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The - or quasi-y-band energy staggering in low-spin, low-energy spectra of even-even nuclei
is discussed. The staggering indices of y-soft and triaxial nuclei are calculated in the interacting
boson model O(6) limit with three-body potential and general axially asymmetric rotor model with
B vibration, respectively. It is found that these staggering indices have opposite signs and provide
clear distinctions between v-soft and triaxial shapes. The experimental data of energy spectra of
140 of even-even nuclei in the mass region A = 64 to 200 are compared to the predictions for broken
O(6) symmetry with varying strength of the three-body interaction, and for the axially asymmetric
rotor model with varying v dependence. The results show that most nuclei with clear staggering
are v soft or v unstable, but a few may be slightly triaxial, and that almost all the axial nuclei are
slightly « soft, some of them exhibiting shape transitions from axial to vy-soft to triaxial shape with

increasing angular momentum.

PACS number(s): 21.10.Re, 21.60.Fw, 21.60.Ev

I. INTRODUCTION

It is well known that the signature splitting effect in
the rotational band is an important structural indicator
in the study of rotational alignment in high-spin states
[1]. The same effect is referred to as energy staggering in
the v or quasi-y band in low-spin, low-energy states of
O(6)-like nuclei [2], or O(5) y-soft nuclei [3]. The energy
staggering is also present in the spectra of triaxial nuclei
but with an alternative sequence. Recently, the question
of whether axially asymmetric atomic nuclei are vy soft
or « rigid (triaxial) has been discussed by Zamfir and
Casten [4]. They work in the interacting boson model
(IBM) O(6) limit with a cubic term [5] for v-soft nuclei
and in the Davydov model [6] for triaxial nuclei. They
use staggering indices S(J,J — 1,J — 2) defined as

SJ,J -1, —2)
= [(EJ — EJ_l) — (EJ—l - EJ—2)]/E2g (13‘)

as useful signatures that clearly distinguish «y-soft and ~-
rigid potentials. They have examined the values of the
staggering indices S(4,3,2) and S(6,5,4) obtained from
the empirical levels of even-even nuclei with Z > 30, and
concluded that nuclei with substantial asymmetry were
found to be v soft in the low-energy region, showing no
evidence of + rigidity [4].

It is the purpose of this work to indicate whether the
above conclusion will be changed when we take into ac-
count the experimental level data up to spin I = 12 and
work in a more general broken O(6) symmetry of IBM1
with three-body potential [7] for -soft nuclei and in a
general asymmetric rotor model with rotation-vibration
interaction [8] for v-rigid nuclei. In this work we adopt
the following staggering index, which has opposite sign
to that used by Casten et al. [9]:

0556-2813/95/51(1)/141(6)/$06.00 51

S(I) =1- R(EI)/R(EI)rotor ) (1b)
R(Er) = 2(Er — Er-1)/(Er — Er-2) , (1c)

where R(E1)rotor is R(E]) for a rigid axial rotor, given by
I/(I-1). Evidently, for an ideal axial rigid rotor S(I) =
0 for all 1. S(I) have positive or negative values depend-
ing on the pattern of the energy staggering as shown in
Fig. 1. If a v band contains levels arranged in almost de-
generate couplets as 2%, (3%,4%),(5%,61), (71,8%),...,
then all the S(Ieven) > 0 and S(Ioqa) < 0. This
staggering pattern is a prediction for the -« band in
the ~v-unstable O(6) limit or in O(5) symmetry of
the IBM. In contrast, if the staggering has the pat-
tern 2%,3% (4%,5%),(67,77),(8%,9%),..., then all the
S(Ieven) < 0 and S(Ioqa) > 0. This is just the case for
the v band of a triaxial rotor. In both cases S(I) are
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FIG. 1. Behavior of staggering indices S(I) for two kinds
of energy spectra with significant staggering, showing exactly
opposite zigzag phases.
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oscillating with spin I, but with exactly opposite peaks
and valleys (zigzag behavior) as shown in the lower part
of Fig. 1. For convenience we say that S(I) has positive
zigzag phase if all S(Ieven) > 0, or has negative zigzag
phase if all S(Jleven) < 0.

