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Comparison between nonlocal effects and coupled channels
in a simple nuclear fusion model
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It is discussed how the introduction of a nonlocal potential in the relative coordinate of a nuclear
collision described by a simple model Hamiltonian can also account for an enhancement in the
nuclear fusion cross section. The interplay between this effect and the channel coupling interaction
is studied in this simple model and their different contributions to the fusion cross sections are
analyzed.

PACS number(s): 25.70.3j

I. INTRODUCTION

In the past years much effort has been devoted to the
understanding of the fusion cross section in heavy-ion nu-
clear collisions at energies around and below the barrier
[1]. One of the most interesting features that appeared
in connection with the measured cross sections was that
the prevailing theoretical model of one-dimensional bar-
rier tunneling failed to describe the process [2]. This
failure of that simple model has motivated the study of
the introduction of the effects coming &om the presence
of other degrees of &eedom, besides that associated with
the relative motion of the colliding nuclei, in the calcu-
lation of the nuclear fusion cross section. In this connec-
tion the importance of considering the colliding nuclei as
complex systems with intrinsic structures to which the
relative motion must be coupled was soon recognized;
this will allow for the nuclear systems to vibrate and
exchange particles, for instance, before they fuse. There-
fore, in this kind of approach [3—5] the enhancement of
the nuclear fusion cross section can be accounted for by
considering the change caused by that coupling of the rel-
ative motion to the intrinsic structure in the total barrier
transmission function.

In a recent paper [6] the authors have drawn atten-
tion to still another quantum effect which can also ac-
count for an enhancement in the heavy-ion nuclear fu-
sion cross section. By considering the colliding nuclei as
complex fermionic structures it is possible to introduce,
in a phenomenological way, nonlocal terms of a short
range exchange nature which are essential in mean field
descriptions of such kinds of systems. Those nonlocal ef-
fects are simulated by a Percy-Buck-like nonlocal short
range potential [7,8] which, together with the remaining
terms of a nuclear Hamiltonian, describes the colliding
system. Furthermore, for simplicity, that nonlocal term
is treated in an adiabatic approximation and it is shown
that, to this order, the effective reduced mass which em-
bodies all the exchange nonlocal effects can account for
an enhancement in the transmission factor through the
barrier [6,9]. Such an eB'ect has been studied in some
cases and the nonlocality range parameter was axed by
fitting the fusion cross section of a system for which the

inclusion of all known channels was not able to account
for the experimental data [6] . The fitted value, 6 = 0.94
fm, is in agreement with the expected range for the ex-
change terms, as is well known &om mean field calcu-
lations [10,11], e.g. , the range of nuclear forces, and it
is also close to the result obtained by Percy and Buck
(6 = 0.85 fm) in their analysis of nucleon-nucleus scat-
tering [7]. The importance of considering this effect in the
fusion calculations was also stressed in that work since
nonlocal exchange terms will be always present in the de-
scription of collision processes, thus giving a background
contribution over which other effects may also appear.
In this sense, it was proposed that the starting point for
the description of fusion processes in this kind of simple
model is not just the one-dimensional barrier transmis-
sion as described for instance by Wong's formula [12],
but that modified by the inclusion of exchange nonlocal
effects.

In the present paper we intend to discuss the inter-
play between exchange nonlocal effects, introduced in the
same phenomenological way as we did before, without
discussing the results of some other treatment of nonlo-
cal effects in heavy ions [13,14], and channel couplings in
order to study how they compare in the fusion process.
To this end we will adopt a schematic model which is able
to exhibit the main features of the problem we want to
describe, and that has been already discussed in its prin-
cipal aspects in the literature [4]. This model describes
the coupling of the relative motion to a selected intrinsic
degree of &eedom through a Hamiltonian which allows
for a complete diagonalization of the coupling term in
the channels space and, thus, adapting it by introducing
nonlocal effects in the equivalent Schrodinger equation,
we are in a position to discuss the interplay between those
effects.

In Sec. II we present the coupled-channels model
Hamiltonian which also embodies the nonlocal interac-
tion term and we show that the nonlocal contribution
to the 6nal Schrodinger equation is only present in the
effective reduced mass of the colliding system. This al-
lows us to use the same method and approximations de-
scribed by Dasso et al. [4] to decouple the equations.
When one studies the solutions of the new equations one
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finds that the main contribution of the nonlocal effects
to the transmission factor stems from a modification of
the barrier curvature, in contrast to the channel coupling
effects whose dominant result consists in altering the bar-
rier height. In Sec. III we discuss the particular case of
a two-channel model in order to explicitly and quantita-
tively compare the contributions of the two effects to the
transmission factor and to estimate their roles in nuclear
fusion cross sections. Finally in Sec. IV we present our
conclusions.

