and
this inhuence should be included self-consistently into the
hydrodynamical problem as additional "boundary condi-
tions. " We intend to treat this problem of the hydrody-
namical approach in our future studies.

From the particle spectrum of Eq. (8) we calculate
total particle numbers and energies as

c.m. system of the expanding fireball (note that
Edn/dsp = E*dn/d p*), multiplication by the 4 spec-
trum (8) and integration over the 4 momentum and vari-
able 4 mass:

dN
dp

OO

dnxE
d'J

Representing E* in terms of variables in the c.m. frame

pa p

we have succeeded in doing the angular integration over
the directions of p~. Finally we obtain

dN "
p

OO m

2' o
dm W(m)—

p
dNth

z ( "p~)
where

(EE* ~ pp~ )

III. RESULTS AND DISCUSSIONS

In this section we analyze the experimental data
for La+La collisions at bombarding energy 1350
MeV/nucleon, which corresponds to 292 MeV kinetic en-
ergy per nucleon in the c.m. system. The experimental
value for the pion number per participating nucleon is
0.18 [7]. For a fixed value of freeze-out baryonic density

p&, we obtain then the following system of equations:

are de6ned by the limiting cases of L decays when the
pion momentum p* is, respectively, parallel and antipar-
allel to the 4 momentum p~. Similar expressions hold
for the delta decay contribution to the nucleon spectrum.

(10)
For the L particle we should include the additional inte-
gration over m with probability W(m).

To calculate the total pion momentum spectrum we
add the L decay contribution to the thermal pion spec-
trum of Eq. (8). Each 6 with mass m (m ) m~+m )
in the final state decays into a nucleon plus pion. In the
4 rest &arne, the decay products are distributed isotrop-
ically and the pion spectrum is

N„+ N~
N~+ Ng

0.18,

P~ = P~+ P»f

—m~ ——292 MeV, (12)

(14)

dn
d3p*

h(E* —E*),
4mp*

where the pion energy and momentum are defined by the
decay kinematic as

where N, and E; are given by Eq. (10). In Eq. (13), the
fact that each 4 will eventually decay into a nucleon plus
pion after freeze-out has been taken into account. The
total pion spectrum in our model is

m —m~+m2 2 2

2m
(Ee2 2

)
i/2

dN dN'" dN+
p d p d p

The pion spectrum from the decays of all deltas
are obtained. by Lorentz transformation into the

The experimental data for the vr spectrum are
parametrized by two exponential functions [7], as shown
in Fig. 1,
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TABLE I. Preeze-out parameters without collective mo-
tion [vp

——0 in Eq. (7)].

N
~ IF~il

~ j.0

j0 -I

10-4 i» i I i « i Ii ~iiIiiiiIiiiiI

4
g k

Jk

-8
JL

Pb /P&
f
0.3
0.5
0.7

T (MeV)
128.16
129.41
130.29

p,~ (MeV)
471.69
529.10
567.31

p, (Me V)
—302.47
—264.52
—243.14

tions of Eqs. (12)—(14)] for different freeze-out baryonic
densities are shown in Tables II and III. The comparison
of the pion spectrum (15) with the quadratic velocity
function to the experimental one (16) is shown in Figs.
2(a)—2(c). Similar fits are obtained with the linear veloc-
ity function.

Representing total particle (pion and nucleon) spectra
in the exponential form

0 i00 200 300 400 500 600

E|,i„(MeV) dN
const x exp

~d3p Tea' ) (17)

FIG. 1. Experimental pion spectrum of Ref. [7]. Dashed
lines are the two exponential functions of Eq. (16).

dK ( ( Ek;„i
+A2 exp I—

(16)

with Ti = 39 MeV, T2 = 80 MeV, and Ai /A2 = 3.65.
~e analyze the system (12)—(14) for three possible val-

ues of pb .'0.3pp, 0.5pp, 0.7pp. At fixed pb we solve thef
system of equations (12)—(14) numerically and find the
sets of thermodynamical parameters T, p~, p for a
given velocity distribution (7) with given vp. Then we
can calculate pion spectrum (15) and compare it with
the experimental one (16) to find the specific values of
vp and the corresponding sets of the thermodynamical
parameters which give the best fits to the experimental
pion spectrum.

As the first step of our analysis we show the necessity
of the collective motion to explain the experimental data.
Without collective motion, i.e., vp = 0, the solutions of
the system (12)—(14) are presented in Table I. One ob-
serves from Table I very large negative values for the pion
chemical potentials, which should be in the system in or-
der to fit the pion multiplicity data in Eq. (13). The
chemical equilibrium (y, = 0) thermodynamical model
without collective motion greatly overestimates the pion
number per nucleon (this is in agreement with Ref. [2]).
However, admitting negative values of p in the freeze-
out parameters, as of Table I, in order to get the right
total pion number we still have a completely wrong pion
energy spectrum: T = 130 MeV in the thermodynamical
system is much larger than the pion experimental slope
parameters in Eq. (16). It becomes evident that pion
slope parameters are the results of both thermal (with
much smaller temperatures than those in Table I) and
collective motion in the hadron gas system.