II. MODEL DESCRIPTION OF ENERGY
STAGGERING

As mentioned above the energy staggering of y-soft and
v-rigid nuclei is different. First, we study --soft nuclei in
our broken O(6) symmetry of the IBM1 with three-body
potential [briefly described as broken O(6) symmetry in
the following] [7]. The Hamiltonian reads

H = AC30(6) + B'Cz0(s) + C'Ca0(3) + V5 , (2a)
Vi = P(ng — 2)[(d'd)@ - (d1d)® — ny] , (2b)

where C30(), C20(5), and C20(3) are the quadratic
Casimir operators for O(6), O(5), and O(3) groups, re-
spectively, V3 is the three-body potential, and P its
strength parameter. The Hamiltonian in Eq. (2) can
be diagonalized in O(6) eigenfunctions |[N],o,T,v, LM).
Then we obtain an approximate formula for the energy
spectra with three parameters (7],

E;=Br(t+3)+CI(I+1)
—P[167%(1 + 3)® + I*(I + 1)?]/N? , (3)

where 7 is the quantum number of group O(5), I the
angular momentum, and N the boson number; B, C, and
P are free parameters, whose values can be determined
by fitting the experimental energy spectra. In order to
study the general behavior of the energy staggering in
the spectra from Eq. (3), we consider an example. Let
B =62keV, C =12 keV, and N = 8; the energy spectra
up to I = 12 of the ground state band and the v band can
be calculated for different values of parameter P between
0 and 12 keV. Then with the spectra of the v band we
get S(I) as functions of the strength parameter P. The
calculated S(Ieven) for I = 4-12 are given in Fig. 2.
Now for triaxial nuclei we consider the general axi-
ally asymmetric rotor model with rotation-vibration in-
teraction [8,10] (briefly described as the asymmetric ro-

0.8 B=62 C=12 N=8

s(I)

FIG. 2. Staggering indices S(Ieven) of a y-soft rotor as func-
tions of the strength parameter P for a three-body interaction.

tor model in the following). It is assumed in this model
that the rotational constants A, B, and C, which depend
on the moments of inertia J4, Jg, and Jg, are ordered
according to [10]

A= ﬁ/47l'JA z B = ﬁ/47I'JB g C = ﬁ/47I'JC 5

and the energy Ej of the n level with angular momentum
I is given in units of AC by

Ey(k, I, A/C) = eo — bl , (4a)
where

eo(k,In, A/C)
= I(I+ 1){B(k, I) + (A/C)[1 - B(k, I.)]} , (4b)

k=(2B—-A-C)/(A-C) . (4c)

The functions B(k,I,,) are tabulated in Ref. [11]. It can
be shown that for the levels 2t Eq. (4b) gives the same
energies as those given by

E; = 9R%[1 £ 4/1 — 8 5in® 37/9]/(Josin®3y) . (4d)

When we precisely solve the eigenvalue problem of the
asymmetric rotor we obtain

9h%[1 £ \/1 — 8(sin? 3y + 4 sin®y — 4 sin® v)/9]
(Jo sin® 37) .

E, =

(5)

For very small asymmetric angle -y terms containing sin®~y
and sin®y may be omitted so that Egs. (5) and (4d) give
the same values. But for v = 30° there is an energy devi-
ation amounting to ~ 10% between Eq. (4d) and Eq. (5).
In order to obtain more precise solutions of the asymmet-
ric rotor we adopt the following diagonalization method.
The Hamiltonian of the axially asymmetric rotor reads

s(I

10 15 20 25 30

FIG. 3. Staggering indices S(Ieven) of a v-rigid rotor for
I = 4-12 as functions of the asymmetric angle ~.
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Jx = Josin®(y — k27/3), k=1,2,3, (6b)

and the eigenfunctions are

br.m =Y AR (VIMK) , (7a)
K

2,4,6,...,I —1 forodd I, (7b)

K= 0,2,4,...,I forevenlI ,
4,6, ..
where [IMK) are the wave functions of the axial rotor.

The matrix elements of the Hamiltonian H are given in
units of A%/Jp by

' - 1(Jo  Jo K24+ Jo g
(IMK'|H|IMK) _JK,K{4 (J1 + Jz) I +1) - K+ 22K }
+5K,,K_2% <Ji + Ji) (T+K)(I-K+1)(I+K-1)(I-K +2)]"/?
1 2
Ji 1 1
+5K,,K+2?° (J— + J_z) (I-K)(I+K+1)I-K-1)(I+K+2)]Y2. (8)
1

After completing the establishment and diagonalization
of the energy matrix for given angular momentum we
obtain the energies €7, and the wave functions ¥ s,
where n distinguishes among the different states with the