II. COUPLED-CHANNELS AND NONLOCAL
EFFECTS

Let us consider a model Hamiltonian, associated to a
nuclear system consisting of two colliding nuclei, which
is expressed in terms of global collective coordinates
(qp) referring to the relative motion and a coordinate
( characterizing an intrinsic degree of freedom of the nu-
clei that is coupled to the relative motion. In its general
form, such a Hamiltonian can be obtained through the
Weyl-Wigner transformation [15]of a nonlocal kernel and
is written as

H(q, p, () = ba ( J e ~"H(q, v, k)dv,

where

the selected intrinsic degree of freedom. The term
V,„~(q, v, k) represents the interaction coupling the rel-
ative motion and the intrinsic degree of freedom and will
be treated below in a similar fashion as that discussed
by Dasso et al. [4]. As has been already shown [9], it
is possible to write the Weyl-signer mapped expression
for that Hamiltonian as

H(q p&) = „+).' „„p"V'"'(q)+V (q)
n=0

+V,),)(q, () + Hp((), (6)

where Vi l(q) is the nth moment of the nonlocal poten-
tial with respect to v.

In the power series term, only even values of n will
be present in our expression; otherwise the Hamiltonian
would be dissipative, and furthermore we will consider
that the first two terms already give the dominant con-
tribution to the model Hamiltonian. This assumption
corresponds to an adiabatic approximation and is valid
for pb/h ( 1. Thus, up to n = 2, we have

p'
H(q, p, () = . b

+ V"(q+ V~(q))
2)M q) b

+V.„&(q,() + Hp((),
where

v(v )) = v (' — ,~"(v))

H(q, v, k) = (q —v/2, k
~

H
~
q+ v/2, k) .

This approach of treating the proposed model Hamil-
tonian is particularly convenient because we want to con-
sider an schematic model for H(q, v, k) which embodies,
besides the terms taking into account the coupling of
the relative motion to the previously chosen intrinsic de-
gree of freedom, the nonlocal effects stemming from a
Percy-Buck-like nucleus-nucleus interacting potential [7].
This term is introduced so as to simulate nonlocal effects
originating from quantum correlations, e.g. , mainly the
nonlocality due to exchange effects [8]. We then write
H(q, v, k) in an explicit form as

62
H(q, v, k) = ——0"(v) + VNz, (q, v) + Vg(q, v)8(v)

2p,

+V,„)(q,v, k)h(v) + Hp(k)b(v) . (3)

Here p is the reduced mass of the relative motion, VNg
is the nonlocal potential written as a Percy-Buck-like in-
teraction [7],

VNr, (q, v) = V(q) exp ~—1 J' v')
6 vr

b

252
i1-' V"(.) i (8)

+V(q)+ V. (',6 + H. (i),

is an effective reduced mass, similar to that of Frahn
and Lemmer [16] which depends now on the nonlocal-
ity range. Hereafter Vi (q), the zeroth moment of
the nonlocal potential, will be identified as a standard
nucleus-nucleus attractive potential Viv(q) and Vg(q) as
the Coulomb interaction Vc (q). It is worth noting that
p(q;b) ~ p for Vi l(q) ~ 0 or b m 0, this being the
local limit [9,6] which also defines the asymptotic behav-
ior of the mass (q ~ oo). From Eq. (8) we see also
that this behavior of the effective reduced mass indicates
that the considered quantum exchange effects between
the two colliding nuclei will be relevant only around the
nonlocality range.

The extraction of the operator H corresponding to
H(q, p, (), Eq. (7), follows the standard technique of
the Weyl-Wigner quantum phase space formalism [17],
leading to

H- - =-' ' -+- ' -+-'"""'"=4 2 (. ~)' '" ~. ~)""2 ~. ~))

where 6, measuring the nonlocal range, will be considered
a &ee parameter, V~ is a local potential, and Hp(k), the
intrinsic Hamiltonian of the system, is associated with
the eigenvalue problem

where

V(.) = V (')+V (')

Hp
~

k) =.„~ k),

with eigenvectors
~

k) characterizing the spectrum of

This Hamiltonian operator gives rise to a one-
dimensional Schrodinger equation embodying now the
nonlocal effects
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d2 Q~ d ] d Q2 d2 ] +(*) = (E - IV(*) + V-. (* &) + H. (&)])~(*)
2p(x; b) dx2 2 dx p, (x; b) dx 8 dx2 p, (x; b)