With the presence of the collective motion, the best
possible choices of the freeze-out parameters [the solu-

TABLE II. Preeze-out parameters with the linear velocity
function [n = 1 in Eq. (7)].

Pb /P&
f
0.3
0.5
0.7

Vo

0.635
0.625
0.620

T (MeV)
53.81
56.39
5?.52

p~ (MeV)
819.52
838.11
853.73

p (MeV)
40.00
44.90
48.66

we introduce an "effective temperature" T,g
= T,fr(Ek,„) which defines the slope of the particle spec-
trum as a function of Ek,„. The results for T,&(Ek;„)
and T,&(E ,i„) are shown in Fig. 3 for the freeze-out pa-
rameters from Tables II and III at pb = 0.5pp. Onef
observes that T & is essentially larger than T &. This is
because the collective motion afFects the heavier nucleons
more than pions. We see also that T,&, as a function of
Ek;„, exhibits different behaviors for linear (n = 1) and
quadratic (n = 2) velocity functions.

From Figs. 2(a) —2(c) one can see that the experimental
pion spectrum can be fitted with difFerent values of the
freeze-out baryonic density pb. The relative importance
of the A decay contribution increases with increasing pb.
The ratios of the total number of thermal pions (% ) to
the pion number &om A decays (N~) are 1.27 at 0.3pp,
0.79 at 0.5pp arid 0.57 at 0.7pp. Figures 2(a)—2(c) also
indicate that the 4 decay contributions to the pion spec-
trum enhancement at low Eg;„become more important
with increasing pbf.

In our consideration we use a Breit-Wigner form for the
A mass distribution in Eq. (2) with an energy indepen-
dent width I'. A phenomenological parametrization of
the 4 wid. th as a function of the pion momentum in Ref.
[12] gives the correct threshold behavior for the P wave-
4 resonance. It reduces the 4 decay contribution to the
low energy part of the pion spectrum and, therefore, re-
duces the low transverse momentum enhancement. To fit
the pion spectrum in this case we need to change slightly
our freeze-out parameters and obtain larger values for the
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FIG. 2. Solid lines correspond to pion spectrum (15) for the freeze-out parameters from Table III. Short dashed lines are the
thermal pion spectra (8) and long dashed lines are delta decay contributions (11) to pion spectra. The solid triangles represent
the experimental data as parametrized by Eq. (16). In (a)—(c), pf& ——0.3p0, 0.5po, and 0.7po, respectively

pion chemical potential.
It has been suggested in Ref. [23] that there should

be no 4 decay contributions to the pion spectrum. Pi-
ons &om the 4 decays thermalize by their subsequent
elastic collisions with nucleons and other pions. The ar-
gument for this was that the pion experimental spectrum
did not show the "delta decay peak. " We find that the
collective motion and L Gnite width smear out the pion
energy spectrum kom L decays and, therefore, we do not

50

see any "delta decay peak" in our calculations. On the
other hand, there are also no straight indications from
experimental data for the necessity of the 4 decay con-
tributions to the pion spectrum. To check this in more
detail we solve the system of equations (12)—(14) exclud-
ing A particles (we put d~ = 0). The results for the
&eeze-out parameters [the solutions of (12)—(14)] which
fit the pion spectrum (16) are presented in Table IV. The
pion spectrum (dN "/d p in this case) for p& ——0.5po is
shown in Fig. 4, where the agreement with data is ex-
cellent. We conclude, therefore, that the comparison of
our model calculations with experimental data gives no
definite indications of the presence of 4 particles at the
freeze-out.

In the physical picture without A particles at the
freeze-out we have essentially larger values of p (com-
pare the values of p in Table IV with those in Tables
II and III). Therefore, the effects of Bose statistics and
the possibility of different shapes of vr and sr+ spectra
suggested in Ref. [3] should be studied. To do this we
introduce the electrical chemical potential p, and define
the chemical potentials of pions, protons, and neutrons

0 I I I I I ~ ~

0 2OO ee e00

E~
SOO 1000 f200

(Mev)

TABLE III. Freeze-out parameters with the quadratic ve-
locity function [n = 2 in Eq. (7)].

FIG. 3. Effective "temperatures" (spectrum slopes) for
pion (lower lines) and nucleon (upper lines) spectra. The
solid and dashed lines correspond to freeze-out parameters of
Tables III and II, respectively, at p& = 0.5pp.

palp'f
0.3
0.5
0.7

Vp

0.750
0.740
0.735

T (MeV)
51.94
54.21
55 ~ 18

p," (MeV)
826.65
845.54
861.09

p (MeV)
46.70
52 ~ 19
56.16
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TABLE IV. Freeze-out parameters with quadratic veloc-
ity function [n = 2 in Eq. (7)] without A particles at the
freeze-out.

TABLE V. Freeze-out parameters for the system of equa-
tions (12)—(14),(17) with quadratic velocity function [n = 2

in Eq. (7)] without A particles at the freeze-out.

