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Staggering in low-spin nuclear spectra of p-soft or triaxial nuclei
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The p- or quasi-p-band energy staggering in low-spin, low-energy spectra of even-even nuclei
is discussed. The staggering indices of p-soft and triaxial nuclei are calculated in the interacting
boson model O(6) limit with three-body potential and general axially asymmetric rotor model with
P vibration, respectively. It is found that these staggering indices have opposite signs and provide
clear distinctions between y-soft and triaxial shapes. The experimental data of energy spectra of
140 of even-even nuclei in the mass region A = 64 to 200 are compared to the predictions for broken
O(6) symmetry with varying strength of the three-body interaction, and for the axially asymmetric
rotor model with varying p dependence. The results show that most nuclei with clear staggering
are p soft or p unstable, but a few may be slightly triaxial, and that almost all the axial nuclei are
slightly p soft, some of them exhibiting shape transitions from axial to p-soft to triaxial shape with
increasing angular momentum.

PACS number(s): 21.10.Re, 21.60.Fw, 21.60.Ev

I. INTRODUCTION S(I) = 1 —R(E,)/a(E, ),..., ,

Il(Er) = 2(Er —El ~)/(Er —Er 2)- (1b)
(1c)

It is well known that the signature splitting eKect in
the rotational band is an important structural indicator
in the study of rotational alignment in high-spin states
[1]. The same effect is referred to as energy staggering in
the p or quasi-p band in low-spin, low-energy states of
O(6)-like nuclei [2], or O(5) p-soft nuclei [3]. The energy
staggering is also present in the spectra of triaxial nuclei
but with an alternative sequence. Recently, the question
of whether axially asymmetric atomic nuclei are p soft
or p rigid (triaxial) has been discussed by Zamfir and
Casten [4]. They work in the interacting boson model
(IBM) O(6) limit with a cubic term [5] for p-soft nuclei
and in the Davydov model [6] for triaxial nuclei. They
use staggering indices S(J,J —1,J —2) defined as

where R(Er), t, is B(Er) for a rigid axial rotor, given by
I/(I —2). Evidently, for an ideal axial rigid rotor S(I) =
0 for all I. S(I) have positive or negative values depend-
ing on the pattern of the energy staggering as shown in
Fig. 1. If a p band contains levels arranged in almost de-
generate couplets as 2+, (3+, 4+), (5+, 6+ ), (7+, 8+ ), . . . ,
then all the S(I,„,„) ) 0 and S(I gg) ( 0. This
staggering pattern is a prediction for the p band in
the p-unstable O(6) limit or in O(5) symmetry of
the IBM. In contrast, if the staggering has the pat-
tern 2+, 3+, (4+, 5+ ), (6+, 7+), (8+, 9+), . . . , then all the
S(I,„,„) ( 0 and S(I gg) ) 0. This is just the case for
the p band of a triaxial rotor. In both cases S(I) are

S(J,J —1,J —2)

[(EJ EJ—1) (Ej—1 EJ—2)]/E2g (1a)

as useful signatures that clearly distinguish p-soft and p-
rigid potentials. They have examined the values of the
staggering indices S(4,3,2) and S(6,5,4) obtained from
the empirical levels of even-even nuclei with Z & 30, and
concluded that nuclei with substantial asymmetry were
found to be p soft in the low-energy region, showing no
evidence of p rigidity [4).

It is the purpose of this work to indicate whether the
above conclusion will be changed when we take into ac-
count the experimental level data up to spin I = 12 and
work in a more general broken O(6) symmetry of IBM1
with three-body potential [7] for p-soft nuclei and in a
general asymmetric rotor model with rotation-vibration
interaction [8] for p-rigid nuclei. In this work we adopt
the following staggering index, which has opposite sign
to that used by Casten et al. [9]:
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FIG. 1. Behavior of staggering indices S(I) for two kinds
of energy spectra with significant staggering, showing exactly
opposite zigzag phases.
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( h2 52 )=
(4J +4J l( '-

8(J, (6a)

y„M = ) A~ (p) ~IMK),

0, 2, 4, . . . I for even I
, 4, 6, . . . I— )

, . . . , I —1 for odd I,

(7a)

(7b)

JA,, = Jo sin (p —k2vr/3), k = 1 2 3) ) 7 )

and the eieigenfunetions are

(6b) where ~IMK are unctions of the axial ro tor.

p by
i onian H arare given in

(IMK'~H~IMK) = a

[(I+K)(I—K+1 I+l I+K

~+, + —
~
[(I K)(I—+K+ i+1 I —K —1—i)(I+ K+ 2)]'~'

TABLE I. E gy spectra of t 'Ener
f 5' , in units of 5

or ay for
pi

10 15'
Gg

20 25 30'

g.s. band
2+
4+
6+
8+
10+
12+
p band 1
2+
3+
4+
5+
6+
7+
8+
9+
10+
11+
12+
p band 2
4+
5+
6+
7+
8+
9+
10+
11+
12+
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108.737
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III. DISCUSSION: IS THERE TRIAXIALITY
IN LOW-SPIN LOW-ENERGY STATES OF

NUCLEI?