Hereafter we will denote

d 1 d h d 1
HNL x;b

2 dx p, (x; b) dx 8 dx2 p(x; b)

To solve Eq. (11) one assumes the total wave functions
to be expanded as

where o. refers to the intrinsic states, so that one ends up
with the set of coupled equations

52 d2
+ HNr, (x; b) + V(x) —E u (x)

2/l xI b dx

= —).I -~-p+ ( I
V. (* &) I &)] p(*) (14)

The right-hand side (rhs) of this equation contains the
terms coupling the relative motion and the selected in-
trinsic degree of freedom as usual, while the lhs, bear-
ing the information concerning the relative motion, will
account for the transmission factor through the barrier
described by the total model potential including the non-
local and the coupling eÃects coming &om the diagonal-
ization. It is then clear that this transmission factor will
be modi6. ed also by the presence of the efFective reduced
mass and HNr. (x; b) terms which take into account the
nonlocal effects, up to p terms. Furthermore, it has
been already verified that this inclusion can give rise to
an enhancement of the nuclear fusion cross section I6].

Now, we want to find the solutions of that set of cou-
pled equations so that they have the asymptotic behavior
(for short range nonlocal potentials)

~
—iA: z + p iA; g

where h k /2p = E —e and the colliding nuclei are
considered to be in their ground states. Furthermore, we
will also use the simplifying assumption that V„i(x,()
factorizes into a product of two terms, one describing the
coupling potential for the relative motion and the other
for the intrinsic degree of freedom, respectively, and we
will additionally consider the potential associated with
the relative motion to be represented by its value at the
barrier position, F, for all channels n I4]. Thus we see
that, under these hypotheses, the equations can be decou-
pled and that this can be accomplished by diagonalizing
the matrix

M p = (n I Ho(() + V,„((x,() I P) = e b p + FV p,

(16)

I

which gives the eigenvalues Ap of Hp(() + V,z~ (x, (). The
new uncoupled Schrodinger equations with nonlocal ef-
fects are

h2 d
+ HNr, (x; b) + V(x) + Ap —E vp(x)

2p x;b dx2

= 0, (17)

being the new solution vp(x) related to the u (x) by the
matrix which diagonalizes the matrix M p.

Since we are concerned with the asymptotic behav-
ior of the solution of Eq. (17), we are allowed to also
assume, for large incident energies compared to the in-
trinsic energies and coupling strengths, Eq. (15) to be
valid with 6 k /2p, = E. The transmission factor is then
written as a sum of the contributions coming from all
channels P, each with a weight associated with the over-
lap of the initial state with the corresponding eigenstates
of the matrix M. The total transmission coefFicient as-
sociated with Eq. (17) is then written in the form

T =). I (o
I &) I'I tp I'

=). I « I &) I' T(E V(*)+Ap b)

and ft. om this expression it is worth noting that the non-
local e8'ects present in the relative motion give a contri-
bution to the transmission coeFicient of a diferent char-
acter as that coming from Ap, which is associated to the
coupled-channels eKects allowed by the model. The eÃect
of the channel coupling corresponds, as usual [4], to re-
placing the barrier V(x) by a family of barriers V(x)+Ap,
being the total transmission factor given by the sum over
the transmission coefFicients calculated for each barrier
in the family weighted by the overlap factors

I (0 I P) I

In the present simple model, the nonlocality manifests
itself in the total transmission coeKcient only through
the effective mass and HNi, (x; b) terms which will mod-
ify T(E, U(x) + Ap, b) for each channel because, due to
our assumption on the x independence of M(x, (), ansatz
(16), the overlap factor of the intrinsic states is not af-
fected by the nonlocality. Although in realistic situa-
tions we expect much more involved expressions mixing
the channel coupling and the nonlocal eKects, we already
expect the present approach to exhibit the essential fea-
tures relevant to the understanding of the competition
between the two eKects for the fusion processes.

In order to fully calculate the coefficients T(E, V(x) +
Ap, b) we would have to solve Eq. (14), being the gen-
eral solution obtainable, in principle at least, by numer-
ical procedure. But these coefficients have already been
obtained through the use of the Weyl-Wigner quantum
phase space formalism in the Feynman path integral ap-
proach [9], and are written for the case described by Eq.
(17) as
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T(E, V(x) + Ap, b) = 1+ exp 2
2y, (x; b)

[V(x) + Ap —E] dx
1

p, z)R~,
P (2+~2„. ~V~0~(Ra) ~), 2&x&R~ .