TABLE 1. Energy spectra of triaxial rotor e; for

~v = 10°-30° in steps of 5°, in units of ﬁ,z/Jo.
€r
0% 10° 15° 20° 25° 30°

I”r
g.s. band
2t 4.253 4.596 5.124 5.861 6.628
4t 14.154 15.179 16.500 17.763 18.871
6t 29.649 31.431 33.114 34.381 35.849
g+t 50.655 52,925 54.334  55.493 57.262
10t 77.061 79.275 80.004 80.980  82.968
12+ 108.737 110.241 110.084 110.755 112.889
v band 1
2t 67.747 31.404 18.876 13.432 11.372
3+ 72.000 36.000 24.000 19.292 18.000
4t 77.699 42.305 31.577 29.516 32.031
5t 84.753 49.751 39.215 36.276 36.000
6t 93.380 59.681 52.212 54.448 58.529
7+ 103.143  69.423 60.395 58.344 58.000
8+ 114.846 83.780 80.620 85.690  90.000
9t 127.138 94.814 86.840 84.643 84.000
10* 142.167 114.746 115.879 121.646 126.086
11+ 156.692 125.675 117.961 114.985 114.000
12+ 175.426 152.507 156.831 162.016 166.600
~ band 2
4t 268.148 122.516 71.923 49.183 39.098
5+ 275.248 130.249 80.785 60.186 54.000
6t 283.771 139.547 91.505  73.926  74.667
7t 293.718 150.417 104.058 89.010 88.000
gt 305.091 162.876 118.682 109.080 116.026
9t 317.893 176.918 134.839 125.596 126.000
10* 332.125 192.601 153.887 153.625 162.441
11* 347.789 209.837 172.991 167.890 168.000
12+ 364.891 228.852 197.496 204.839 213.562

[

same I. Then the energy of the I, level in the general
asymmetric rotor model can be rewritten as

Eln(b) =a€1n(1—b51") N (9)

where a = h2/Jp and b can be used as free parameters.
By the way, we point out that the energies of levels 27
and 27, €2, and €3,, obtained by diagonalizing the matrix
Eq. (8) for I = 2 are exactly equal to that given by Eq. (5)
for any . In Table I the energy spectra of the triaxial
rotor, in units of (A2/Jo), obtained by the diagonalization
method are listed for v = 10°-30° in steps of 5°.

With the energies listed in Table I we can easily get
the staggering indices up to S(12) for different . The
calculated S(I) for even I are given in Fig. 3. In order
to see how the vibration-rotation interactions influence
the behavior of the staggering indices, we have also cal-
culated S(Jeven) for I = 4-12 at different values of the
parameter b. The results are shown in Fig. 4.

0 5 1‘0 1‘5 2‘0 2‘5 30
10*b
FIG. 4. Staggering indices S(Jeven) of a «-rigid rotor for

v = 15° as functions of the vibration-rotation coupling pa-
rameter b.
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III. DISCUSSION: IS THERE TRIAXIALITY
IN LOW-SPIN LOW-ENERGY STATES OF
NUCLEI?

It is evident from Fig. 2 that for a -y-soft rotor the in-
dices S(I) for even I are positive at P = 0 and decrease
with increasing parameter P, and finally become negative
with P greater than some fixed value depending on I. In
contrast, the indices S(Ieven) for a 7-rigid rotor are al-
ways negative and the absolute values are increased with
increasing . But when the vibration-rotation coupling
is considered S(I) for even I may become positive if the
parameter b is greater than certain values, while S(I) for
odd I are still positive, as shown in Fig. 4. So we can-
not undoubtedly distinguish a v-soft and ~v-rigid rotor
according only to the value of S(4). We need a group of
S(I) or the zigzag plot of S(I) for this purpose. In fact,
the zigzag patterns of S(I) for the O(6)+V3 model and
the general triaxial rotor model are opposite in two re-
spects (see Fig. 5): the former has positive zigzag phase
and converges slowly as I increases for fixed parameter
P; while the latter has negative zigzag phase and diverges
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§(I)

FIG. 5. Zigzag patterns of S(I) for broken O(6) symme-
try with three-body potential and the general triaxial rotor
model with vibration-rotation interactions. I B Axial ro-
tor, A = 60, B = 0.15; e e broken O(6) symmetry with
Vi, B =62, C = 12, P = 1.5; o----o triaxial rotor, v = 20°,
b = 0.003.

TABLE II. Candidates for triaxiality in low-energy low-spin states, and two examples of the
axial rotor that are slightly ~ soft, nuclei **2Dy and '%2Er.