It is evident from Fig. 2 that for a p-soft rotor the in-
dices S(I) for even I are positive at P = 0 and decrease
with increasing parameter P, and finally become negative
with P greater than some Bxed value depending on I. In
contrast, the indices S(I,„,„) for a p-rigid rotor are al-
ways negative and the absolute values are increased with
increasing p. But when the vibration-rotation coupling
is considered S(I) for even I may become positive if the
parameter 6 is greater than certain values, while S(I) for
odd I are still positive, as shown in Fig. 4. So we can-
not undoubtedly distinguish a p-soft and 7-rigid rotor
according only to the value of S(4). We need a group of
S(I) or the zigzag plot of S(I) for this purpose. In fact,
the zigzag patterns of S(I) for the O(6)+Vs model and
the general triaxial rotor model are opposite in two re-
spects (see Fig. 5): the former has positive zigzag phase
and converges slowly as I increases for fixed parameter
P; while the latter has negative zigzag phase and diverges

1, 0
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0. 2-

-0. 2-

-0 4-

-0 6"
l

I I I I I I I

4 5 6 7 8 9 10 ll 12
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FIG. 5. Zigzag patterns of S(I) for broken O(6) symme-

try with three-body potential and the general triaxial rotor
model with vibration-rotation interactions. 0 ~ Axial ro-
tor, A = 60, B = 0.15; ~ ~ broken O(6) symmetry with

Vp B —62, C = 12, P = 1.5; o----o triaxial rotor, p = 20',
6 = 0.003.

TABLE II. Candidates for triaxiality in low-energy low-spin states, and two examples of the
axial rotor that are slightly p soft, nuclei Dy and Er.

Nuclide
78G
78K

80K

98R

164D

170E

170Hf
180Hf

186yy
'"Pt
192O

192pt

194pt

162D a

162Era,

2.54
2.46

2.33

2.14

3.30

3.30

3.31

3.19
3.31

3.24
2.56
2.82

2.48

2.47

3.29

3.23

0.0893
0.0237

0.0454

0.0261

0.0042

0.0085

0.0023

0.0002
0.0067

—0.0019
0.0340
0.0065

0.0086

0.0294

0.0061

0.0007

S(4)
S(5)

—0.043
0.256

—0.045
0.296

—0.061
0.479
0.055
0.023

—0.007
G.003
0.009
0.040

—0.059
—0.017
—0.201

0.202
—0.008
—0.098

0.088
0.071
0.167
0.099
0.116
0.159

0.007
0.003
0.030

—0.002

S(6)
S(7)

0.078
0.031
0.143
0.001

—0.308

—0.012

—0.002

—0.046
0.165

—0.062
0.193

—0.063
0.282

—0.125
(0.243)

0.014
—0.002

0.041
—0.016

&(6)
S(9)

—0.026
0.131
0.068

—0.201

—0.241

(—0.153)

0.024
—0.012

0.076
—0.062

S(10)
S(11)

—0.124

0.046
—0.039

0.147
—0.132

Ref.

[12]
[»1

[14]

[15]

[16]

[16]

[16]

[17]
[16]

[16]
[18]
[19]

[19]

[20]

S(12)
S(13)
0.156

—0.205
0.135

Data are taken from Ref. [23].
Numbers in parentheses are not undoubtedly determined.
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The energy spectra &om which the zigzag plots can be
drawn for axial, p-soft, and triaxial rotor are

EI = 13.74I(I + 1) —0.0073[I(I + 1)]

EI = 39.22m(w + 3) + 1.60I(I + 1)
—0.711([4&(w + 3)] + [I(I+ 1)] j/(14)

EI = 20.74sl(1 —0.000 88sl), p = 12.52',

respectively. On the other hand, the p-transition ener-
gies in the yrast band exhibit an anomalous decrease,
which leads to a backbending J/h2-(Ru)2 plot as shown
in Fig. 6, at I = 16 or excited energy E 3400 keV.
This energy is just inside the region in which the zigzag
phase for S(I) is of opposite sign from positive to nega-
tive. So we believe that there is indeed a kind of shape
transition &om axial passing through p-soft to triaxial
shape in nucleus Er with increasing I.

Two examples of axial nuclei that are slightly p soft
(~s2Dy and ~s Er) are also listed in Table II. It is a general
rule that the p softness increases with increasing I for
axial nuclei as shown by nuclei 162Dy and 162Er. This
means that when the angular momentum I is greater
than a cetain value the axial shape will change to a p-
soft shape. How to explain this shape transition and that
&om p-soft to trixial shape using a microscopic theory is

a very interesting subject. We are quite sure that certain
dynamic effects should be contained in such a theory.

IV. SUMMARY

We have studied the behaviors of the staggering in-
dices S(I) in the axial and triaxial rotor model both with
vibration-rotation interactions as well as in the broken
O(6) symmetry of the IBM1 with a three-body poten-
tial. It has been found that the zigzag phases of p-soft
and p-rigid rotors are exactly opposite, while no zigzag
behavior appears in an S(I) Iplot -of the axial nucleus.
Thus we use zigzag plots of S(I) to clearly distinguish
p-soft and triaxial shapes of nuclei. The zigzag plot is a
more effective signature of p softness or triaxiality than
single S(4) or/and S(6). With this signature we have
examined the experimental data of about 140 nuclei in
the mass region A = 64—200, and found that most of the
nuclei are axial and slightly p soft, or p unstable, at least
p soft, but a few of them are triaxial in their ground or
near ground states, while some of them exhibit a kind
of shape transition from axial to p-soft or/and p-soft to
triaxial shape. Lastly, we should emphasize that in order
to distinguish undoubtedly p-soft and triaxial shapes of
nuclei more and more precise data of p or quasi-p bands
are need. ed.
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