Pb /PO
f
0.3
0.5
0.7

Vp

0.76
0.755
0.745

T (MeV)
49.02
49.99
52.14

p, ~ (MeV)
841.87
865.31
877.36

p (MeV)
83.51
102.87
111.93

Pb /Pof

0.3
0.5
0.7

Vp

0.76
0.75
0.74

T
(MeV)
49.04
51.22
53.36

PN
(MeV)
847.45
867.23
879.?9

p~
(MeV)
82.28
98.53
107.75

Pe
(MeV)
—11.90
—12.31
—12.65

P7I+ = Pm + Pe) Pmo = P7r& P~ — = Pm Pe)

Pp = V~+ P. V = PX. (Is)

We solve now the system (12)—(14) (d + ——d 0 = d
1, d„= d = 2) excluding 4 particles (d~ = 0) and
adding one more equation,

Np+N + —N-
Np+ N„

57
139

for the ratio of the total electric charge Q to the to-
tal baryonic number B (this ratio coincides with its
initial value for La nuclei) . Freeze-out parameters
T, p~, p, p, [the solutions of Eqs. (12)—(14),(19)]
which give the best agreement with experimental vr

spectrum (16) are presented in Table V.
In Fig. 5 we show the vr spectrum for the freeze-out

parameters of Table V at pb ——0.5po (solid line) and com-f
pare it with its Boltzmann approximation, i.e. , g = 0 in
Eq. (1) (dashed line). Figure 6 shows the Bose enhance-
ment factor (see also Ref. [3]) which is the ratio of the
Bose to Boltzmann pion spectra of Fig. 5. We observe
that the essential part of the pion spectrum enhancement
at low Ek;„ is now due to Bose-statistic efFects.

Bose-statistic eÃects lead also to some difFerence in the
shape of vr and m+ spectra because of the difference

I

between p, — and p, + [see Eq. (1S)]. In the Boltzmann
approximation we would obtain only the different vr and
sr+ multiplicities but the same shape of their spectra.
The ratio of vr to sr+ momentum spectra is shown in
Fig. 7 for the freeze-out parameters from Table V at

p&
——0.5po. The asymptotic value of this ratio at largef

Eg;„can be calculated within Boltzmann approximation
and equals exp( —2p, ,/T) = 1.62. It is seen from Fig.
7 that this ratio increases at small Ek;„. As has been
suggested in Ref. [3], we observe a larger enhancement
at small kinetic energies for m than that for 7t+.

IV. SUMMARY

In summary, we have set out to determine the freeze-
out conditions of the fireball, formed in high energy
heavy-ion collisions, from experimental data. For this
purpose, we have formulated a model for the freeze-out
state of the system which includes three physical ingre-
dients: collective fiow, resonance decays, and chemical
nonequilibrium efFects. These features of the freeze-out
states are likely to be common to most of the heavy-ion
collisions taking place in a wide range of initial energies.
The model is used to analyze medium energy central col-
lisions at EI b = (1—2) GeV/nucleon for the following

10

N
~ W

1

65

g. i0 '

10

0 100 800 300 400 500 600

EI,I (MeV)

I I I I I I I I I I I I I I

100 200

EI (Me V)
300

FIG. 4. The solid line is the pion spectrum (8) with the
freeze-out parameters from Table IV at pb ——0.5pp.

FIG. 5. The solid line is 7r spectrum (8) with the freeze-
out parameters from Table V at p&

——0.5pp. The dashed line
corresponds to the Boltzmann approximation, i.e. , g = 0.
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FIG. 6. The Bose enhancement factor for m spectrum.

reasons. First, at these energies the data exist for both
the total pion numbers per participating nucleon and the
pion momentum spectra. This enables us to determine
essentially all the physically admissible sets of freeze-out
parameters. Second, the freeze-out stage of the system at
these initial energies is supposed to be relatively simple.
We can restrict our consideration to just a vrNL gas and
neglect all other heavier mesons and baryons. Further-
more, the system can be approximated with a spherically
symmetric geometry for the case of central collisions.

In the physically reasonable region of freeze-out bary-
onic density, p&

—— (0.5 + 0.2)po, we find it irnpossi-
ble to explain the pion spectrum in La+La collisions at
Ei b = 1.35 GeV/nucleon [7] unless a strong collective
fj.ow is present. The presence of this collective How fur-
ther requires positive values of the pion chemical poten-
tial in order to obtain the correct pion multiplicity. It
also leads to a strong difference between the pion and
nucleon "effective temperatures, " as shown in Fig. 3.

On the contribution of 4 decay to the pion spectrum,
we do not find any definite indication from the data about
its relative importance or even about its presence in the
pion momentum spectrum. We find that it is still possible

FIG. 7. The solid line is the ratio of a to a+ momentum
spectra for the freeze-out parameters from Table V at p~
0.5po. The dashed line corresponds to the asymptotic value of
this ratio which coincides with its Boltzmann approximation.

to give an excellent fit to the data in a model excluding
the 4's, as seen in Fig. 4. It requires instead a larger
value of p for the freeze-out stage. The enhancement
in the pion spectrum at small energies is, in this case,
connected with the Bose statistics. When the electrical
chemical potential is included in the analysis, a differ-
ence in the shape of vr and sr+ spectra at small energies
develops, as was suggested in Ref. [3].
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