S(4) S5(6) S(8) S(10)
Nuclide Ry A S(5) S(7) 5(9) S(11) Ref.
"8Ge 2.54 0.0893 —0.043 [12]
"8Kr 2.46 0.0237 0.256 0.078 —0.026 —0.124 (13]
—0.045 0.031 0.131
80Kr 2.33 0.0454 0.296 0.143 0.068 [14]
—0.061 0.001
°8Ru 2.14 0.0261 0.479 —0.308 [15]
0.055
160Gd 3.30 0.0042 0.023 —0.012 [16]
—0.007
1é4py 3.30 0.0085 0.003 —0.002 [16]
0.009
170Er 3.31 0.0023 0.040 —0.046 (16]
—0.059 0.165
1TOHf 3.19 0.0002 —-0.017 17
180 f 3.31 0.0067 —0.201 [16]
0.202
186\ 3.24 —0.0019 —0.008 [16]
186py 2.56 0.0340 —0.098 [18]
1920g 2.82 0.0065 0.088 —0.062 —0.201 [19]
0.071 0.193
192py 2.48 0.0086 0.167 —0.063 —0.241 [19]
0.099 0.282
194py 2.47 0.0294 0.116 —-0.125 (—0.153)® [20]
0.159 (0.243)
S5(12)
S(13)
162pye 3.29 0.0061 0.007 0.014 0.024 0.046 0.156
0.003 —0.002 -0.012 —0.039 —0.205
162F 2 3.23 0.0007 0.030 0.041 0.076 0.147 0.135
—0.002 —0.016 —0.062 —0.132

*Data are taken from Ref. [23].

PNumbers in parentheses are not undoubtedly determined.



rapidly as I increases for fixed parameter b. For compar-
ison we also give the S(I)-I plot for the axial rotor model
with vibration-rotation interactions (briefly described as
the axial rotor model in the following), in which the en-
ergy spectra have the form

E;=AI(I+1)-BI*(I+1)*%. (10)
It must be emphasized from Fig. 5 that for the axial rotor
all the S(I) are positive and small in magnitude and show
no zigzag behavior, but increase slowly with increasing 1.
Of course S(I) = 0 for all I if B = 0 in Eq. (10), as men-
tioned above. Evidently, zigzag plots are more effective
signatures of « softness or triaxiality than S(4) and/or
S5(6). Thus when we have sufficient experimental data of
v bands from which the S(I)-I plots can be obtained we
may clearly distinguish ~y soft, triaxial, and axial rotor.
Is there triaxiality in low-spin low-energy states of nu-
clei? A negative answer has been given by Zamfir and
Casten as mentioned above [4]. But they have only con-
sidered S(4) and in some cases S(6); we want to work up
to spin I = 12 to see what will happen. For this purpose
we have examined the experimental data of about 140
nuclides, for which the data of v bands are available, in
the mass region A = 64-200. We have found that (1)
most of the nuclei with clear staggering in mass region
A = 64-140 are v unstable, at least « soft; (2) almost all
the axial nuclei in mass region A = 140-200 are slightly
v soft; (3) a few of the nuclei may be slightly triaxial in
their ground states; and (4) some nuclei exhibit a kind of
shape transition from < soft to triaxial, even from axial
to y-soft to triaxial shape with increasing angular mo-
mentum I. In Table II all the candidates we found for
the triaxial rotor in low-energy low-spin states are given,
where R4 = E4/E2 and A = (E21 +E22 ——l’-/‘;;)/(.Ez1 +E22).
We should point out that A = 0 not only for the triax-
ial rotor but also for all ideal rotors with energy spectra
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E oc I(I+1). So the indices A are given not as a signature
of triaxiality but as a measure of the spectra deviating
from the law I(I + 1).

Only five nuclei, that is, 78Ge, 7OHf, 180Hf, 186W,
and 86Pt (see Table II), have negative S(4), and their
absolute values are small except for 8CHf which has
S(4) = —0.2 and S(5) = +0.2; they may be candidates
for triaxiality in their ground states. Some discussion
is appropriate of nuclei *7°Hf and 86Pt. There are two
2% states that may be selected as 27 in "°Hf: 961.3
and 987.0 keV levels. If we take the 961.3 keV level as
the 2 state and the 987 keV level as the 2; state, then
A = 0.024 and S(4) = 0.081. If we take the 987 keV level
as a 2?7L state and the other as 2;, then A = 0.00019 and
S(4) = —0.017. A similar situation appears in the nu-
cleus 86Pt: when we take the 607.2 keV level as a 27
state, then A = —0.197 and S(4) = 0.243. When we
take the 798.5 keV level as a 27 state then A = 0.034
and S(4) = —0.098. We prefer to select the one which
gives the smaller A, because all other nuclei have very
small A.