(2o)

Furthermore, if one works with a parabolic approx-
imation for V x) [18] and with the assumption that
(pb /2h ) ~

Vf (R~)
~

produces only a small change in
the reduced mass at the barrier, then we get

T(E, V(z) + Ap, b)

1+ exp
2& (Va + 22 —E)

)Ald gy
B , (21)

where V~, R~, and Lu~ are the height, position, and
curvature of the effective barrier, respectively, and

Now, as is well known from momentum-dependent mi-
croscopic interaction calculations [10,11], the efFective
mass depends on the density function of the system.
Here, for simplicity, we will assume a geometrical model
for the effective reduced mass in which it changes with
the density distribution profile of the colliding nuclei only
at the radius of the barrier, B~, defined by the total po-
tential, i.e. ,

where Q is the reaction Q value so that it can be directly
diagonalized, thus giving the eigenvalues

= — —Q+ (4E'+ Q') '
2

(25)

The overlap probabilities corresponding to the eigenval-
ues are

Q2
o

I
+) I +

and making use of Eqs. (18), (21), and (26), we can write
the total transmission function, namely,

T(E, V(x) + A~., b)

2&(Va + 2~ —E)
'

)
2&(Va + 2 —E)

)

= P+ 1+exp

+P 1+exp

channels [19]. In this connection, in the standard treat-
ment [4] the coupling matrix M p is written as

(0

D(b, R ) =1 —b'f(
4

with

f(Ra) =
2~, I

V~(Ra)
I

. (23)

III. TWO-CHANNEL MODEL

A simplified version of the model discussed in the pre-
vious section, i.e. , the two-channel model, can be now
studied which is still of interest because not only can it
simulate the coupling to a harmonic mode, representing
a nuclear collective excitation in its weak limit, but also
because it could be used for describing particle transfer

It is important to notice that the factor D(b, R~) in Eq.
(21), coming from the efFective reduced mass, renormal-
izes the curvature of the barrier Ru~, keeping unaltered
the barrier height. It is interesting to observe that a sim-
ilar result was already obtained by Frahn and Lemmer
in their study of a particle bound in a harmonic oscilla-
tor potential [16]. In this way, it is clearly seen in this
schematic model encompassing nonlocal effects, besides
channel couplings, that the barrier is then modified in its
curvature, in addition to the shift in its height, for each
channel. Both these effects are of short range character
and reveal the essential role of the fermionic structure
of the colliding nuclei in the description of the barrier
dynamics during the fusion process.

It is clear &om this expression that the final contribu-
tions of the two basic distinct effects present in the model
Hamiltonian to the transmission factor are of different
character. While the channel coupling, in this version of
the model, gives rise to two barrier heights (V~+A~) with
their corresponding weights, P~, the nonlocality renor-
malizes the curvature of the unshifted barrier

Bldg

D(b, Rg)

It is also remarkable that this renormalization factor
bears essential information related to the attractive nu-
clear potential at the barrier radius, Eq. (23), besides
carrying the explicit nonlocality range dependence.

In order to show the interplay between nonlocal and
channel coupling efFects, we have chosen some values for
the coupling strength F and the Q-value and calculated
the transmission function, Eq. (27), being the parame
ters related to the barrier of a Ni+ Ni system. The
parameters used were Q = —1.454 MeV, E = —2.7 MeV,
so that we simulate at least the coupling to the Ni
first 2+ state as discussed by Landowne and Pieper [20],
V~ ——100 MeV, Lu~ ——4 MeV, and the results are
shown in Fig. 1. To calculate f (R~) we assumed the
Christensen-Winther potential [21] to describe the tail
of the nucleus-nucleus potential and we obtain the value

f (R~) = 1.75 fm 2 with R~ = 11.0 fm. The range of
the nonlocality is assumed to be 6 = 0.94 fm, that is,
associated with pure nonlocal effects [6]. The results of
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this schematic model which embodies nonlocality besides
coupling channels present a larger enhancement, in en-
ergies below the barrier V~, than that obtained through
the coupled-channels calculation alone. It is important to
stress that in the local limit, 6 ~ 0, the expression above
gives back the usual expressions for the two-channel prob-
lem .

If we want to use the expressions for the transmission
function, adapted to the case of a II' = 0 partial wave,
in the standard definition of the fusion cross section for
all those cases for which the present model can be ap-
plied, we need to extend that expression for I g 0. This
can be accomplished by the introduction of the simple
assumption that the main eKect arises from the standard
centrifugal potential [22,6]. Thus, we see that, using the
set of approximations

0 0.5

0.090 100

E. (M~v)
105

h'l(l + 1)
Va —- Vp+

2P Bp

%up,

[12] in Eq. (27), the final result is

(29)

(30)

(31)

FIG. 1. The transmission function, Eq. (27), calculated for
a Ni+ Ni system. Curve 1 describes the local no-coupling
calculation, curve 2 corresponds to the coupled-channels cal-
culation for the Grst 2+ state, curve 3 depicts the pure nonlo-
cal effects, and curve 4 represents the summed channel cou-

pling and nonlocal effects.