Most of the nuclei listed in Table IT exhibit a kind of
zigzag phase transition in the spin I = 5-7 region. This
fact may be explained as a nuclear shape transition from
~-soft to triaxial shape. But the triaxial N = 76 iso-
tones 132Ba, !34Ce, 136Nd, 13%Sm, and %°Gd [21] have
not been confined in the spin region I < 8. A very in-
teresting example showing shape transition from axial to
~-soft to triaxial shape is provided by the nucleus 64Er.
The S(I)-I plot for the nucleus %“Er is given in Fig. 6
(experimental data are taken from Ref. [22]). It is evi-
dent that the S(I)-I plot can be clearly divided into three
sections: I < 8 with S(I) > 0, I = 9-14 with positive
zigzag phase, and I = 15-19 with negative zigzag phase.
The corresponding theoretical zigzag plots for axial, -
soft, and triaxial rotor are also given in the same figure.

FIG. 6. Zigzag phase transitions in the

1
0.2 \ ;E ] S(I)-I plot and the 2J/A%-(fiw)® plot for
ve = nucleus '®*Er. e e Experimental values
_ o O/l/\“l /\‘l\ / - [20,22]; m M axial rotor; ¥----V¥ v-soft ro-
> —e—e—t—a— d s tor; o o triaxial rotor.
w <] ) ° (‘, v ‘I‘V " )
70 G ! Vol
= 1 \ [
-0.2} & 50 ! Ve L
2, vl ! v V.
2 TR
-0.4 §4° N y i
v !
30 0.05 0.1
(io)? (MeV2)

4 5 6 7 8 9 10 11 12 13 14 15 16 17
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The energy spectra from which the zigzag plots can be
drawn for axial, y-soft, and triaxial rotor are

Er =13.74I(I + 1) — 0.0073[I(I + 1))? ,

Er = 39.227(7 + 3) + 1.60I(I + 1)
—0.711{[47 (7 + 3))* + [I(I + 1)]?}/(14)* ,

E; = 20.74e7(1 — 0.000 88¢;), ~ = 12.52° ,

respectively. On the other hand, the ~-transition ener-
gies in the yrast band exhibit an anomalous decrease,
which leads to a backbending J/A2-(fw)? plot as shown
in Fig. 6, at I = 16 or excited energy F ~ 3400 keV.
This energy is just inside the region in which the zigzag
phase for S(I) is of opposite sign from positive to nega-
tive. So we believe that there is indeed a kind of shape
transition from axial passing through v-soft to triaxial
shape in nucleus ®4Er with increasing I.

Two examples of axial nuclei that are slightly 7 soft
(1%2Dy and 82Er) are also listed in Table IIL. It is a general
rule that the v softness increases with increasing I for
axial nuclei as shown by nuclei *2Dy and %2Er. This
means that when the angular momentum I is greater
than a cetain value the axial shape will change to a ~-
soft shape. How to explain this shape transition and that
from ~-soft to trixial shape using a microscopic theory is

a very interesting subject. We are quite sure that certain
dynamic effects should be contained in such a theory.

IV. SUMMARY

We have studied the behaviors of the staggering in-
dices S(I) in the axial and triaxial rotor model both with
vibration-rotation interactions as well as in the broken
O(6) symmetry of the IBM1 with a three-body poten-
tial. It has been found that the zigzag phases of vy-soft
and ~v-rigid rotors are exactly opposite, while no zigzag
behavior appears in an S(I)-I plot of the axial nucleus.
Thus we use zigzag plots of S(I) to clearly distinguish
~-soft and triaxial shapes of nuclei. The zigzag plot is a
more effective signature of -y softness or triaxiality than
single S(4) or/and S(6). With this signature we have
examined the experimental data of about 140 nuclei in
the mass region A = 64-200, and found that most of the
nuclei are axial and slightly v soft, or v unstable, at least
~ soft, but a few of them are triaxial in their ground or
near ground states, while some of them exhibit a kind
of shape transition from axial to y-soft or/and y-soft to
triaxial shape. Lastly, we should emphasize that in order
to distinguish undoubtedly vy-soft and triaxial shapes of
nuclei more and more precise data of 4 or quasi-y bands
are needed.
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