(E) = P+ ln(1+expNi. c &o~o

Bp~Lup

&2vr [E —(vo+ A~)]

)~p ) 0

2~ [Z —(Vo + X )]
p

p
(32)

where Vp, Rp, and Lop are the height, position, and cur-
vature of the Coulombic barrier, respectively, for / = 0.

In order to show the summed result of the nonlocal and
channel coupling eÃects in the fusion cross section, we
have also calculated Eq. (32) for the case of a Ni+ Ni
collision. Albeit the parameters I" and Q previously cho-
sen may not give a complete description of the fusion
process in that reaction, the results already show some
interesting features. It is worth noting that of" (E)
is larger than the fusion cross section calculated with
the channel coupling effects only at energies below and
around the barrier and that they are identical at energies
above the barrier (Fig. 2), this being an interesting fea-
ture of the fusion cross section cr due to the presencef
of the factor D(b, Bo) in the exponential argument as well
as in the denominator of the prelogarithm terms of Eq.
(32). While this factor enhances the fusion cross section
for energies below or around the barrier by redefining its
curvature, it also has the correct behavior so as to give
the expected trend for higher energies.

IV. CONCI U SIGNS

We have discussed in this paper the interplay between
I'. onlocal e8'ects and channel couplings in a model Hamil-
tonian describing a nuclear collision and we have shown
how they produce enhancements in the nuclear fusion
cross section. To this end, and for the sake of simplic-

1 0 — I I 1 I I I I 1 1 ] I I I I l I I 1 1 ] I I I I ] I 1 I 1
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+ Ni

I IG. 2. The fusion cross section for a Ni+ Ni system.
Curve 1 describes the local no coupling calculation, curve 2

is the result for the first 2+ state coupled-channels calcula-
tion, curve 3 represents the pure nonlocal result, and curve
4 gives the summed channel coupling and nonlocal effects.
Open circles are the experimental data.

I

ity, we have started from a model Hamiltonian which
has the channel coupling terms as described by Basso et
al. [4] besides a nonlocal potential. This choice enabled
us to discuss, in its dominant aspects, the two contribu-
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tions for the nuclear fusion cross section, this approach
being therefore at least a guide for the understanding
of the main features present in realistic nuclear colli-
sion processes. The nonlocal contribution manifests itself
through the effective reduced mass, thus allowing for the
diagonalization of the channel coupling interaction in a
standard form. This leads to a new equation in which,
besides the family of shifted potentials generated by the
channel coupling, the effective reduced mass will also be
responsible for a modified transmission function, which
has been already calculated by the authors in another
paper [6]. The final expression for the transmission func-
tion exhibits two separated contributions, namely, the
channel coupling effects which modify the barrier height
through the addition of the eigenvalues of the diagonal-
ization procedure in the channel space and the redefi-
nition of the barrier curvature induced by the nonlocal
effects embodied in the effective reduced mass. In fact
we must expect a more entangled expression in realistic
situations in which both effects are mixed, but here, due
to the assumption of constant coupling strength, there
occurs a complete separation between channel coupling
and nonlocal efFects. Nevertheless, the present approach
is expected to describe the main contributions coming
&om those two efFects.

In order to show quantitatively how nonlocal effects
contribute to the enhancement of the channel coupling
calculated transmission function, we have adopted the
nuclear data &om a Ni+ Ni collision and performed
the calculations with a fixed value of the nonlocality

range, as previously determined by the authors [6], and
a Christensen-Winther nucleus-nucleus potential [21] for
some specific cases of channel coupling parameters. As an
illustration we have also used the same schematic model
of channel coupling interaction to study the nuclear fu-
sion cross section in those cases, in order to show their
behavior when nonlocal effects are included. The results,
although not completely realistic because of the simple
modelistic treatment of the channel coupling interaction,
already points to the importance of the inclusion both of
nonlocal as well as channel coupling terms.

Finally, we want to emphasize the importance of a
more realistic calculation to study the role of nonlocal
effects in fusion processes as well as in elastic scatter-
ing within this &amework. To this end we have to solve
a general Schrodinger equation with a Percy-Buck-like
nonlocal potential [7] and look for nonlocal eifects in the
relevant cross sections. This analysis is in progress and
will be reported in another paper.
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